
Distinguishing and Forgery Attacks on Alred

and Its AES-based Instance Alpha-MAC⋆

Zheng Yuan1,2, Keting Jia3, Wei Wang3, and Xiaoyun Wang⋆⋆2,3

1 Beijing Electronic Science and Technology Institute, Beijing 100070,China
2 Center for Advanced Study, Tsinghua University, Beijing 100084, China

xiaoyunwang@mail.tsinghua.edu.cn
3 Key Laboratory of Cryptographic Technology and Information Security, Ministry

of Education, Shandong University, Jinan 250100, China

Abstract. In this paper, we present new distinguishers of the MAC con-
struction Alred and its specific instance Alpha-MAC based on AES,
which is proposed by Daemen and Rijmen in 2005. For the Alred con-
struction, we describe a general distinguishing attack which leads to a
forgery attack directly. The complexity is 264.5 chosen messages and 264.5

queries with success probability 0.63. We also use a two-round collision
differential path for Alpha-MAC, to construct a new distinguisher with
about 265.5 queries. The most important is that the new distinguisher
can be used to recover the internal state, which is an equivalent secret
subkey, and leads to a second preimage attack. Moreover, the distin-
guisher on Alred construction is also applicable to the MACs based on
CBC and CFB encryption mode.
Keywords: Distinguishing attack, Forgery attack, Alred construction,
Alpha-MAC, AES

1 Introduction

Message Authentication Code (MAC) is a fixed length information used to ensure
data integrity and authenticity, and is widely used in Internet community such as
IPsec, SNMP, SSL, etc. MAC takes a secret key and a message of arbitrary length
as inputs, and outputs a short digest. Many research groups have presented
various approaches to construct MAC functions, for example, MAA [7], UMAC
[3], OMAC [9], TMAC [12], XCBC [4], RMAC [10], NMAC [1], and HMAC [13],
etc.

The MAC construction Alred was introduced by Daemen and Rijmen in
FSE 2005, and an efficient instance based on AES is called Alpha-MAC [6]. The
Alred construction is an iterative MAC function using components of block
ciphers. The secret key, which is used as the key of the block cipher, is applied
in the initialization and the final transformation, respectively. The internal state

⋆ This work is supported by the National Outstanding Young Scientist (No.60525201),
China Postdoctoral Science Foundation Funded Project (No. 20080430423) and Na-
tional 973 Program of China (No.2007CB807902)

⋆⋆ To whom correspondence should be addressed.



is changed by consecutive injections of message blocks. The Alpha-MAC is the
Alred construction instantiated with AES [5]. Since the AES algorithm has
been widely used in the real world, the Alpha-MAC can be easily implemented,
which is a factor 2.5 more efficient than the popular CBC-MAC with AES.

The designers [6] proved that the Alred construction is as strong as the
underlying block cipher with respect to key recovery and any forgery attack
not involving internal collisions. Furthermore, for Alpha-MAC, they showed
that any colliding messages of the same size have to be at least 5 blocks long.
Recently, Huang et al. [8] exploited the algebraic properties of the AES, con-
structed internal collisions, and found second preimages for Alpha-MAC, on
the assumption that a key or an internal state is known. Biryukov et al. [2]
proposed a side-channel collision attack on Alpha-MAC recovering its internal
state, and mounted a selective forgery attack.

The main contribution of this paper is to present interesting distinguishing
attacks on the Alred construction and Alpha-MAC, which can lead to forgery
attack directly. More important, the distinguishing attack on Alpha-MAC can
be applicable to recover the internal state, which results in a second preimage
attack.

There are two kinds of distinguishing attacks on MACs. Preneel and van
Oorschot [14] introduced a general distinguishing attack to identify iterated
MACs from a random function. Using the birthday paradox, they detect the
internal collision by appending the same one-block message. Another kind is to
distinguish the cryptography primitive embedded in the MAC construction from
a random function [11]. Recently, new techniques to identify the underlying hash
functions of MACs are presented in [15,16]. Wang et. al. [16] presented distin-
guishing attacks on HMAC/NMAC-MD5 and MD5-MAC, and recovered partial
subkey of the MD5-MAC. Their distinguisher makes use of inner near-collisions,
which can leak more information than inner collisions.

Our distinguishing attacks are enlightened by Wang et al.’s work, which can
detect the inner near-collision with some specific differences. First, we describe
a distinguishing attack on the Alred construction. By the birthday attack [17],
there exists a collision differential path with some specific differences in the
state, which is an inner near-collision, and can be recognized with probability 1
by appending another message pair with the same difference. Second, we present
a new distinguisher for Alpha-MAC based on a two-round collision differential
path of AES. Furthermore, combining the structural features of the Alpha-
MAC with the algebraic properties of AES, the differential path can be used
to recover the internal state, which is an equivalent subkey. With the recovered
subkey, we can obtain the second preimage of the MAC for any given message
M and its MAC value. The complexity of all the attacks is up to 265.5 choose
messages and 265.5 queries with success rate 0.63. Moreover, the distinguishing
attack on the Alred construction is also applicable to the MACs based on CBC
and CFB encryption mode.

The paper is organized as follows. In section 2, we list the notations used in
this paper and give a short description of the Alred construction and Alpha-



MAC. Section 3 shows our new distinguishing attack and forgery attack on
the Alred construction. New distinguishing and recovery attack on AES-based
Alpha-MAC are introduced in the section 4. Finally, We conclude the paper in
Section 5.

