
Resolving the Simultaneous Resettability

Conjecture and a New Non-Black-Box Simulation

Strategy

Vipul Goyal Amit Sahai

Nov 19, 2008

Abstract

Canetti, Goldreich, Goldwasser, and Micali (STOC 2000) introduced the notion of
resettable zero-knowledge proofs, where the protocol must be zero-knowledge even if
a cheating verifier can reset the state of the prover at will. Soon afterwards, Barak,
Goldreich, Goldwasser, and Lindell (FOCS 2001) studied the closely related notion of
resettable soundness, where the soundness condition of the protocol must hold even
if the cheating prover can reset the state of the verifier it is trying to convince. The
major problem left open by this work was whether it is possible to have a single protocol
that is simultaneously resettable zero knowledge and resettably sound. We resolve this
question by constructing such a protocol.

At the heart of our construction is a new non-black-box simulation strategy, which
we believe to be of independent interest. This new strategy allows for simulators which
“marry” recursive rewinding techniques (common in the context of concurrent simu-
lation) with non-black-box simulation. Previous non-black-box strategies led to expo-
nential blowups in computational complexity in such circumstances, which our new
strategy is able to avoid.

0

1 Introduction

About a decade ago, the cryptographic research community began an ambitious effort to
move beyond stand-alone analysis of security protocols, and initiated the study of stronger
notions of security. Such notions included security in the context of concurrent composition
of protocols [Can01], including dealing with the problem of concurrent simulation [DNS98],
and the security of protocols under “resetting” attacks. This latter notion, motivated by
both theoretical and practical concerns, was first considered by Canetti, Goldreich, Gold-
wasser, and Micali [CGGM00] in the context of zero-knowledge protocols. In a resetting
attack, the victim can be forced to execute a protocol many times using the same random-
ness (and without being able to coordinate between executions). This question of security
against resetting attacks asks whether fresh randomness is inherently needed by crypto-
graphic protocols. This is a fundamental theoretical question, given the central role of
randomness in cryptography. From a practical perspective, as well, fresh randomness is a
costly resource, and thus studying whether it can be eliminated is important. Furthermore,
in some settings, the physical devices implementing the protocol may be so weak that they
cannot maintain state1, and for such devices resetting attacks may be possible.

In the context of zero-knowledge protocols, Canetti et al. [CGGM00] showed how to
construct zero-knowledge protocols where the prover can be reset, which they called reset-
table zero-knowledge (rZK). Barak, Goldreich, Goldwasser, and Lindell [BGGL01] showed
how to construct zero-knowledge protocols where the verifier can be reset, which following
Micali and Reyzin [MR01b]2 they call resettably sound (rS) zero-knowledge.

Our Results. While many questions about security against resetting attacks have
been addressed, the basic question of constructing a protocol that is both reset-
table zero-knowledge and resettably sound (called the simultaneous resettability problem
by [BGGL01]) has remained open despite years of work. The primary roadblock to achiev-
ing this goal has been a limitation in our understanding of non-black-box simulation
strategies [Bar01], which are essential in this context (see below) and have been impor-
tant in achieving a number of advanced cryptographic goals (e.g. [Bar01, Bar02, Pas04,
PR05, BS05]). In this work, we settle this problem by constructing the first simultaneous-
resettable zero-knowledge protocol. To do so, we develop novel non-black-box simulation
strategies that for the first time allow for efficient incorporation of recursive rewinding
techniques [RK99, KP01, PRS02], which we believe to be of independent interest and of
potentially wider applicability.

1.1 Discussion

Resettable zero knowledge. Resettable zero knowledge, where the prover may be reset,
is closely related to concurrent zero knowledge (cZK) [DNS98], where the prover can be
forced to interact in an unbounded number of concurrent executions of the protocol, with
the interleaving at the control of the attacking verifier. Indeed, resettable zero-knowledge

1Low-cost RFID tags are current examples of such weak devices.
2Micali and Reyzin defined resettable soundness (and other soundness notions) in a public-key model,

but did not consider the plain model, which is the focus of the present work.

1

is a strictly stronger requirement than concurrent zero-knowledge; every resettable zero-
knowledge protocol is also a concurrent zero-knowledge protocol, but many concurrent
zero-knowledge protocols are not resettable zero-knowledge. Nevertheless, all known reset-
table zero-knowledge protocols (in the plain model) build upon concurrent zero-knowledge
protocols [CGGM00] (see also [BGGL01]).

