
Secure Certificateless Public Key Encryption
without Redundancy

Yinxia Sun and Futai Zhang ?

School of Mathematics and Computer Science
Nanjing Normal University, Nanjing 210097, P.R.China

Abstract. Certificateless public key cryptography was introduced to
solve the key escrow problem in identity based cryptography while enjoy-
ing the most attractive certificateless property. In this paper, we present
the first secure certificateless public key encryption (CLPKE) scheme
without redundancy. Our construction provides optimal bandwidth and
quite efficient decryption process compared with the existing CLPKE
schemes. It is provably secure against adaptive chosen ciphertext attacks
in the random oracle model under a slightly stronger assumption.

keywords: certificateless public key encryption, redundancy, short ci-
phertext, bilinear pairing, random oracle.

1 Introduction

Easy key distribution makes public key cryptography attract much at-
tention from the research area. One of the most important topics in the
implementation of public key cryptosystems is how to guarantee the au-
thenticity of public keys. In traditional public key cryptography, the au-
thenticity of public keys is ensured by certificates signed by a certificate
authority (CA). But the issues associated with certificate management
are quite complex and costly. In 1984, Shamir invented a new paradigm
called “Identity-based Cryptography” (ID-PKC) [17] which eliminates the
need for certificate by deriving public keys for users directly from their
human-memorizable information, such as e-mail address and IP address.
The private keys are fully generated by a Private Key Generator (PKG)
which inevitably introduces the key escrow problem.

In 2003, Al-Riyami and Paterson brought forth the notion of “Certifi-
cateless Public Key Cryptography” (CL-PKC) [1] to solve the inherent
key escrow problem in ID-PKC and meanwhile keep the attractive cer-
tificateless property. A subsequent work by Yum-Lee [20] considered a
? Project supported by the National Natural Science Foundation of China (Grant

No. 60673070) and the Natural Science Foundation of Jiangsu Province (Grant No.
BK2006217)

2 Yinxia Sun and Futai Zhang

generic construction of certificateless encryption. However their construc-
tion was insecure against Type II adversaries as showed by Galindo et
al. In 2005, Al-Riyami and Paterson gave another CLPKE scheme [2]
which was independently broken and modified by Libert-Quisquater [14]
and Zhang-Feng [21]. The Cheng-Comley scheme [6], which is very sim-
ilar to Zhang-Feng scheme [21], was proved to be secure in the weak
Type Ib∗ security model. Papers by Baek et al. [3] and Sun et al. [19]
showed certificateless encryption schemes without pairing, which enjoys
a better efficiency than pairing-based proposals. But it prevents users
from generating their public keys independently from the Key Genera-
tor Center (KGC). Among other related results, we mention the paper by
Libert-Quisquater [14]. They presented four provably secure CLPKE con-
structions by applying the improved Fujisaki-Okamoto transformation to
weakly secure certificateless schemes. Their forth concrete construction
is similar to the Shi-Li [18] scheme but is more efficient. Very recently,
Dent [8] surveyed all known security models that had been proposed for
CLPKE, and presented a consistent, new nomenclature for these models.
In addition, there are some achievements on CLPKE that are provably
secure in the standard model [15,12,9]. We may notice that, to resist
chosen ciphertext attacks, most of the concrete CLPKE schemes use the
Fujisaki-Okamoto-style technique [10,11], which introduces redundancies
in ciphertexts. Since redundancy will aggravate the load of the cryptosys-
tem, especially in communication cost, which is extremely disliked in the
bandwidth limited network, our motivation focuses on removing redun-
dancy of ciphertexts in certificateless setting.

Recently, Libert and Quisquater [13] showed a hybrid variant of the
Boneh-Franklin identity based encryption (IBE) [5] without introducing
redundancies in ciphertexts that are thus shorter than that in the origi-
nal IBE scheme. Their construction was realized by combining an iden-
tity based Key Encapsulation Mechanism (KEM) and an IND-CCA se-
cure Data Encapsulation Mechanism (DEM). We think their technique
is useful for us to construct a certificateless encryption scheme without
redundancy. Though this was also mentioned at the end of section 3 in
[13], their proposal is fragile against the Type I adversary under adap-
tive chosen ciphertext attacks. It is because the certificateless encryption
scheme they used is not secure as pointed out by Libert-Quisquater [14]
and Zhang-Feng [21]. Note that “without redundancy” here means the
expanded ciphertext size is zero beyond both the plaintext size and nec-
essary randomness size for CCA security.

Secure Certificateless Public Key Encryption without Redundancy 3

Our Contributions. In this paper, by extending the technique of Libert
and Quisquater [13] to the certificateless setting, we present the first se-
cure CLPKE scheme without redundancy. Our construction enjoys better
performances both in ciphertext length and the decryption process than
all the existing CLPKE schemes. We also give a formal security proof
against adaptive chosen ciphertext attacks in the random oracle model.

Our paper proceeds as follows. Section 2 gives definitions of certificate-
less public key encryption, the security model and some computational
problems. Our CLPKE construction is presented in Section 3 followed by
the security discussion in Section 4. Then in Section 5, we compare our
scheme with some other existing ones. The last section gives our conclud-
ing remarks.