2 Backgrounds and Notations

In this section, we define the notations, and give a brief description of the Alred

construction and Alpha-MAC.

2.1 Notation

f : the iteration function
xi : the message word
yi : the state after the i-th iteration
k : the secret key
C : the output of MAC taking secret key K and message M as input

∆A : the XOR difference of A and A′

n : the length of the state
lw : the length of the message word
lm : the length of the MAC output

M‖N : the concatenation of M and N
S(a) : the output of S-box with a as input

2.2 The Alred Construction

The MAC construction Alred [6] bases on an iterated block cipher. The length
of the secret key equals to that of the underlying block cipher, and the message
length is a multiple of lw bits.

Denote the i-th message word as xi, and the state after the i-th iteration as
yi. For message M = (x1, x2, · · · , xt), the construction is as follows.

1. Apply the block cipher to the state of all-zero block, i. e.,

y0 = Enck(0).

2. Perform the following iteration f for each message word: (a) Injection layout :
Map the bits of the message word to an injection input that has the same
dimensions as a sequence of r round keys of the block cipher. (b) Apply a
sequence of r block cipher round functions to the state, replacing the round
keys with the injection input.

yi = f(yi−1, xi), i = 1, 2, · · · , t.

3. Apply the block cipher to the state yt, and truncate the first lm bits of the
state as the output. The final output C is

C = Trunc(Enck(yt)).



2.3 A Brief Description of Alpha-MAC

Alpha-MAC [6] is a specific instance of the Alred construction with AES as
the underlying block cipher, where lw = 32 and r = 1. Similar with AES, the
Alpha-MAC supports key length of 128, 192 and 256 bits. The Alpha-MAC
function is depicted in Figure 1.

�



�
	0

?

AES � Key
�



�
	

?

?

?

?

?

?

p p p p p p

Round

Round

Round

Round

Injection Layout

Injection Layout

Injection Layout

Injection Layout

-

-

-

-

-

-

-

-

�



�
	

�



�
	

�



�
	

x1

x2

x3

�



�
	xt

AES �

?

?

Truncation

Digest

Fig. 1. The Construction of Alpha-MAC

The message padding method appends a single 1 followed by the minimum
number of 0 bits such that the length of the result is a multiple of 32. For
AES-128, the injection layout places the 4 bytes of each message word xi =
(xi,0, xi,1, xi,2, xi,3) into a 4 × 4 array with the form:




xi,0 0 xi,1 0
0 0 0 0

xi,2 0 xi,3 0
0 0 0 0


 ,

which acts as the corresponding 128-bit round key. The Alpha-MAC round
function consists of the four basic transformations of AES in the following order:



– AddRoundKey (AK): add the injection input to the state by XOR operation.
– SubBytes (SB): operate a non-linear byte substitution on each byte of the

state independently using an 8 × 8 S-box.
– ShiftRows (SR): cyclically shift left the bytes in the last three rows of the

state with different number of bytes, 1 for the second, 2 for the third and 3
for the fourth row.

– MixColumns (MC): multiply each column of the state with a matrix.

In this paper, we assume there is no truncation on the final output, i. e., lm = 128.

2.4 The Outline of the Related Works

We recall the general distinguishing-R attack on all iterated MACs proposed by
Preneel and van Oorschot [14], and the distinguishing-H attack on HMAC/NMAC-
MD5 and MD5-MAC introduced by Wang et al. [16]. These attacks motivate us
to explore new distinguish attacks on MACs based on block cipher.

Preneel et al. proposed a general forgery attack on MAC by birthday paradox,
which is applicable to all deterministic iterated MACs, including MAA and CBC-
MAC. They detected all the colliding pairs among 2(n+1)/2 known text-MAC
pairs by birthday attack [17], where n is the bit length of the chaining variable.
For each searched collisions, i. e., MAC(k, M) = MAC(k, M ′), they appended
one-block message N to identify whether it is an internal collision, according to
the equation MAC(k, M ||N) = MAC(k, M ′||N) holds or not. Once an internal
collision is recognized, they can query the MAC with M‖N ′, then they carried
out a forgery, i. e., a new message M ′‖N ′ with a valid MAC. But the method
can’t distinguish the cryptographic primitives embedded in the MAC.

Wang et al. [16] introduced another interesting idea which can distinguish
HMAC/NMAC-MD5 without the related-key setting and implement partial key
recovery attack on MD5-MAC. The main idea of the distinguishing attack is:
Firstly, they collect enough two-block message pairs (M‖N, M ′‖N) to guarantee
the appearance of an expected internal near-collision in the first iteration. Then
detect such a near-collision by changing the second block with another message
N ′. Once the expected inner near-collision is identified, the MAC is based on
MD5.

3 Distinguishing and Forgery Attack on MAC
Construction Alred

In this section, we present distinguishing and forgery attack on Alred construc-
tion. Enlightened by Wang et al.’s idea, we can get proper output difference as
an inner near-collision by the birthday paradox. When the MAC construction is
Alred rather than a random function, this kind of inner near-collision can be
detected with probability 1 by substituting the last different message pair with
another message pair with the same difference. Based on this detected inner
near-collision, the forgery attack can be constructed immediately.