All known concurrent zero-knowledge protocols make use of recursive rewinding tech-
niques for simulation [RK99, KP01, PRS02]. Since their introduction by Goldwasser, Micali,
and Rackoff [GMR85], most zero-knowledge protocols have made use of rewinding – where
the simulator “tries” to simulate the execution of the protocol, but sometimes “gets stuck”,
and in order to proceed, it rewinds the execution of the protocol to an earlier point, and tries
again to “solve” the simulation (or tries to extract some information from the verifier that
it needs to solve the simulation). In the setting of concurrent zero-knowledge, an additional
problem arises: when the simulator rewinds the execution and tries again, the cheating
verifier may schedule a new concurrent execution of the protocol – and this new execution
of the protocol will itself need to be rewound in order to be solved. This leads to recursive
rewinding strategies (with multiple “levels” of rewinding), and great care must be taken
to prevent this recursion from leading to exponential-time simulations. When concurrent
zero-knowledge protocols are modified to become resettable zero-knowledge, this recursive
rewinding is inherited by the rZK simulators.

Resettable Soundness. Resettably sound zero knowledge, where the verifier may be
reset by a cheating prover (who is trying to prove a false statement), presents a different
kind of challenge. Indeed, if a zero-knowledge protocol is simulated by means of a rewind-
ing strategy, then it seems that a cheating prover who can reset the verifier can implement
the same strategy as the simulator (since rewinding is nothing more than resetting a party
to an earlier state). This intuition is formalized by Barak et al. [BGGL01], who show
that no resettably-sound zero-knowledge arguments exist for languages outside BPP if the
simulator is black-box. Thus, non-black-box simulation, as pioneered by Barak [Bar01], is
essential to building resettably sound zero-knowledge protocols. In non-black-box simula-
tion, the actual code of the cheating verifier is used in order to simulate the protocol; this is
something that is not available to a cheating prover who can only reset the verifier. Barak
et al. [BGGL01] show how to use such non-black-box zero-knowledge protocols to achieve
resettably sound zero-knowledge arguments.

1.2 Techniques

The central idea behind our result concerns a novel non-black-box simulation strategy. To
understand this idea (and why it is useful), we will discuss the simpler goal of building
a resettably-sound concurrent zero-knowldge argument3. We begin by briefly recalling
how all known concurrent zero-knowledge protocols work in the plain model, for proving
“x ∈ L” where L is an NP-complete language [RK99, KP01, PRS02], at an informal level.
The high level idea is this: First the verifier commits to a “secret”. Then, the prover and
verifier do the following many times sequentially (over many rounds of interaction): the

3Indeed, we follow something similar to this in our actual technical approach, although our first goal is
something slightly weaker than concurrent zero-knowledge. See below for a technical outline of our paper.

2

prover makes a “challenge” to which the verifier responds, with the properties that: (1) a
single challenge-response from each round reveals no information about the secret or the
randomness used to commit to the secret, but (2) any two distinct challenge-response pairs
from the same round reveal the secret and the randomness used to commit to the secret4.
Then, the prover proves the following using an ordinary zero-knowledge (or WI) proof:
that either the prover knows the verifier’s secret, or that x ∈ L. This works because in real
life, the prover only gets one response for each round, and therefore he cannot learn the
verifier’s secret. However, in a simulation, the simulator can “rewind” the verifier and try
to get two challenge-response pairs for some round, and thereby learn the verifier’s secret
(and the randomness the verifier used to commit to his secret). As discussed earlier, the
concurrent setting requires such a simulation to use a recursive rewinding strategy, in order
to successfully “solve” every execution of the protocol as they arise.

As discussed earlier, such concurrent zero-knowledge protocols are certainly not re-
settably sound, since if a cheating prover could reset the verifier, it could use the same
rewinding strategy to discover the verifier’s secret and use it to cheat (just like the con-
current zero-knowledge simulator does). A simple idea to fix this problem is the following:
Have the prover commit to all his challenges in advance, and then in the challenge-response
phase, have the prover give a resettably-sound zero-knowledge argument that his challenges
are the same as the ones that he committed to earlier. Now, the cheating prover can’t
cheat even if he can reset the verifier. But there seems to be a circularity here: thinking
back to the concurrent zero-knowledge simulator, in order to extract the verifiers’ secrets,
it needs to give different challenges from the ones it commits to, so it will need to simulate
the resettably-sound zero-knowledge argument so that it can lie. But we are in the concur-
rent setting, so it seems that we will need a resettably-sound concurrent zero-knowledge
argument for this. Indeed, in general this is the case, and it may appear that we haven’t
made any progress.