2 Preliminaries

In this section, we review the definition and the security model of certifi-
cateless public key encryption (CLPKE), followed by some computational
problems which form the basis of the security for our scheme.

2.1 Definition of Certificateless Public Key Encryption

A certificateless public key encryption scheme is defined by seven proba-
bilistic, polynomial-time algorithms:

– Setup: Taking as input a security parameter k, the key generation
center (KGC) runs this algorithm to generate a master key msk and
a list of public parameters params.

– Partial-Private-Key-Extract: Taking as input msk, params and a user’s
identity ID, KGC runs this algorithm to generate a partial private
key DID for the user.

– Set-Secret-Value: Taking as input params and ID, the user runs this
algorithm to generate a secret value xID.

– Set-Private-Key: Taking as input params, DID and xID, the user runs
this algorithm to generate a private key SID.

– Set-Public-Key: Taking as input params and xID, the user runs this
algorithm to generate a public key PID.

– Encrypt: Taking as input a message m, params, a user’s identity ID
and public key PID, a message sender runs this algorithm to return a
ciphertext C.

– Decrypt: Taking as input the ciphertext C, params and the private
key SID, the user runs this algorithm to return a message m.

4 Yinxia Sun and Futai Zhang

2.2 Security Model

In this paper, we employ the common security model developed by Al-
Riyami and Paterson [1] (Dent afterwards strengthened the power of the
Type II adversary and proposed a stronger security model for CLE. For
detail, please refer to [8]). A general adversaryA against a CLPKE scheme
may carry out actions as follows:

– Partial Private Key Extraction query PPK(ID): On receiving
such a query, the challenger C responds by running algorithm Partial-
Private-Key-Extract to generate the partial private key DID.

– Private Key Extraction query PrK(ID): On receiving such a
query, if the public key has not been replaced, then C can respond by
running algorithm Set-Private-Key to generate the private key SID.
But it is unreasonable to expect C to be able to respond to such a
query if the public key has been replaced.

– Public Key request query PK(ID): On receiving such a query, C
responds by running algorithm Set-Public-Key to generate the public
key PID (first running Set-Secret-Value if necessary).

– Public Key Replacement PKR(ID): Such a query allows the ad-
versary A to replace the public key of a user ID with any value of its
choice. The new value will be recorded and will be used by C in the
coming computations or responses to the adversary’s queries.

– Decryption query D(ID, PID, C): On receiving such a query, the
challenger returns the correct decryption of ciphertext C under iden-
tity ID and public key PID, even if the corresponding public key for
the user ID has been replaced. This is a rather strong property for
the security model (after all, the challenger may no longer know the
correct private key). However, this capability gives the adversary more
power in breaking the scheme. For further discussion of this feature,
see [1].

The security model distinguishes two types of adversaries.
A CLPKE Type I Adversary: Such an adversary AI does not have

access to the master key, but may replace public keys of users with values
of its choice, as well as request public keys, extract partial private and
private keys, and make decryption queries. There are some restrictions
on this type of adversary:

– AI cannot extract the partial private or the private key for the chal-
lenge identity ID∗ at any point.

– AI cannot request the private key for any identity if the corresponding
public key has been replaced.

Secure Certificateless Public Key Encryption without Redundancy 5

– In Phase 2, AI cannot make a decryption query on the challenge ci-
phertext C∗ for the combination (ID∗, PID∗) that was used to encrypt
one of the challenge plaintexts.

A CLPKE Type II Adversary: Such an adversary AII does have
access to the master key msk, but may not replace public keys of users.
AII can compute partial private keys for all users thanks to its knowledge
of the master key msk. It can also request public keys, make private key
extraction queries and decryption queries. The restrictions on this type
of adversary are:

– AII cannot replace public keys at any point.
– AII cannot extract the private key for the challenge identity ID∗ at

any point.
– In Phase 2, AII cannot make a decryption query on the challenge

ciphertext C∗ for the challenge identity ID∗.

Definition 1. A CLPKE scheme is said to be secure against adaptive
chosen ciphertext attack (IND-CCA secure) if no polynomially bounded
adversary A of Type I or Type II has a non-negligible advantage in the
following game:

Setup: The challenger C takes a security parameter k as input and runs
the Setup algorithm. It gives A the resulting public parameters params.
If A is of Type I, then C keeps the master key msk to himself. Otherwise,
he gives msk to A.
Phase 1: A issues a sequence of requests described above. These queries
may be asked adaptively, but are subject to the restrictions on adversary
behavior defined above.
Challenge Phase: Once A decides that Phase 1 is over, it outputs a
challenge identity ID∗ with public key PID∗ and two plaintexts (m0,m1).
Note that A is not allowed to know the private key of ID∗ in any way.
C now picks a random bit β ∈ {0, 1} and computes C∗, the encryption of
mβ under the current public key PID∗ for ID∗. Then C∗ is delivered to
A.
Phase 2: Now A issues a second sequence of queries as in Phase 1, again
subject to the constraints defined above on the adversary behavior.
Guess: Finally, A outputs a guess β′ for β. The adversary wins the game
if β′ = β. We define A’s advantage in this game to be Adv(A) = 2(Pr[β′ =
β]− 1

2).