3.1 Distinguishing Attack on Alred Construction

The iteration part of Alred construction is based on the round function of block
cipher, where the round key is substituted for the injection input. The core of
our distinguisher is to detect ∆yj−1, which is the output difference of (j − 1)-th
iteration. According to the operation between the injection input and the state
involved in the iteration f , the message word difference ∆xj may extinguish
∆yj−1, and lead to a collision at the final output. The form of the difference
depends on the operation between the injection input and the state involved in
the round function, e. g., for Alred based on IDEA or RC6, the operation is
modular addition, while for others, it is XOR. The rest of this paper takes the
XOR operation.

j −1

x1

. . .

. . .

Injection Layout

Injection Layout

Injection Layout Injection Layout

Injection Layout

Injection Layout

Injection Layout

j −1

j +1

Round

. . .

y’−1

x’

x’1

x’

Round

Round

y −1

collision

Round’

Round

collision

x

x

Round

j j

xj j

y0

Fig. 2. The Distinguisher with XOR Operation

As shown in Fig. 2, there is an inner near-collision after round j − 1. When
∆xj = ∆yj−1, there will be xj ⊕ yj−1 = x′

j ⊕ y′

j−1, which is an internal collision,
and can be propagated to the output. If the construction is Alred with XOR
operation, replace the (xj , x

′

j) with different (xj , x′

j), where ∆xj = ∆xj , a col-
lision still happens. According to this property, the distinguisher is constructed
as follows:

1. Randomly choose a structure T = {M i|M i = (xi
1, x

i
2, · · · , xi

t)} composed of
2(n+1)/2 different messages, and query the corresponding MAC value Ci.



2. By birthday paradox, a collision Ca = Cb can be obtained. The correspond-
ing message words are Ma and M b.

3. Suppose xj is the first unequal word in Ma and M b counting backwards, i.
e. Ma = (xa

1 , · · · , xa
j , xj+1, · · · , xt)}, M b = (xb

1, · · · , xb
j , , xj+1, · · · , xt)}. We

replace (xa
j , xb

j) with another (xa
j , xb

j), where xa
j ⊕ xb

j = xa
j ⊕ xb

j . Query the

MACs with (Ma, M b), where Ma ={xa
1 , · · · , xa

j−1, x
a
j } and M b ={xb

1, · · · ,

xb
j−1, x

b
j}.

– If Ca = Cb, we conclude that the MAC is Alred construction.

– Else, it is a random function.

Note that t should be large enough to guarantee there is an inner near-collision
at round j − 1, j ≤ t.

This attack requires about 2(n+1)/2 chosen messages and works with a prob-
ability of 0.63 by the birthday paradox. If we double the number of chosen
text-MAC pairs, the success rate can be increased to 0.98.

Remark. With regard to MACs based on CBC encryption mode for block
ciphers, e.g. CBC-MAC, OMAC, TMAC, etc., the iteration of MAC is defined
as follows:

Hi = f(Hi−1, xi) = Ek(Hi−1 ⊕ xi).

The above attack can be applied similarly. Besides, the method also works for
the MACs based on CFB mode, i. e.,

Hi = f(Hi−1, xi) = Ek(Hi−1) ⊕ xi.

3.2 Forgery Attack on Alred Construction

Once the inner near-collision is identified, we replace message words with the
same difference, and achieve a new collision pair. Hence, the forgery attack is
easily realized with the same complexity and success rate as the distinguishing
attack. The details are as follows:

Suppose (Ma, M b) is the colliding pair detected in the above distinguishing

attack. We query the MAC oracle about M̃a, where M̃a = (xa
1 , · · · , xa

j−1, x̃a
j , s),

and s is an arbitrary message string. Then we construct the forgery of M̃ b =
(xb

1, · · · , xb
j−1, x̃a

j ⊕ ∆xj , s) with one query.

4 Recovery the Equivalent Subkey of Alpha-MAC

The above distinguisher is applicable to distinguish the Alpha-MAC from a ran-
dom function, however, we introduce a new distinguisher in this section, where
the expected collision implies an inner near-collision with some specific differ-
ences. With this distinguisher, we can recover an internal state, which results in
the derivation of the equivalent subkey, i. e., the state y0 (See Fig. 2).



4.1 Some Useful Properties of AES

This section presents a two-round collision differential path of AES, and sum-
marizes some useful properties based on it. The two-round differential path will
be used to recover the inner state in Section 4.3.

For i = 1, · · · , t, denote




yi−1,0 yi−1,1 yi−1,2 yi−1,3

yi−1,4 yi−1,5 yi−1,6 yi−1,7

yi−1,8 yi−1,9 yi−1,10 yi−1,11

yi−1,12 yi−1,13 yi−1,14 yi−1,15


⊕




xi,0 0 xi,1 0
0 0 0 0

xi,2 0 xi,3 0
0 0 0 0




SB
−−→




zi,0 zi,1 zi,2 zi,3

zi,4 zi,5 zi,6 zi,7

zi,8 zi,9 zi,10 zi,11

zi,12 zi,13 zi,14 zi,15


 ,

where yi−1 is the output of round i−1, and (xi,0,0,xi,1,0,0,0,0,0,xi,2,0,xi,3,0,0,0,0,0)
is the injection input to round i which acts as the round key. Suppose (yt−2, xt−1, xt)
and (y′

t−2, x
′

t−1, x
′

t) follow the two-round collision differential path as depicted
in Fig. 3.