To resolve this situation, we can try to take a look inside the guts of the resettably-
sound zero-knowledge argument of Barak et al. [BGGL01]. As described earlier, the idea is
to use the non-black-box zero-knowledge protocol of Barak [Bar01]. The core idea behind
Barak’s protocol is to have the prover commit in advance to a program that can predict
a string that is later randomly chosen by the verifier. The prover then must prove that
either its committed program really can predict the verifier’s string, or that the statement
is true (in our case, that the prover’s challenge is what he committed to earlier). In a
real execution, the program is information theoretically extremely unlikely to be able to
predict the verifier’s random value. But in simulation (in the stand-alone setting), where
the simulator can choose the verifier’s random coins in advance and commit to these coins
and the verifier’s code, the simulator can ensure that the program mimics the verifier’s
execution of the protocol and therefore correctly predicts the verifier’s string.

However, Barak’s protocol is not fully concurrent zero-knowledge, and most natural
approaches to try to extend it to the fully concurrent scenario either cause soundness to
fail or lead to exponential-time simulation. Let us look at one approach, in our context:
Recall that the program that the simulator commits to must regenerate the transcript of
the interaction of all the concurrent executions up until the point that the adversary in

4The requirement to be able to extract the randomness is actually not standard for concurrent zero-
knowledge protocols from the literature, but it is important for our approach.

3

the current execution outputs his randomly chosen string (within Barak’s protocol). Let
us consider having the simulator commit to an exponential-time program, one that runs
the adversary’s code to regenerate the transcript, but whenever the adversary commits to a
verifier secret in one of the concurrent executions of the overall protocol, then the program
uses exponential time to break the commitment and recover the secret. This secret can
then be used by the program to simulate any other protocol executions that arise before
the program is able to predict the desired verifier string. While this doesn’t make sense for
us yet (since it requires exponential time), it puts us on our path to solving the problem,
based on the following crucial points:

• Soundness will still hold with regard to this protocol, because even an exponential-
time deterministic program can’t predict a random value chosen after the program is
fixed.

• Our program’s only use of exponential time is to break the verifier’s commitments to
his secrets. In other words, our program is actually a polynomial-time program that
needs oracle-access to a commitment-breaking oracle.

• We’re now trying to eliminate the exponential-time requirement in this non-black-
box simulation. Recall that if our idea will work, then by the property of the overall
recursive rewinding strategy, when the simulator actually needs to prove that its
program can predict the verifier’s string, the simulator will have already extracted the
verifiers’ secrets (and randomness used to commit to those secrets) for all the verifiers
that have appeared in any concurrent executions between when we committed to the
program and the time when we need to complete the proof. Therefore, the simulator
already knows the secrets and randomness corresponding to all the commitment-
breaking oracle queries that our (now polynomial-time) program will ever make.

So, instead of implementing the oracle with an exponential-time machine, we can
have the simulator implement the oracle by providing a list of all the verifier secrets
and randomness that it has learned so far. When the program makes an oracle query,
the list is inspected to see if the right response to the query is in the list. If it is
not, then the program halts and fails. Assuming that the commitment scheme is one-
to-one, there can only be one correct answer to any query. Therefore, the program
will only output one fixed value (or halt and fail), no matter what list the simulator
specifies. Thus, except for the additional possibility that the program halts and fails,
it will behave exactly as the original exponential-time program did. This preserves
the soundness of the protocol.

To make this approach work, aside from the main idea above, we also make use of several
other (new and old) ideas, including a new recursive rewinding technique inspired by [RK99].
At its core, our new non-black-box simulation strategy allows for protocols that make
essential use of non-black-box simulation but that can also benefit from information learned
using black-box recursive-rewinding simulation methods. Given that previous non-black-
box simulation advances have had an impact on numerous advanced cryptographic research
goals (e.g. [Bar01, Bar02, Pas04, PR05, BS05]), we believe that our new strategy will have
other applications as well.