Our CLPKE scheme makes use of a symmetric cipher that is chosen-
ciphertext secure. A symmetric encryption scheme consists of three al-
gorithms (K, E,D). The key generation algorithm K generates a key

6 Yinxia Sun and Futai Zhang

k → {0, 1}λ for a security parameter λ. The encryption algorithm E
takes a key k and a plaintext m to produce a ciphertext c = Ek(m)
while the decryption algorithm takes a key k and a ciphertext c to return
m/⊥ = Dk(c).

For easy reading, we review the notion of chosen ciphertext security
for a symmetric encryption scheme described by Libert and Quisquater
in [13] as follows:

Definition 2. A symmetric encryption scheme is said to be chosen-ciphertext
secure if no polynomially bounded adversary A has a non-negligible ad-
vantage in the following game:

– The challenger chooses a key k ∈ {0, 1}λ.
– A queries the encryption oracle Ek() and the decryption oracle Dk().
– A outputs two challenge messages (m0,m1) that were not submitted

to the encryption oracle Ek() or obtained from the decryption oracle
Dk(). The challenger computes c∗ = Ek(mβ), β ∈ {0, 1} and sends it
to A.

– A issues more queries as in the second step, but is not allowed to ask
for the decryption of c∗ and the encryption of m0 or m1.

– A outputs a guess β′ for β. We define A’s advantage in this game to
be Adv(A) = 2(Pr[β′ = β]− 1

2).

2.3 Computational Problems

Let G1 denote an additive group of prime order q and G2 a multiplicative
group of the same order. We let P denote a generator of G1. For us, a
pairing is a map e : G1 ×G1 → G2 with the following properties:

1. Bilinear: given Q,W,Z ∈ G1, we have e(Q,W +Z) = e(Q,W)·e(Q,Z)
and e(Q + W,Z) = e(Q,Z) · e(W,Z).

2. Non-degenerate: e(P, P) 6= 1G2 .
3. Computable: for any Q,W ∈ G1, e(Q,W) can be computed efficiently.

Next, we introduce some computational problems that form the basis
of the security for our CLPKE scheme.

Definition 3 (Computational Diffie-Hellman (CDH) problem).
Let G1 be as above. The CDH problem in G1 is that given 〈P, aP, bP 〉
with uniformly random choices of a, b ∈ Z∗

q, compute abP ∈ G1.

Let B be a CDH attacker. B’s advantage to solve the CDH problem is
defined as Adv(B) = Pr[B(P, aP, bP) = abP]. Here the probability is
measured over the random choices of a, b ∈ Z∗

q and the random bits of B.

Secure Certificateless Public Key Encryption without Redundancy 7

Definition 4 (Bilinear Diffie-Hellman (BDH) problem). Let G1, G2, e
be as above. The BDH problem in 〈G1, G2, e〉 is that given 〈P, aP, bP, cP 〉
with uniformly random choices of a, b, c ∈ Z∗

q, compute e(P, P)abc ∈ G2.

Definition 5 (Decision Bilinear Diffie-Hellman (DBDH) prob-
lem). Let G1, G2, e be as above. The DBDH problem in 〈G1, G2, e〉 is
that given 〈P, aP, bP, cP, w〉 with uniformly random choices of a, b, c ∈ Z∗

q

and a random element w ∈ G2, decide whether e(P, P)abc = w.

Definition 6 (Gap Bilinear Diffie-Hellman (Gap-BDH) problem).
Let G1, G2, e be as above. The Gap-BDH problem in 〈G1, G2, e〉 is that
given (P, aP, bP, cP), compute e(P, P)abc with the help of a DBDH or-
acle, which, given (P, aP, bP, cP,w), output 1 if w = e(P, P)abc and 0
otherwise.

Let B be a Gap-BDH attacker. B’s advantage to solve the Gap-BDH
problem is defined as Adv(B) = Pr[BODBDH(P, aP, bP, cP) = e(P, P)abc].
Here the probability is measured over the random choices of a, b, c ∈ Z∗

q

and the random bits of B.

3 Our scheme

In this section, we present a redundancy-free certificateless public key
encryption scheme that provides optimal bandwidth and more efficient
decryption process than all known certificateless encryption schemes.

– Setup:

1. On input a security parameter k, this algorithm outputs a pair of
bilinear groups (G1, G2) of prime order q and a bilinear pairing
e : G1 ×G1 → G2.

2. Choose a generater P ∈ G1.
3. Select a master key s ∈R Z∗

q and set P0 = sP .
4. Choose cryptographic hash functions H1 : {0, 1}∗ → G∗

1,H2 :
G3

1 × G2 → {0, 1}λ, as well as a chosen-ciphertext secure cipher
(K, E,D) of keylength λ, where λ is polynomial in k.

The public parameters are params = 〈G1, G2, e, q, P, P0,H1,H2, λ, E,D, n〉
and the master key msk is s. The plaintext space is M = {0, 1}n, and
the ciphertext space is C = G1 × {0, 1}n

– Partial-Private-Key-Extract: This algorithm takes as input params,
msk and ID. It computes QID = H1(ID) and outputs DID = sQID

as the partial private key for the user with identity ID.