��
��
��
��

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

������������������
����������

�
�
�
�

��
��
��
��
��

�
�
�
���

��
��
��

��
��
��
��
��

��
��
��
�� ��

�
�
�
�

�
�
�
�

MC

MCAK SB

AK SB

SR

SR

nonzero byte

∆yt

(t− 1)-th round

t-th round

∆yt−1

∆yt−1

∆xt−1

∆xt

∆yt−2 ∆zt−1

∆zt

Fig. 3. Two-Round Collision Differential Path

From the differential path, we can see that there is only one nonzero byte in
∆yt−1, which equals to ∆xt,0. Because MC is a linear transformation, and SR
has no impact on the value of difference, we can compute the output differences
of four S-boxes in the (t − 1)-th round:

(∆zt−1,0, ∆zt−1,5, ∆zt−1,10, ∆zt−1,15)
T = MC−1(∆xt,0, 0, 0, 0)T . (1)

Since the branch number of MC transformation in AES is 5 [5], there are four
nonzero bytes in ∆zt−1. It is noted that given (yt−2, y

′

t−2) and (xt, x
′

t), there
will be a collision if and only if (∆zt−1,0, ∆zt−1,5, ∆zt−1,10, ∆zt−1,15) satisfies
equation (1), and the difference of other bytes in ∆zt−1 are zero. Thus, we have
the following property:



Property 1. Provided that (yt−2, xt−1, xt) and (y′

t−2, x
′

t−1, x
′

t) following the two-

round collision differential path, randomly choose 28 different pairs of (xt−1,0, x′

t−1,0)

to replace (xt−1,0, x
′

t−1,0), respectively, and compute 28 corresponding pairs of

(yt, y′

t), there exists one collision of (yt, y′

t) on average.

Proof. Since only (xt−1,0, x
′

t−1,0) changes, all bytes in ∆zt−1 remain the same
except ∆zt−1,0, where ∆zt−1,0 = S(yt−2,0, xt−1,0) ⊕ S(y′

t−2,0, x
′

t−1,0). Thus, in

order to obtain a new collision, (xt−1,0, x′

t−1,0) must satisfy

S(yt−2,0 ⊕ xt−1,0) ⊕ S(y′

t−2,0 ⊕ x′

t−1,0) = ∆zt−1,0.

From the distribution table of S-box in AES, we can observed that, there are 27

pairs corresponding to each output difference on average. Hence, one randomly
chosen pair leads to the expected output difference ∆zt−1,0 with probability

27/215 = 2−8, there is excepted to have a collision among the 28 (yt, y′

t). �

This property is used in the new distinguishing attack to identify the Al-

pha-MAC from a random function. For Alpha-MAC, the inner state yt−2 is
unknown, however, we can recover two bytes of yt−2 by the next two properties.

Property 2. Suppose (yt−2, xt−1, xt) and (y′

t−2, x
′

t−1, x
′

t) follow the two-round
collision differential path, where (yt−2, y

′

t−2) are unknown, we can compute the
value (yt−2,0, y

′

t−2,0) with about 216 XOR operations and 210 chosen messages.

Proof. If (yt−2, xt−1, xt) and (y′

t−2, x
′

t−1, x
′

t) follow the two-round differential
path, there will be

S(yt−2,0 ⊕ xt−1,0) ⊕ S(y′

t−2,0 ⊕ x′

t−1,0) = ∆zt−1,0. (2)

According to Property 1, we get

S(yt−2,0 ⊕ xt−1,0) ⊕ S(y′

t−2,0 ⊕ x′

t−1,0) = ∆zt−1,0. (3)

Thus, we can guess all 216 possibilities of (yt−2,0, y
′

t−2,0) and filter out the wrong
ones by equation (2) and (3).

If there are more than one solution left, we replace the messages as described
in Property 1, and get another pair (xt−1,0, x′

t−1,0) with

S(yt−2,0 ⊕ xt−1,0) ⊕ S(y′

t−2,0 ⊕ x′

t−1,0) = ∆zt−1,0 (4)

which leads to a collision, and achieve the right value of (yt−2,0, y
′

t−2,0).
The time complexity is dominated by the exhaustive search of 216 possibilities

of (yt−2,0, y
′

t−2,0), and the number of chosen messages to get equations (3) and
(4) is 210. �

In a similar way, we can recover the value (yt−2,10, y
′

t−2,10) by replacing the

(xt−1,10, x
′

t−1,10) with 29 different pairs of (xt−1,10, x′

t−1,10).

Property 3. Suppose (yt−2, xt−1, xt) and (y′

t−2, x
′

t−1, x
′

t) follow the two-round
collision differential path, where (yt−2, y

′

t−2) are unknown, we can compute the
value (yt−2,10, y

′

t−2,10) with about 216 XOR operations and 210 chosen messages.



4.2 Distinguishing Attack on Alpha-MAC

Similar with the distinguisher for Alred construction, the new distinguisher on
Alpha-MAC is based on the identification of an inner near-collision

∆yt−1 =




∆xt,0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 ,

just the same as the ∆yt−1 in Fig. 3. There exists such an inner near-collision with
this form by the birthday paradox, and we can detect it by the new distinguisher.
Moreover, combining with the properties introduced in Section 4.1, the detected
difference can lead to the recovery of the inner state, which results in the recovery
of y0. It is noted that, y0 = Enck(0), is equivalent to a prefix subkey.