4

1.3 Related Work

Subsequent to the works of Canetti et al. [CGGM00] and Barak et al. [BGGL01] described
above, a number of works have investigated the problem of security against resetting attacks
for zero-knowledge protocols in the plain model. Barak, Lindell, and Vadhan [BLV03]
constructed the first constant-round public-coin argument that is resettable zero-knowledge.
Deng and Lin [DL07a] showed a zero-knowledge argument system that is bounded resettable
zero-knowledge and satisfies a weak form of resettable soundness; we make use of some
ideas from [BLV03, DL07a] in this work. Two weeks after we informed Deng of our current
result, Deng also claimed to have a construction of resettable zero-knowledge resettably
sound arguments [Den08]5.

A larger body of work has investigated the same problems in a relaxed setting, called the
“bare public key” (BPK) model, introduced by [CGGM00], which assumes that parties must
register (arbitrarily chosen) public keys prior to any attack taking place. We stress that
our results hold in the plain model, not just in the BPK model, and the kinds of techniques
used in the BPK model typically do not apply to the plain model. [CGGM00] presented a
constant-round resettable zero-knowledge argument in the BPK model, the round complex-
ity of which was improved by Micali and Reyzin [MR01b]. Micali and Reyzin [MR01b] also
first investigated different notions of soundness in the BPK model, including the notion of
resettable soundness. Di Crescenzo, Persiano, and Visconti [CPV04] described a resettable
zero-knowledge protocol with concurrent soundness, and Deng and Lin [DL07b] improved
the computational assumptions needed to obtain this result. Yung and Zhao [YZ07] also
construct resettable zero-knowledge and concurrently sound arguments in the BPK model,
using a general and efficient transformation. Micali and Reyzin [MR01a] also proposed a
stronger variant of the BPK model for constructing bounded-secure protocols, and provided
constant-round bounded resettable zero-knowledge arguments in this model; this result was
strengthened by Zhao et al. [ZDLZ03] also in a bounded setting for resettable zero knowl-
edge.

1.4 Technical Outline

Our technical approach to constructing a simultaneous-resettable argument for an NP-
complete language is as follows. Note that in all our theorems, we (sometimes implicitly)
assume that trapdoor permutations exist and collision-resistant hash functions exist. We
also discuss some building blocks that we use in Appendix A (these can all be instantiated
based on the assumptions above).

1. In Appendix B, we provide formal definitions of arguments that are resettable zero
knowledge and resettably sound. In the same section, by modifying definitions and
arguments from [CGGM00, BGGL01], we define notions of hybrid zero-knowledge
and hybrid soundness that are very similar to resettable zero-knowledge and reset-
table soundness, but somewhat easier to prove. We then give transformations (in
Appendix B.3) very similar to ones found in [CGGM00, BGGL01] that show how

5Deng acknowledges that he obtained his result only after he received an announcement of our re-
sult [Den08], and that our announcement spurred him to re-examine some of his old ideas, which led to his
later claim.

5

to modify any hybrid zero-knowledge hybrid sound argument into a resettable zero-
knowledge resettably sound argument.

2. In Section 2, we describe our main protocol and its simulator which follows the intu-
ition presented in the Techniques section above, but also incorporates several other
ideas (these ideas are sketched in Sections 3.1 and 3.2). This protocol achieves hy-
brid soundness and a slightly relaxed notion of concurrent zero-knowledge, where in
each new session scheduled by the adversary, the adversary must act as an honest
verifier based on a fixed random tape (but the adversary can still schedule messages
arbitrarily). These security properties are proven in Appendices C and E.

3. Finally, in Appendix F, we present a compiler that transforms any relaxed concur-
rent zero-knowledge and hybrid sound argument into a hybrid zero-knowledge and
hybrid sound argument. While our transformation is new, several techniques in this
section are similar to ones considered by [BLV03, DL07a]. Taken together with the
transformation mentioned above from Appendix B.3, this yields our main result:

Theorem 1 Assume that trapdoor permutations and collision-resistant hash function fam-
ilies exist. Then there exists a resettably sound resettable zero-knowledge argument system
for an NP-complete language.

2 Our Main Construction

We describe our construction of hybrid sound relaxed concurrent zero-knowledge argu-
ments (which can be used to obtain resettably sound relaxed concurrent zero knowledge
arguments using our hs-rs transformation) in this section. Recall that relaxed concurrent
zero knowledge is formally defined in Appendix B.