8 Yinxia Sun and Futai Zhang

– Set-Secret-Value: This algorithm takes as input params and ID. It
selects xID ∈R Z∗

q and outputs xID as the secret value.
– Set-Private-Key: This algorithm takes as input params, the partial

private key DID and secret value xID. It returns SID = (xID, DID)
as the private key.

– Set-Public-Key: This algorithm takes as input params and the secret
value xID and returns PID = xIDP as the public key.

– Encrypt: To encrypt m ∈M for the user with identity ID and public
key PID, this algorithm performs as follows:
1. Choose r ∈R Z∗

q and compute U = rP .
2. Compute QID = H1(ID).
3. Compute SK = H2(QID, U, rPID, e(QID, P0)r) and V = ESK(m).

Output C = 〈U, V 〉 as the ciphertext.
– Decrypt: To decrypt the ciphertext C = 〈U, V 〉 using private key

SID = (xID, DID), this algorithm computes SK = H2(QID, U, xIDU, e(DID, U))
and returns m = DSK(V).

4 The Security

Theorem 1. Our CLPKE scheme is IND-CCA secure in the random
oracle model, assuming that the Gap-BDH problem and the CDH problem
are intractable.

This theorem follows from two lemmas below depending on the type
of adversaries.

Lemma 1. Suppose H1,H2 are random oracles and there exists a Type
I IND-CCA adversary AI against our scheme with advantage ε within
time t, making qpar partial private key extraction queries, qpub public key
requests, qD decryption queries and qi random oracle queries to Hi (i =
1, 2). Then, for any 0 6 ν 6 ε, there exists

– an algorithm B that can solve the Gap-BDH problem with advantage
ε′ > 1

q1
(ε − ν) within time t′ 6 t + (q1 + qpar + qpub)τmul + q2φ +

qD(τsym + 2ϕ).
– or an attacker that breaks the chosen-ciphertext security of the sym-

metric encryption scheme (K, E,D) with advantage ν within time t′.

where τmul denotes the time for a scalar multiplication in G1, φ is the time
for a call to the DBDH oracle, while τsym and ϕ respectively denote the
time for a symmetric decryption and the one for a pairing computation.

Secure Certificateless Public Key Encryption without Redundancy 9

Proof. We assume that the symmetric encryption scheme used here is
chosen-ciphertext secure.

Let AI be a Type I IND-CCA adversary against our CLPKE scheme
and (P, aP, bP, cP,ODBDH) be an input of a random instance of the
Gap-BDH problem, where ODBDH is a decision oracle that on input
(P, aP, bP, cP,w), answers 1 if w = e(P, P)abc and 0 otherwise. We show
how to construct from AI an algorithm B to solve the Gap-BDH problem.

B begins by choosing an index I uniformly at random with 1 6 I 6 q1

and then gives AI params = 〈G1, G2, e, q, P, P0 = aP, H1,H2, λ, E, D, n〉,
where H1,H2 are random oracles controlled by B.

AI may make hash queries to random oracles H1,H2 at any time
during its attack and B responds as follows:
H1 queries: B maintains a H1 List of tuples 〈IDi, Qi, di〉. On receiving
a H1 query on IDi, B does the following:

1. If there is a tuple of the form 〈IDi, Qi, di〉 on the H1 list, then B
returns Qi as answer.

2. Otherwise, if i 6= I, choose di ∈R Z∗
q , compute Qi = diP , add

〈IDi, Qi, di〉 to the H1 list and return Qi as answer.
3. If i = I, add 〈IDi, Qi = cP, ?〉 to the H1 list and return cP as answer.

H2 queries: These queries are processed using three lists L21, L22 and
L23 which are initially empty.

– L21 contains tuples (Qi, Uj , uj , wj , h2j).
– L22 contains tuples (Qi, Uj , uj , wj) such that (Qi, Uj , uj , wj , h2j) exists

in L21 and ODBDH(Qi, P0, Uj , wj) = 1.
– L23 contains tuples (Qi, Uj , uj , h2j) for which B has implicitly assigned

a value h2i ∈ {0, 1}λ to H2(Qi, Uj , uj , wj), though the value wj such
that ODBDH(Qi, P0, Uj , wj) = 1 is unknown.

More precisely, when B receives a H2 query on (Q,U, u,w),

– B first checks if L21 contains a tuple of the form (Q,U, u,w, h2). If it
does, h2 is returned to AI .

– Otherwise, B submits (Q,P0, U, w) to the oracleODBDH which decides
whether it is a valid BDH tuple.

• If it is, then
∗ If U = bp and Q = QI , we output w as the searched solution.
∗ Otherwise, B adds (Q,U, u,w) to the list L22.
∗ If L23 contains a tuple (Q,U, u, h2), B adds (Q,U, u,w, h2) to

the list L21 and h2 is returned to AI .

10 Yinxia Sun and Futai Zhang

• Otherwise, B selects h2 ∈R {0, 1}λ, inserts the tuple (Q,U, u,w, h2)
to the list L21 and h2 is returned to AI .