Reference [6] claims that an extinguishing differential in Alpha-MAC spans
at least 5 message words, and given the state value yi−1, the map from the
sequence of four message words (xi, xi+1, xi+2, xi+3) to the state value before
iteration i + 4 is a bijection. Hence, we choose a structure composed of 264.5

messages with t-word length, where t ≥ 6 in order to guarantee the map form
(x1, · · · , xt−1) to yt−1 is a random function, and the expected inner near-collision
can be obtained by birthday attack. It is recommended to choose t = 9.

We construct two structures as follows:

T1 = {M = (x1, x2, · · · , xt−1, xt)},

T2 = {M = (x1, x2, · · · , xt−1, xt ⊕ (η, 0, 0, 0))},

where (x1, x2, · · · , xt−2, xt−1,0, xt−1,3) are randomly chosen, xt−1,1, xt−1,2, xt

and η are fixed, i. e., we choose ∆xt−1, ∆xt as shown in Fig. 3. The distinguisher
works in the following manner:

1. Query the MAC with all the 265.5 messages in structure T1 and T2, and
obtain the corresponding MACs.

2. According to the birthday paradox, a collision can be obtained, i. e., Ca
1 =

Cb
2 , where Ca

1 belongs to the MAC values of T1, and Cb
2 belongs to the MAC

values of T2. Suppose corresponding messages are Ma and M b, denote the
word differences of (xa

t−1−xb
t−1) and (xa

t −xb
t) as ∆xt−1 and ∆xt, respectively.

Randomly choose another different pair of (Ma, M b), where

Ma = (xa
1 , · · · , xa

t−1, x
a
t ), M b = (xb

1, · · · , xb
t−1, x

b
t), ∆xt = ∆xt.

Query the MAC with the new message pair (Ma, M b).
If they still collide, the MAC algorithm is Alred-MAC, and goto step 3.
Otherwise, we conclude that the MAC is a random function.

3. Replace (xa
t−1,0, x

b
t−1,0) with 28 different (xa

t−1,0, x
b
t−1,0). Query the MACs on

the new messages. Examine whether there is at least a new collision among
them.



– If a collision appears, the Alred construction is concluded as a Alpha-
MAC by Property 1.

– Otherwise, is based on a random function.

Complexity Analysis. The complexity is 265.5 queries and 265.5 chosen
messages in step 1. There is only 2 queries in step 2, and 256 queries in step 3.
So the total complexity is dominated by step 1, which is about 265.5 queries and
265.5 chosen messages.

Success Rate. The probability that there is a collision among the two struc-
tures is 0.63 according to the birthday paradox. Once the collision pair is found,
the conclusion of the attack is correct according to the property of AES. There-
fore, the success rate is 0.63. We can improve the success rate to 0.98 by doubling
the size of each structure.

4.3 Internal State Recovery of Alpha-MAC

In this section, we show a technique which can recover the internal state with
the help of the new distinguisher presented above. When the inner near-collision
is identified, we can deduce the input and output difference of two S-boxes
in the (t − 1)-th round, which allows us to recover the corresponding byte
(yt−2,0, yt−2,10) according to Property 1 and 2. Combining with the relation
between the round function of AES, we explore equations between the internal
states, and can obtain 8 bytes of the state yt−3. The rest 8 bytes can be recovered
by exhaustive search.

We depict the process of the state recovery in Fig. 4, where ∗ denotes the
difference that can be computed, ? stands for the unknown difference, and 0
means the same. The details of the recovery attack are as follows:

∆yt−3 =




∗ ? ∗ ?
? ∗ ? ∗
∗ ? ∗ ?
? ∗ ? ∗




AK−1 SB−1

←−−−−−−−−− ∆zt−2 =




∗ ? ∗ ?
? ∗ ? ∗
∗ ? ∗ ?
? ∗ ? ∗




SR−1 MC−1

←−−−−−−−−− ∆yt−2 =




∗ 0 0 0
0 ? 0 0
0 0 ∗ 0
0 0 0 ?




AK−1 SB−1

←−−−−−−−−− ∆zt−1 =




∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗




SR−1 MC−1

←−−−−−−−−− ∆yt−1 =




∆xt,0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




Fig. 4. Recovery of the Difference of Internal State



1. Recovering (ya
t−2,0, y

b
t−2,0, y

a
t−2,10, y

b
t−2,10).

Once the Alpha-MAC is recognized by the distinguisher presented in Sec-
tion 4.2, we get (ya

t−2, x
a
t−1, x

a
t ) and (yb

t−2, x
b
t−1, x

b
t), (ya

t−2, x
a
t−1, x

a
t ) and

(yb
t−2, x

b
t−1, x

b
t), which follow the two-round differential path (See Fig. 3), re-

spectively. Then we achieve the value (ya
t−2,0, y

b
t−2,0) and (ya

t−2,10, y
b
t−2,10) ac-

cording to Property 1 and 2. Hence, we get the values ∆yt−2,0 and ∆yt−2,10.
2. Recovering (ya

t−3,0, y
b
t−3,0, y

a
t−3,2, y

b
t−3,2, y

a
t−3,8, y

b
t−3,8, y

a
t−3,10, y

b
t−3,10).

Apply MC−1 and SR−1 to the state yt−2, we get the following differences:

(∆zt−2,0, ∆zt−2,5, ∆zt−2,10, ∆zt−2,15)
T = MC−1(∆yt−2,0, 0, ∆yt−2,8, 0)T , (5)

(∆zt−2,2, ∆zt−2,7, ∆zt−2,8, ∆zt−2,13)
T = MC−1(∆yt−2,2, 0, ∆yt−2,10, 0)T .(6)

For the (ya
t−2, x

a
t−1, x

a
t ) and (yb

t−2, x
b
t−1, x

b
t) detected in the distinguisher, we

first recover (ya
t−3,0, y

b
t−3,0).