Let Com(s) denote a commitment to a string s using a non-interactive perfectly binding
commitment scheme Com with unique opening (as described in Appendix A.1). Whenever
we need to be explicit about the randomness, we denote by Com(s; r) a commitment to a
string s computed with randomness r.

The common input to P and V is x supposedly in the language L ∈ NP , and a security
parameter n. The auxiliary input to P is an NP -witness w for x ∈ L. Our protocol
proceeds as follows.

1. The prover P generates a set of 2n2 random challenge strings {ch1, . . . , ch2n2}
where for all i, chi ∈ {0, 1}n. P computes and sends commitments
{Com(ch1), . . . , Com(ch2n2)} to the verifier V .

2. The verifier V sets a trapdoor string trap = Com(1), generates a first verifier message
σ of a rZAP system (see Appendix A.2) and sends trap and σ to P . In addition,
V computes the first message of the three round Blum Hamiltonian cycle protocol
repeated in parallel 2n3 times for the statement: “trap is a commitment to 1”. In
more detail, for every repetition, V generates a random permutation of the graph
representing the above statement and sends to P the commitments to the permutation
and each entry of the adjacency matrix of the permuted graph. This step requires V

6

Common Input to P and V : x′ supposedly in the language L′ ∈ NP

Auxiliary input to P : An NP -witness w for x′ ∈ L′

Protocol:

The zero knowledge argument proceeds as follows:

1. The verifier V chooses a random collision resistant hash function h from a
function family H and sends it to P .

2. The prover P computes z = Com(h(0)) and sends it to V .

3. The verifiers V selects a string r
$← {0, 1}n4

and sends it to P .

4. The prover P and the verifier V now execute a witness indistinguishable
constant round public coin universal argument [BG02] where P proves to V
that either x′ ∈ L′ or the transcript of this zero knowledge argument τ (=
(h, z, r)) is in a language Λ defined below. We require the communication
complexity of this universal argument to be O(n2).

The language Λ is defined as follows. We say that (h, z, r) ∈ Λ if there exists an
oracle program Π s.t. z = Com(h(Π)) and there exist strings y1 ∈ {0, 1}≤n3

and
y2 ∈ {0, 1}≤nloglogn

with the following properties. The oracle program Π takes y1

as input and outputs r within nloglogn steps. Program Π may make calls to the
oracle by producing a query of the form trap and expecting (s, r) with
trap = Com(s; r) in return, such that, the tuple (trap, s, r) is guaranteed to be
found in the string y2 (as per a suitable encoding of y2). Thus, oracle calls by Π
can be answered using y2. If the program Π makes a query that cannot be
answered using y2, Π aborts and we have that (h, z, r) /∈ Λ.

The above basic argument system is constant round as well as public coin.
Applying the BGGL transformation [BGGL01], we obtain a new argument
system (which is resettably sound if the above basic argument system is
standalone sound).

Figure 1: Our new non black-box zero knowledge argument system

to use a witness relation such that a valid witness contains a tuple (s, r) such that
trap = Com(s; r).

3. For i ∈ [2n2], the protocol proceeds as follows:

• the prover P sends the challenge string chi (∈ {0, 1}n) to V .

• P now proves to V that either: (a) chi is the right challenge string committed in
the ith commitment in step 2, or, (b) x ∈ L. This is done using our non black-box
zero-knowledge argument compiled with the BGGL transformation as described
in Figure 1 (having a novel trapdoor property to be used by the simulator).

• The verifier V now responds to the challenge chi. Let chi[j] denote the jth bit of

7

the challenge chi. For all j, V sends the appropriate commitment openings (as
per the Blum Hamiltonian cycle protocol) for the (ni + j)th parallel repetition
assuming the challenge bit to be chi[j].

4. The prover P finally gives a rZAP to V proving either x ∈ L or the string trap is a
commitment to 1 under the commitment scheme Com.

3 Proof of Relaxed Concurrent Zero Knowledge

3.1 Overview of Sim

We first informally describe the high-level structure of Sim highlighting the key issues (a
more complete description will be given later on).

1. Sim generates the challenge strings in the first step randomly as described in the
protocol and receives the reply from V ∗ (which contains the string trap).

2. Sim and V ∗ now execute the challenge response rounds (Step 3). In these rounds,
the goal of Sim will be to rewind V ∗ (in the fully concurrent setting) and extract the
“trapdoor witness” which V ∗ is using. Recall that there are 2n2 “slots”. In each slot,
the prover gives a challenge (along with a non black-box zero-knowledge argument
of its correctness) and the verifier opens the appropriate commitments. Sim will
attempt to rewind V ∗ in the concurrent setting and, in some slot, get its response for
two different challenges.