Phase 1: AI launches Phase 1 of its attack by making a series of re-
quests, each of which is either a partial private key extraction, a private
key extraction, a request of a public key, a public key replacement or a
decryption query. We assume that AI always makes the appropriate H1

query before making one of these requests.
Partial Private Key Extraction: B maintains a partial private key list
of tuples 〈IDi, Di〉. On receiving a partial private key extraction query
PPK(IDi), B responds as follows:

1. If there is a tuple of the form 〈IDi, Di〉 on the partial private key list,
return Di as answer.

2. Otherwise, if i 6= I, search the H1 list for a tuple 〈IDi, Qi, di〉, compute
Di = diP0, add 〈IDi, Di〉 to the partial private key list and return Di

as answer.
3. If i = I, B aborts.

Private Key Extraction: B maintains a private key list of tuples 〈IDi, (xi, Di)〉.
On receiving a private key extraction query PrK(IDi), B responds as fol-
lows:

1. If there is a tuple of the form 〈IDi, (xi, Di)〉 on the private key list,
return (xi, Di) as answer.

2. Otherwise, if i 6= I, run the simulation algorithm of public key request
to get a tuple 〈IDi, Pi, xi〉 and the simulation algorithm of partial
private key extraction to get a tuple 〈IDi, Di〉, add 〈IDi, (xi, Di)〉 to
the private key list and return (xi, Di) as answer.

3. If i = I, B aborts.

Public Key request: B maintains a public key list of tuples 〈IDi, Pi, xi〉.
On receiving a query on PK(IDi), B responds as follows:

1. If there is a tuple of the form 〈IDi, Pi, xi〉 on the public key list, return
Pi as answer.

2. Otherwise, choose xi ∈R Z∗
q , compute Pi = xiP , add 〈IDi, Pi, xi〉 to

the public key list and return Pi as answer.

Public Key Replacement: A may replace public keys with new values
of its choices and B records all these changes.
Decryption queries: Suppose the decryption query is D(IDi, PIDi , C =
〈U, V 〉). If the public key has not been replaced, B searches the public key
list for 〈IDi, PIDi , xi〉 and computes ui = xiU . Then B does the following:

Secure Certificateless Public Key Encryption without Redundancy 11

– It checks if (Qi, U, ui, wi) exists in L22 for some wi ∈ G2 (satisfying
e(U,PIDi) = e(ui, P) if the public key has been replaced). If it does,
B retrieves the tuple (Qi, U, ui, wi, h2i) from L21 and computes m =
Dh2i

(V).
– Otherwise, it tests whether L23 contains a tuple (Qi, U, ui, h2i) (sat-

isfying e(U,PIDi) = e(ui, P) if the public key has been replaced)
for some h2i ∈ {0, 1}λ. If it does, h2i is used to do the decryption
m = Dh2i

(V) which is returned as a result. Otherwise, B chooses
a random h2 ∈ {0, 1}λ and adds (Qi, U, ui, h2) (or (Qi, U, ?PIDi , h2)
when the public key has been replaced) to L23, while m = Dh2(V) is
returned to AI .

Challenge Phase: AI picks ID∗ with public key PID∗ and two messages
m0,m1 on which it wishes to be challenged. If ID∗ 6= IDI , B aborts.
Otherwise, B performs the following:

1. Set U∗ = bP .
2. If the public key has not been replaced, B searches the public key

list for 〈ID∗, PID∗ , x∗〉 and computes u∗ = x∗U∗. Then B checks if
(QID∗ , U∗, u∗, h∗2) exists in L23 for some h∗2 ∈ {0, 1}λ. (If the public
key has been replaced, e(U∗, PID∗) = e(u∗, P) should be satisfied.)
(a) If it does, B computes V ∗ = Eh∗2

(mβ), β ∈R {0, 1}.
(b) Otherwise, B chooses a random h∗2 ∈ {0, 1}λ, inserts (QID∗ , U∗, u∗, h∗2)

(or (QID∗ , U∗, ?PID∗ , h∗2) when the public key has been replaced)
to L23 and then computes V ∗ = Eh∗2

(mβ), β ∈R {0, 1}.
3. Return C∗ = (U∗, V ∗) as the challenge ciphertext.

Phase 2: B continues to respond to AI ’s requests in the same way as it
did in Phase 1. Note that A can not make queries on the partial private
or the private key for ID∗. Also, no decryption query should be made on
C∗ for the combination of ID∗ and PID∗ .
Guess: Eventually, AI should make a guess β′ for β.