(a) As ∆zt−2,0 is deduced from equation (5), there will be

S(ya
t−3,0 ⊕ xa

t−2,0) ⊕ S(yb
t−3,0 ⊕ xb

t−2,0) = ∆zt−2,0. (7)

From the distribution table of S-box, for a fixed output difference, there
will be about 28 corresponding input, thus we can sieve 28 possible
(ya

t−3,0, y
b
t−3,0).

(b) We explore a new technique to discover the correct (ya
t−3,0, yb

t−3,0) among

the 28 sieved values. For each left (ya
t−3,0, yb

t−3,0), query the MAC with

about 28 different (Ma, M b), where

Ma = {xa
1 , · · · , xa

t−3, xt−2, xt−1, x
a
t }, M

b = {xb
1, · · · , xb

t−3, x
′

t−2, x
′

t−1, x
b
t}.

are constructed as follows, the correct (ya
t−3,0, yb

t−3,0) is expected to cause
a collision.
For each sieved (yt−3,0, y

′

t−3,0), replace (xa
t−2,0, x

b
t−2,0) with the exact

pair (xt−2,0, x
′

t−2,0), where

xt−2,0 = xb
t−2,0 ⊕ yt−3,0 ⊕ y′

t−3,0, x′

t−2,0 = xa
t−2,0 ⊕ yt−3,0 ⊕ y′

t−3,0.

−If (yt−3,0, y
′

t−3,0) = (ya
t−3,0, y

b
t−3,0), the two inputs to the S-box are

xt−2,0 ⊕ ya
t−3,0 = xb

t−2,0 ⊕ ya
t−3,0 ⊕ yb

t−3,0 ⊕ ya
t−3,0 = xb

t−2,0 ⊕ yb
t−3,0,

x′

t−2,0 ⊕ yb
t−3,0 = xa

t−2,0 ⊕ ya
t−3,0 ⊕ yb

t−3,0 ⊕ yb
t−3,0 = xa

t−2,0 ⊕ ya
t−3,0,

respectively, and the corresponding outputs are

S(xt−2,0 ⊕ yt−3,0) = zt−2,0 = zb
t−2,0, S(x′

t−2,0 ⊕ y′

t−3,0) = z′t−2,0 = za
t−2,0.

In this way, the value ∆zt−2,0 = ∆zt−2,0, which means ∆zt−2 = ∆zt−2

since other bytes remain the same. Then (yt−3, xt−2) and (y′

t−3, x
′

t−2)
can lead to the same ∆yt−2 where

xt−2 = (xt−2,0, x
a
t−2,1, x

a
t−2,2, x

a
t−2,3), x

′

t−2 = (x′

t−2,0, x
b
t−2,1, x

b
t−2,2, x

b
t−2,3).



It is noted that the value zt−2,0 only affects four bytes of yt−2, which is
the bytes of the first column (yt−2,0, yt−2,4, yt−2,8, yt−2,12), and the other
bytes remain the same. So that the 2nd to 4th column of ∆yt−1 are the
same with ∆yt−1. Thus, there will be a collision at (yt, y

′

t) if and only if

S(yt−2,0 ⊕ xt−1,0) ⊕ S(y′

t−2,0 ⊕ x′

t−1,0) = ∆zt−1,0. (8)

Replace (xa
t−1,0, x

b
t−1,0) with 28 different pairs (xt−1,0, x

′

t−1,0), there is
excepted to have one satisfy equation (8).

Therefore, query the MAC with the corresponding 28 different (Ma, M b),
there will be one colliding pair on average.
−Else (yt−3,0, y

′

t−3,0) 6= (ya
t−3,0, y

b
t−3,0), the two inputs to the S-box are

xt−2,0 ⊕ ya
t−3,0 = xb

t−2,0 ⊕ yt−3,0 ⊕ y′

t−3,0 ⊕ ya
t−3,0,

x′

t−2,0 ⊕ yb
t−3,0 = xa

t−2,0 ⊕ yt−3,0 ⊕ y′

t−3,0 ⊕ yb
t−3,0.

The following equation holds with probability 2−8.

S(xt−2,0 ⊕ yt−3,0) ⊕ S(x′

t−2,0 ⊕ yt−3,0) = ∆zt−2,0.

Thus, ∆zt−2 changes, so that ∆yt−2,4 = 0,∆yt−2,8 = 0, and ∆yt−2,12 =
0 hold with probability 2−24. Therefore, query the MAC with the 28

different (Ma, M b), no collision will happen.
In this way, we can sieve the right (ya

t−3,0, y
b
t−3,0). In the Appendix, we

describe a concrete algorithm to recover (ya
t−3,0, y

b
t−3,0), where only the

correct solution is sieved. The value of (ya
t−3,2, y

b
t−3,2), (ya

t−3,8, y
b
t−3,8) and

(ya
t−3,10, y

b
t−3,10) can be recovered in a similar way.

3. Recovering (ya
t−3,5, y

b
t−3,5, y

a
t−3,7, y

b
t−3,7, y

a
t−3,13, y

b
t−3,13, y

a
t−3,15, y

b
t−3,15).