Indeed, rewinding strategies now exist which can achieve the above extraction goal
even with ω(logn) slots (see [PRS02]). However, the main non-triviality in our setting
is that the prover is committed to its challenge in each slot ahead of time (this property
will be crucial for achieving resettable soundness). Thus, in the look ahead threads,
to give a challenge different from the one committed to in a slot, Sim will need to
simulate the associated non black-box zero-knowledge argument in the fully concur-
rent setting (with no apriori bound on the number of executions). Our approach to
solve this problem is as follows:

• We first design a new rewinding strategy for Sim where every thread has the
property that the simulator gives a randomly generated challenge (as opposed
to the one committed to) to the verifier in at most a constant number of slots
across all sessions. In all other slots, the simulator can continue to play honestly
giving the challenge it committed to earlier. We stress none of the rewinding
strategies in the previous works had this property.

• We then describe our novel non black-box simulation strategy using which the
simulator can prove a false theorem in a constant number (across all sessions) of
non black-box zero-knowledge arguments in every thread (in the fully concurrent
setting). This allows our simulator to give a random challenge in a constant
number of slots in every thread as required by our rewinding strategy.

8

Our non black box simulation strategy can potentially be extended to simulate any
apriori bounded number of slots in each thread, however, this is not required by
our rewinding strategy. We describe our rewinding and non black-box simulation
strategies in detail in the following subsections.

3. Sim and V ∗ now execute the final rZAP. By this point, Sim has already extracted a
witness to the statement “trap is a commitment to 1” from the verifier. Hence, Sim
uses this witness to execute this rZAP.

3.2 The Simulator Sim

Before going into the details of Sim, we first fix some terminology. We assume there are
a total of m sessions (each session having 2n2 slots). The beginning of a slot is when
the simulator gives the challenge, the end of the slot being when it receives the response.
In between these two messages, apart from the non black-box zero knowledge argument
associated with the challenge, there might be messages of other sessions. In any thread,
we say a slot is being simulated if the simulator is giving a random challenge (as opposed
to the one committed to) in that slot and is simulating the associated non black-box zero
knowledge argument. Otherwise, if the challenge is being given honestly as committed to,
we say that the slot is being honestly executed. We say that a session is being simulated if
any slot in it is being simulated, otherwise we say the session is being honestly executed.

As with the strategy in [RK99] (and [PV08]), our rewinding schedule is “adaptive”. In
[RK99], at a very high level, whenever a slot s completes, the simulator may rewind s by
calling itself recursively on s. That is, the simulator chooses another challenge for s and
recursively executes until either it receives the response (and hence “solves” the session) or
it observes that the verifier has started “too many” new sessions or has aborted. One case
of special interest to us is when the simulator gets “stuck” on another unsolved session that
started earlier than s. The simulator restarts rewinding s in such a case. Richardson and
Kilian [RK99] observe that such a case can happen at most m − 1 times. This is because
while the simulator is trying to rewind s, once it gets stuck on a session that started earlier,
it will never get stuck on that session again. Such an analysis is problematic in our scenario
where we can simulate only a constant (or a bounded) number of sessions (and hence in
our scenario the challenges chosen for a slot in two different threads are not necessarily
independent).

The key idea of our simulation technique is to completely avoid the scenario of simulator
getting stuck on a session which started earlier. Whenever our simulator decides to rewind
a slot s, it chooses a random challenge and recursively invokes itself by giving that random
challenge in s (and simulating the associated non black-box zero knowledge argument).
Going forward, challenges for all other slots are given honestly by default. In addition, as
opposed to strategies in [RK99, PV08] where the simulator only rewinds slots of sessions
that started at the current recursive level, our simulator is always “on the lookout” for
opportunities to rewind and solve a session. More precisely, before the simulator reaches
the final rZAP for a session (and hence potentially gets stuck on it), our choice of the
number of slots guarantees that there would exist at least one recursive level which will
have at least 2n slots of that session. Whenever the simulator observes 2n slots in one
level, it would rewind those 2n slots and solve that session with high probability. This idea

9

ensures that the simulator never gets stuck on a session that started earlier than the target
slot s.