Analysis. We let AskH2 denote the event that (QID∗ , U∗, u∗, w∗) is queried
to H2 and ¬Abort the event that B does not abort during the simulation
game. Suppose E = AskH2|¬Abort. Then

Pr[β′ = β] = Pr[β′ = β|E]Pr[E] + Pr[β′ = β|¬E]Pr[¬E]

By the definition, we know that Pr[β′ = β] > 1+ε
2 . If the event E does

not occur, the probability of correct guess for AI relies on the security
level of the symmetric encryption scheme we adopted here, so we have

12 Yinxia Sun and Futai Zhang

Pr[β′ = β|¬E] 6 1+ν
2 , where ν denotes the advantage of the symmetric

encryption attacker. Hence, it is not difficult for us to obtain

1 + ε

2
6 Pr[E] +

1 + ν

2
Pr[¬E] =

1 + ν

2
+

1− ν

2
Pr[E]

then

Pr[E] >
ε− ν

1− ν
> ε− ν

Finally, we get

ε− ν 6 Pr[E] 6
Pr[AskH2]
Pr[¬Abort]

6
Pr[AskH2]

1
q1

Pr[AskH2] >
1
q1

(ε− ν)

If AskH2 happens, B can give his solution to the Gap-BDH problem
directly. That is to say ε′ = Pr[AskH2]. Hence, we obtain

ε′ >
1
q1

(ε− ν)

The running time is t′ 6 t+(q1+qpar+qpub)τmul+q2φ+qD(τsym+2ϕ).
where τmul denotes the time for a scalar multiplication in G1, φ is the time
for a call to the DBDH oracle, while τsym and ϕ respectively denote the
time for a symmetric decryption and the one for a pairing computation.

Lemma 2. Suppose H1,H2 are random oracles and there exists a Type
II IND-CCA adversary AII against our CLPKE scheme with advantage
ε within time t, making qpri private key extraction queries, qpub public
key requests, qD decryption queries and qi random oracle queries to Hi

(i = 1, 2). Then, for any 0 6 ν 6 ε, there exists

– an algorithm B that can solve the CDH problem with advantage ε′ >
1
q1

(ε− ν) within time t′ 6 t + (qpri + qpub)τmul + 2q2ϕ + qDτsym.
– or an attacker that breaks the chosen-ciphertext security of the sym-

metric encryption scheme (K, E,D) with advantage ν within time t′.

where τmul denotes the time for a scalar multiplication in G1, while ϕ and
τsym respectively denote the time for a pairing computation and the one
for a symmetric decryption.

Secure Certificateless Public Key Encryption without Redundancy 13

Proof. We assume that the symmetric scheme used here is chosen-ciphertext
secure with advantage ν.

Let AII be a Type II IND-CCA adversary against our CLPKE scheme
and (P, aP, bP) be an instance of the CDH problem. We show how to
construct from AII an algorithm B to solve the CDH problem.

B begins by choosing an index I uniformly at random with 1 6 I 6 q1.
B selects s ∈R Z∗

q , computes P0 = sP and supplies AII with the pub-
lic parameters params = 〈G1, G2, e, q, P, P0,H1,H2, λ, E, D, n〉 together
with the master key s, where H1 and H2 are random oracles controlled
by B.

AII may make queries to random oracles Hi(i = 1, 2) at any time
during its attack and B responds as follows:
H1 queries: B maintains a H1 list of tuples 〈IDi, Qi〉. On receiving a H1

query on IDi, B does the following:

1. If there is a tuple of the form 〈IDi, Qi〉 on the H1 list, then B returns
Qi as answer.

2. Otherwise, B chooses Qi ∈R G∗
1, adds 〈IDi, Qi〉 to the H1 list and

returns Qi as answer.

H2 queries: these queries are processed using three lists L21, L22 and L23

which are initially empty.

– L21 contains tuples (Qi, Uj , uj , wj , h2j).
– L22 contains tuples (Qi, Uj , uj , wj) such that (Qi, Uj , uj , wj , h2j) exists

in L21 and e(Pi, Uj) = e(uj , P).
– L23 contains tuples (Qi, Uj , wj , h2j) for which B has implicitly assigned

a value h2j ∈ {0, 1}λ to H2(Qi, Uj , uj , wj), though the value uj such
that e(Pi, Uj) = e(uj , P) is unknown.

More precisely, when B receives a H2 query on (Q,U, u,w),

– B first checks if L21 contains a tuple of the form (Q,U, u,w, h2). if it
does, h2 is returned to AII .

– Otherwise, B checks whether e(PID, U) = e(u, P).

• If it is, then
∗ If U = bp and Q = QI , we output u as the searched solution.
∗ Otherwise, B adds (Q,U, u,w) to the list L22.
∗ If L23 contains a tuple (Q,U,w, h2), B adds (Q,U, u,w, h2) to

the list L21 and h2 is returned to AII .
• Otherwise, B selects h2 ∈R {0, 1}λ, inserts the tuple (Q,U, u,w, h2)

to the list L21 and h2 is returned to AII .

14 Yinxia Sun and Futai Zhang

Phase 1: AII launches Phase 1 of its attack by making a series of re-
quests, each of which is either a private key extraction, a request of a
public key or a decryption query. We assume that AII always makes the
appropriate H1 query before making one of these requests.
Private Key Extraction: B maintains a private key list of tuples 〈IDi, (xi, Di)〉.
On receiving a private key extraction query PrK(IDi), B responds as fol-
lows:

1. If there is a tuple of the form 〈IDi, (xi, Di)〉 on the private key list,
return (xi, Di) as answer.

2. Otherwise, if i 6= I, compute Di = sQi, run the simulation algorithm
of public key request to get a tuple 〈IDi, Pi, xi〉, add 〈IDi, (xi, Di)〉
to the private key list and return (xi, Di) as answer.