According to the form of the injection input, we get the following equations:

∆zt−2,5 = S(ya
t−3,5) ⊕ S(yb

t−3,5), (9)

∆zt−2,7 = S(ya
t−3,7) ⊕ S(yb

t−3,7), (10)

∆zt−2,13 = S(ya
t−3,13) ⊕ S(yb

t−3,13), (11)

∆zt−2,15 = S(ya
t−3,15) ⊕ S(yb

t−3,15). (12)

From all the deduced value of (ya
t−2,0, y

b
t−2,0, y

a
t−2,10, y

b
t−2,10), the next equa-

tions derived the round function hold.

ya
t−2,0 = 3S(ya

t−3,0 ⊕ xa
t−2,0) ⊕ 2S(ya

t−3,5) ⊕ S(ya
t−3,10 ⊕ xa

t−2,3) ⊕ S(ya
t−3,15)(13)

yb
t−2,0 = 3S(yb

t−3,0 ⊕ xb
t−2,0) ⊕ 2S(yb

t−3,5) ⊕ S(yb
t−3,10 ⊕ xb

t−2,3) ⊕ S(yb
t−3,15)(14)

ya
t−2,10 = S(ya

t−3,2 ⊕ xa
t−2,1) ⊕ S(ya

t−3,7) ⊕ 3S(ya
t−3,8 ⊕ xa

t−2,2) ⊕ 2S(ya
t−3,13)(15)

yb
t−2,10 = S(yb

t−3,2 ⊕ xb
t−2,1) ⊕ S(yb

t−3,7) ⊕ 3S(yb
t−3,8 ⊕ xb

t−2,2) ⊕ 2S(yb
t−3,13)(16)

We can see that, there are only four unknown bytes (ya
t−3,5, y

a
t−3,15, y

b
t−3,5,

ya
t−3,15) in equations (9), (10), (13) and (14), where (S(ya

t−3,5), S(ya
t−3,15),



S(yb
t−3,5), S(ya

t−3,15)) can be easily computed. Then we obtain the corre-
sponding input. Using equations (11), (12), (15) and (16) to recover (ya

t−3,7,

ya
t−3,13, y

b
t−3,7, y

a
t−3,13) in the same way.

To sum up, we recover 8 bytes of ya
t−3 and 8 bytes of yb

t−3, respectively.
4. Recovering the internal state y0.

For each solution derived, guess all the 264 possible values for the rest bytes
of ya

t−3, compute backwards, i. e., do the decryption with (xa
t−4, · · · , xa

1) as
the decryption subkey, and obtain 264 values of y0. For each y0, compute the
corresponding yb

t−3 with (xb
1, · · · , xb

t−3) to filter out the wrong guesses.
If there are more than one y0 left, using the distinguisher to get another
colliding pair, and repeat the recovery attack until there is only one value
left. Two colliding pairs is enough to sieve the right y0.

The complexity of this attack is dominated by the distinguishing attack and the
final exhaustive search, which is about 265.5 chosen messages and 265.5 queries.

Second Preimage for Alpha-MAC
Once the internal state y0 is recovered, we can apply Huang et al.’s attack

[8] to find the second preimages for Alpha-MAC directly, or Biryukov et al.’s
attack [2] to construct a selective forgery attack.

5 Conclusions

In this paper, distinguishing and forgery attacks on the Alred construction and
its specific instance Alpha-MAC are presented. The complexity of the attacks
is dominated by the birthday attack instead of exhaustive search. We construct
distinguisher to detect inner near-collisions with specific differences rather than
collisions, from which more information can be derived. Especially for Alpha-
MAC, our distinguishing attack can be converted into a recovery attack of the
internal state, which equals to a subkey. The recovered equivalent subkey can
result in the second preimage attack on Alpha-MAC. It is to say, for any given
text-MAC pair (M, C), we can obtain another M ′ 6= M with the same C. More-
over, these attacks are also applicable to the MACs based on CBC and CFB
encryption mode.

References

1. M. Bellare, R. Canetti, H. Krawczyk, Keying Hash Functions for Message Authen-
tication, CRYPTO 1996, LNCS 1109, pp. 1-15, 1996.

2. A. Biryukov, A. Bogdanov, D. Khovratovich, T. Kasper, Collision Attacks on AES-
Based MAC: Alpha-MAC, CHES 2007, LNCS 4727, pp. 166-180, 2007.

3. J. Black, S. Halevi, H. Krawczyk, T. Krovetz, P. Rogaway, UMAC: Fast and Secure
Message Authentication, CRYPTO 1999, LNCS 1666, pp. 216-233, 1999.

4. J. Black, P. Rogaway, CBC MACs for Arbitrary-Length Messages: The Three-Key
Constructions, CRYPTO 2000, LNCS 1880, pp. 197-215, 2000.

5. J. Daemen, V. Rijmen, AES Proposal : Rijndae. The First Advanced Encryption
Standard Candidate Conference. NIST AES Proposal, 1998.



6. J.Daemen, V. Rijmen, A New MAC Construction Alred and A Specific Instance
Alpha-MAC. FSE 2005, LNCS 3557, pp. 1-17, 2005.

7. D. W. Davies, A Message Authenticator Algorithm Suitable for A Mainframe Com-
puter. CRYPTO 1984, LNCS 196, pp. 393-400, 1985.

8. J. Huang, J. Seberry, W. Susilo, On the Internal Structure of Alpha-MAC. VI-
ETCRYPT 2006, LNCS 4341, pp. 271-285, 2006.