The formal description of our simulator is given below. We borrow some notation from
[PV08].

• d = dlogn(m · 2n2)e will denote the maximum depth of recursion. Note that d is a
constant since the number of sessions m is polynomial in the security parameter n.
Our simulator will have the property that the total number of slots being simulated
in any thread is bounded by d.

• slot(i, j) will denote slot j of session i.

• ` denotes the current depth of the recursion.

SOLVE(x, `, hinitial, s, L)

Let h← hinitial

Repeat forever and update h after each step:

1. If the verifier aborts or the number of slots in h started after hinitial (which we will
call new slots) exceed m·2n2

n` , return h;

2. If the next message is the first prover message of some session, generate and commit
random challenges honestly.

3. If the next message is the first verifier message of some session, continue;

4. If the next message is the final rZAP of some session then, as explained in step 6(c),
we have already solved that session (else the simulator would have aborted by this
point). In other words, that trapdoor witness for that session has been extracted.
Use the extracted trapdoor witness (for the statement “trap is a commitment to 1”)
to execute the final rZAP.

5. If the next message is a prover message for the beginning of a slot s′, we have the
following two possibilities:

(a) If s′ ∈ L, the slot s′ is being simulated. The simulator uses the challenge specified
in L. In addition, the simulator uses our non black-box simulator subroutine
(described in the next sub-section) to handle all the messages of the non black-
box zero-knowledge argument associated with this message.

(b) If s′ /∈ L, the simulator proceeds honestly to give the challenge. It also executes
the associated non black-box zero-knowledge argument honestly.

6. If the next message is the end message of a slot s′ = slot(i′, j′), proceed as follows:

(a) If s = s′, we have succeeded in solving the target slot and hence the session.
Return h;

10

(b) Otherwise if the session i′ has already been solved or the number of new slots
(including s′) of session i′ in h started after hinitial is less than 2n, the simulator
need not rewind this slot. Continue;

(c) Otherwise, we have an unsolved session i′ such that 2n of its slots (from
slot(i′, j′−2n+1) to slot(i′, j′)) have appeared at the current level. The Sim will
rewind each of these slots n times and will solve session i′ except with negligible
probability. Observe that the depth d of the recursion is a constant and the total
number of slots in a session is 2n2. This means just by the pigeonhole principle,
for every session i′, we would have this case at some level before we reach its
final rZAP. For each slot s” in this list of 2n slots, repeat n times:

i. Set L” = L. Add s” to L”. In addition, select a random challenge for s”
and add it to L”.

ii. Let h” be the prefix of h which contains all messages up to but excluding
the prover challenge for s”. Set h∗ ← SOLVE(x, ` + 1, h”, s”, L”).

iii. If h∗ contains an accepting execution for slot s”, the simulator has succeeded
in solving s” and hence session i′.

If after repeating this step n times for each such slot s”, we have not yet solved
session i′, abort and output Ext Fail.

Sim(x, z)

Run SOLVE(x, 0,⊥,⊥,⊥) and output the view returned by SOLVE, with the fol-
lowing exception. When the simulator generates random challenge for a simulated slot and
it becomes equal to the real challenge for that slot or another simulated challenge gen-
erated previously in a different thread for the same slot, the simulator aborts and outputs ⊥.

Looking ahead, the core of the analysis of this rewinding strategy can be found in
Lemma 1 where we prove that the probability with which the simulator outputs Ext Fail is
negligible in n.

3.3 The Non Black-Box Simulation Subroutine

Recall that in a thread, whenever the simulator simulates a slot to give a random challenge,
it was required to simulate the associated non black-box zero-knowledge argument. We
describe our non black-box simulator subroutine in this subsection, and prove the com-
pleteness of the simulator’s use of this subroutine to execute the non-black-box argument
system.