3. If i = I, B aborts.

Public Key request: B maintains a public key list of tuples 〈IDi, Pi, xi〉.
On receiving a public key request query PK(IDi), B responds as follows:

1. If there is a tuple of the form 〈IDi, Pi〉 on the public key list, return
Pi as answer.

2. Otherwise, if i 6= I, choose xi ∈R Z∗
q , compute Pi = xiP , add

〈IDi, Pi, xi〉 to the public key list and return Pi as answer.
3. If i = I, set PI = aP , add 〈IDi, Pi, ?〉 to the public key list and return

aP as answer.

Decryption queries: Suppose the decryption query is D(IDi, PIDi , C =
〈U, V 〉).

– If i 6= I, B runs the simulation algorithm of private key extraction
to get the private key (xi, Di) for IDi. Then B decrypts C by using
(xi, Di).

– Otherwise, B computes wi = e(U,Di) and then does the following:
• It checks if (Qi, U, ui, wi) exists in L22 for some ui. If it does,
B retrieves the tuple (Qi, U, ui, wi, h2i) from L21 and computes
m = Dh2i

(V).
• Otherwise, it tests whether L23 contains a tuple (Qi, U, wi, h2i). In

this case, h2i is used to do the decryption m = Dh2i
(V) which is

returned as a result. Otherwise, B chooses a random h2 ∈ {0, 1}λ

and adds (Qi, U, wi, h2) to L23, while m = Dh2(V) is returned to
AII .

Challenge Phase: AII picks ID∗ and two messages m0,m1 on which it
wishes to be challenged. If ID∗ 6= IDI , B aborts. Otherwise, B does the
following:

Secure Certificateless Public Key Encryption without Redundancy 15

1. Set U∗ = bP .
2. Check whether L23 contains a tuple (QID∗ , U∗, w∗, h∗2) for some h∗2 ∈

{0, 1}λ, where w∗ = e(U∗, DID∗).
(a) If it does, B computes V ∗ = Eh∗2

(mβ), β ∈R {0, 1}.
(b) Otherwise, B chooses a random h∗2 ∈ {0, 1}λ, inserts (QID∗ , U∗, w∗, h∗2)

to L23 and then computes V ∗ = Eh∗2
(mβ), β ∈R {0, 1}.

3. Return C∗ = (U∗, V ∗) as the challenge ciphertext.

Phase 2: B continues to respond to AII ’s requests in the same way as it
did in Phase 1. Note that AII can not make private key extraction queries
on ID∗. If any decryption query is equal to C∗ for ID∗, then B aborts.
Guess: Eventually, AII should make a guess β′ for β.

Analysis. It is identical to the Analysis for Lemma 1, i.e. the success
probability for B is ε′ > 1

q1
(ε − ν). The running time is t′ 6 t + (qpri +

qpub)τmul + 2q2ϕ + qDτsym, where τmul denotes the time for a scalar mul-
tiplication in G1, while ϕ and τsym respectively denote the time for a
pairing computation and the one for a symmetric decryption.

5 Performance Comparison of the CLPKE schemes

In this section, we show that our scheme has the best performance in
both bandwidth and decryption efficiency compared with all the exist-
ing CLPKE schemes. All the schemes have three major operations, i.e.,
Pairing (p), Scalar multiplication(s) and Exponentiation (e). When tab-
ulating the computation efficiency, hash function and block cipher eval-
uations are ignored. The performance of the CLPKE schemes are listed
in Table 1, where we compare the schemes on security model (Sec-Mod),
computation complexity of encryption (Enc) and decryption (Dec), ci-
phertext length (Cipher-Len), security level (Sec-Lev) and security as-
sumption (Sec-Asm). Note that we do not list all the CLPKE schemes
but some representative ones.

Table 1. Comparison of the CLPKE schemes
Scheme Sec-Mod Enc Dec Cipher-Len Sec-Lev Sec-Asm

[1] RO 3p+1s+1e 1p+1s Lr + 2n Strong T-I GBDHP[1]
[6] RO 1p+2s+1e 1p+2s Lr + 2n Weak T-Ib* BDH
[18] RO 3s+1e 1p+3s Lr + 2n Strong T-I* k-BDHI[18]
[14] RO 1s+2e 1p+1s+1e Lr + 2n Strong T-I k-BDHI
[15] ST 1p+4e 3p+1e 3Lr + 2n Weak T-Ia DBDH-1[15]
[19] RO 6e 3e Lr + 2n Strong T-I* CDH
[9] ST 1p+3s+1e 4p 3Lr + n Strong T-I 3-DDH[9]

Ours RO 1p+2s+1e 1p+1s Lr + n Strong T-I* Gap-BDH

16 Yinxia Sun and Futai Zhang

In the table, “RO” means random oracle model and “ST” is standard
model; Lr and n denote the randomness size and the plaintext size, re-
spectively. we can see that our scheme enjoys an excellent efficiency for
the receiver who only needs one pairing and one scalar multiplication on
decryption. The most attractive, of course, is the optimal bandwidth: the
ciphertext only has Lr more bits than the plaintext which is necessary for
an encryption scheme to reach the CCA security level. As to the security
level for Type I adversary (Strong T-I, Weak T-Ia, Weak T-Ib*, etc.) and
Type II adversary, we refer the readers to [8].