9. T. Iwata, K. Kurosawa, OMAC: One-Key CBC MAC, FSE 2003, LNCS 2887, pp.
129-153, 2003.

10. E. Jaulmes, A. Joux, F. Valette, On the Security of Randomized CBC-MAC beyond
the Birthday Paradox Limit: A New Construction, FSE 2002, LNCS 2365, pp. 237-
251, 2002.

11. J. Kim, A. Biryukov, B. Preneel, S. Hong, On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0, and SHA-1. SCN 2006, LNCS 4116, pp.
242-256, 2006.

12. K. Kurosawa, T. Iwata, TMAC: Two-Key CBC-MAC, CT-RSA 2003, LNCS 2612,
pp. 265-273, 2003.

13. NIST, FIPS 198, The Keyed-Hash Message Authentication Code (HMAC), 2002.
14. B. Preneel, P. Oorschot, MDx-MAC and Building Fast MACs from Hash Functions.

CRYPTO 1995, LNCS 963, pp. 1-14, 1995.
15. X. Wang, W. Wang, K. Jia, M. Wang, New Distinguishing Attack on MAC using

Secret-Prefix Method. Submitted to FSE 2009.
16. X. Wang, H. Yu, W. Wang, H. Zhang, T. Zhan, Cryptanalysis on HMAC/NMAC-

MD5 and MD5-MAC. Submitted to EUROCRYPT 2009.
17. G. Yuval, How to Swindle Rabin. Cryptologia, vol. 3, pp. 187-189, 1979.



Appendix: An Algorithm to Recover the Internal State
(ya

t−3,0
, y

b
t−3,0

)

Provide that (xa
1 , · · · , xa

t−1, x
a
t ) and (xb

1, · · · , xb
t−1, x

b
t) are the colliding pairs ob-

tained in the distinguishing attack on Alpha-MAC. We describe an algorithm
to recover the internal value of (ya

t−3,0, y
b
t−3,0).

Algorithm: Recovering the Internal State (ya
t−3,0, y

b
t−3,0)

INPUT:

T3 = {(in, in′)|S(in) ⊕ S(in′) = ∆zt−2,0}

T4 = {(yt−3,0, y
′

t−3,0)|S(xa
t−2,0 ⊕ yt−3,0) ⊕ S(xb

t−2,0 ⊕ y′

t−3,0) = ∆zt−2,0)}

T5 = {Ø}

OUTPUT: (ya
t−3,0, y

b
t−3,0).

1. For (yt−3,0, y
′

t−3,0) ∈ T4,
T4 = T4\(yt−3,0, y

′

t−3,0), deleting the element (yt−3,0, y
′

t−3,0) from T4;

Compute γ = yt−3,0 ⊕ y′

t−3,0; xt−2,0 = xb
t−2,0 ⊕ γ; x′

t−2,0 = xa
t−2,0 ⊕ γ;

Let xt−2 = (xt−2,0, x
a
t−2,1, x

a
t−2,2, x

a
t−2,3);

x′

t−2 = (x′

t−2,0, x
b
t−2,1, x

b
t−2,2, x

b
t−2,3).

For xt−1,0 from 0 to 255 do
For x′

t−1,0 from 0 to 255 do
Let xt−1 = (xt−1,0, x

a
t−1,1, x

a
t−1,2, x

a
t−1,3);

x′

t−1 = (x′

t−1,0, x
b
t−1,1, x

b
t−1,2, x

b
t−1,3).

Query the Alpha-MAC with Ma, M b, where

Ma = {xa
1 , · · · , xa

t−3, xt−2, xt−1, x
a
t },

M b = {xb
1, · · · , xb

t−3, x
′

t−2, x
′

t−1, x
b
t}.

Let Ca = Alpha-MAC(Ma), Cb = Alpha-MAC(M b).

If Ca = Cb then T5 = T5 ∪ (yt−3,0, y
′

t−3,0), and goto 1.
2. For (yt−3,0, y

′

t−3,0) ∈ T5 do
Let xt−2,0 = in⊕ yt−3,0, x′

t−2,0 = in′ ⊕ yt−3,0, where in 6= yt−3,0 ⊕ xa
t−3,0,

in′ 6= y′

t−3,0 ⊕ xb
t−3,0.

For xt−1,0 from 0 to 255 do
For x′

t−1,0 from 0 to 255 do
Let xt−1 = (xt−1,0, x

a
t−1,1, x

a
t−1,2, x

a
t−1,3);

x′

t−1 = (x′

t−1,0, x
b
t−1,1, x

b
t−1,2, x

b
t−1,3).

Query the Alpha-MAC with Ma, M b, where

Ma = {xa
1 , · · · , xa

t−3, xt−2, xt−1, x
a
t },

M b = {xb
1, · · · , xb

t−3, x
′

t−2, x
′

t−1, x
b
t}.

Let Ca = Alpha-MAC(Ma), Cb = Alpha-MAC(M b).

If Ca 6= Cb then T5 = T5\(yt−3,0, y
′

t−3,0), and goto 2.
Else return (yt−3,0, y

′

t−3,0).


	Distinguishing and Forgery Attacks on Alred and Its AES-based Instance Alpha-MAC
	Zheng Yuan(Beijing Electronic Science and Technology Institute, Beijing 100070,China),Keting Jia(Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan 250100, China ),Wei Wang(Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan 250100, China ),Xiaoyun Wang(Center for Advanced Study, Tsinghua University, Beijing 100084, China)