6 Concluding Remarks

We have constructed the first secure certificateless public key encryption
scheme without redundancy. Our scheme outperforms the existing CLPKE
schemes on both ciphertext length and decryption process. In the random
oracle model, we have proved that the new scheme is strongly secure
against adaptive chosen ciphertext attacks.

However, the security of our scheme relies on the strong Gap-BDH
assumption. To avoid the use of the Gap-BDH, we can apply the recent
twinning technique proposed by Cash et al [7] to the construction of a CLE
scheme with short ciphertext under a standard assumption. However,
the twinning technique introduces more operations (usually more pairing
computation) in encryption and decryption, thus seems less suitable for
applications e.g. on smart card. How to design an efficient CLE scheme
with short ciphertext under a standard assumption, this is an interesting
open problem.

References

1. S. S. Al-Riyami and K. Paterson. Certificateless public key cryptography. In Asi-
acrypt 2003, volume 2894 of LNCS, pages 452 - 473. Springer, 2003.

2. S. S. Al-Riyami and K. Paterson. CBE from CL-PKE: A generic construction and
efficient schemes. In PKC 2005, volume 3386 of LNCS, pages 398 - 415. Springer,
2005.

3. J. Baek, R. Safavi-Naini and W. Susilo. Certificateless public key encryption with-
out pairing. In ISC 2005, volume 3650 of LNCS, pages 134 - 148. Springer, 2005.

4. K. Bentahar, P. Farshim, J. Malone-Lee and N. P. Smart. Generic
constructions of identity-based and certificateless KEMs. Available from
http://eprint.iacr.org/2005/058.

5. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
CRYPTO 2001, volume 2139 of LNCS, pages 213 - 229. Springer, 2001.

6. Z. Cheng and R. Comley. Efficient certificateless public key encryption. Available
from http://eprint.iacr.org/2005/012.

Secure Certificateless Public Key Encryption without Redundancy 17

7. D. Cash, E. Kiltz and V. Shoup, The Twin Diffie-Hellman Problem and Applica-
tions, In EuroCrypt 2008, LNCS 4965, pp. 127-145, Springer, 2008.

8. A. W. Dent. A Survey of Certificateless Encryption Schemes and Security Models.
Available from http://eprint.iacr.org/2006/211.

9. A. W. Dent, B. Libert and K. G. Paterson. Certificateless Encryption Schemes
Strongly Secure in the Standard Model. In PKC 2008, volume 4939 of LNCS,
pages 344 - 359. Springer, 2008.

10. E. Fujisaki and T. Okamoto. Secure Integration of Asymmetirc and Symmetric En-
cryption Schemes, In Crypto 1999, volume 1666 of LNCS, page 537 - 554. Springer,
1999.

11. E. Fujisaki and T. Okamoto. How to Enhance the Security of Public-key Encryp-
tion at Minimal Cost. In PKC 1999, volume 1560 of LNCS, pages 53 - 68. Springer,
1999.

12. Q. Huang and D. S. Wong. Generic Certificateless Encryption in the Standard
Model. Available from http://eprint.iacr.org/2007/095.

13. B. Libert and J. J. Quisquater. Identity based encryption without redundancy. In
ACNS 2005, volume 3531 of LNCS, pages 285 - 300. Springer, 2005.

14. B. Libert and J. J. Quisquater. On constructing certificateless cryptosystems from
identity based encryption. In PKC 2006, volume 3958 of LNCS, pages 474 - 490.
Springer, 2006.

15. J. K. Liu, M. H. Au and W. Susilo. Self-generated-certificate public key cryptog-
raphy and certificateless signature/encryption scheme in the standard model. In
Proc. ACM Symposium on Information, Computer and Communications Security.
ACM Press, 2007.

16. T. Okamoto and D. Pointcheval. The Gap-Problems: A New Class of Problems for
the Security of Cryptographic Schemes. In PKC 2001, volume 1992 of LNCS, page
104 - 118. Springer, 2001.

17. A. Shamir. Identity-based Cryptosystems and Signature Schemes. In Crypto 1984,
volume 196 of LNCS, pages 47 - 53. Springer, 1984.

18. Y. Shi and J. Li. Provable efficient certificateless public key encryption. Available
from http://eprint.iacr.org/2005/287.

19. Y. Sun, F. Zhang and J. Baek. Strongly Secure Certificateless Public Key En-
cryption without Pairing. In CANS 2007, volume 4856 of LNCS, page 194 - 208.
Springer, 2007.

20. D. Yum and P. Lee. Generic Construction of Certificateless Encryption. In ICCSA
2004, volume 3043 of LNCS, pages 802 - 811. Springer, 2004.

21. Z. Zhang and D. Feng. On the security of a certificateless public-key encryption.
Available from http://eprint.iacr.org/2005/426.

	Secure Certificateless Public Key Encryption without Redundancy
	Yinxia Sun and Futai Zhang