First we remark on the random tape used by the simulator. The simulator has a random
tape RA which is sufficiently long so that it can be utilized to compute all messages of all
threads except messages of a slot being simulated (We discuss more about this exception
later). In more detail, consider the “execution tree” of the simulation where each function
call to SOLVE represents one node in the tree while each recursive call made by it represents
one of its child nodes (see Section D for more details on how this execution tree is defined).
The random tape RA has a (sufficiently long) portion for each such possible node in the

11

execution tree. As shown in Section D, this execution tree has depth upto d and degree
upto 2mn2 (and hence only has a polynomial number of nodes). From this it follows
that the length of RA is only polynomial (since each execution of SOLVE can only utilize
a polynomial amount of randomness). Note that a node in the tree at depth ` can be
uniquely identified by a tuple (S1, . . . , S`) where Si ∈ [2mn2]. Hence, such a sequence also
uniquely identifies the portion of the random tape RA to be used for the execution of that
node. We map each execution of SOLVE during a simulation to a node in the execution
tree in the natural way by mapping the first call SOLVE(x, 0,⊥,⊥,⊥) to the root node and
mapping the i-th recursive call made by an execution of SOLVE to its i-th child node. This
determines the randomness our simulator will use to complete that execution of SOLVE.

The simulator also has a “separate” random tape RB which it uses to execute the
slots which are being simulated. In other words, the random tape of the simulator can
be partitioned into two parts. The first part RA is used (in all sessions of all threads) to
execute non black box zero knowledge arguments which are being honestly executed and to
execute everything else in the protocol except simulated slots (i.e, the prover first message,
final rZAP etc.). The second part of the random tape is exclusively used (in all threads)
for picking random challenges in the slots being simulated and for executing non black box
zero knowledge arguments which are being simulated (Such a separation of random tape is
essential for our hybrid arguments to go through).

Denote the thread containing the slot to be simulated by T . The simulator sends a
random challenge in this slot and uses the trapdoor condition of the associated non black-box
zero knowledge argument to proceed. As the first step of the proof, the verifier sends a hash
function h as usual. The simulator now constructs a program Π and sends z = Com(h(Π)).
The program Π, very roughly, is constructed using part of the current state of the simulator
and the adversarial verifier such that it is able to go forward and produce their upcoming
interaction transcript in the thread T (with some input and “help from outside”). Details
of what Π does will be clear as we go forward. After receiving the commitment from the
simulator, the adversarial verifier may continue interaction in other concurrent sessions and
finally produces a string r. The simulator now executes the universal argument with the
verifier as follows. It first prepares a string y1 containing the following:

1. The slot identifiers (in the form of tuples (i, j) containing the session and the slot
numbers) for all the simulated slots in the thread T .

2. The randomly selected challenges for all the above slots.

3. For each slot above, a tuple uniquely identifying the corresponding node of the exe-
cution tree (note that each simulated slot can be mapped to an execution of SOLVE).

4. All prover messages which: (a) belong to a non black box zero knowledge argument
being simulated, and, (b) lie between messages z and r in the thread T . This includes
the message z.

5. The number of simulator-verifier steps of interaction in T between messages z and r.

Recall that the number of simulated slots in T is bounded by a constant d(=
dlogn(m · 2n2)e). Furthermore, the size of each prover message included in y1 is O(n2).
From this, it can be shown that |y1| ≤ n3.

12

The simulator additionally constructs a string y2 as follows. Consider a session for which
the final rZAP lies between messages z and r. Since the simulator executed the thread T
without aborting till at least the message r, it follows that it must have extracted the
trapdoor witness, i.e., a witness to the statement “trap is a commitment to 1” (by getting
a response for two different challenges in a slot across different threads) for that session. In
other words if the trapdoor string for that session is trap, the simulator has obtained (s, r)
with trap = Com(s; r). The string y2 simply contains such commitment strings trap and
their opening tuples (s, r). Now we discuss the functionality of Π in detail.

The program Π is constructed using two components: (a) the current state of the
verifier, and, (b) part of the current state of the simulator which has the first part of the
simulator random tape RA. The portion of RA used by Π to regenerate various parts of
the transcript of thread T can be determined using the tuples for each simulated slot given
as part of y1. This means that Π is able to compute the outgoing prover messages except if
it is a message belonging to a slot being simulated. However then, the input y1 contains all
messages belonging to such simulated slots. Thus, the program Π regenerates the transcript
of thread T from z to r (z, r inclusive) as follows. It takes y1 as input and runs the inbuilt
simulator and verifier machines from message z onwards (using their states at the point
just before message z is sent). Whenever Π needs to compute a prover message for a slot
s (i.e., the challenge or a prover message of the associated non black-box zero knowledge
argument), it checks y1 to see if s is simulated. If so, Π uses the message specified in y1.
Otherwise, Π computes the message honestly using the right portion of RA. The program
Π however does not execute any other threads apart from T . This is crucial for the running
time of our simulator to be polynomial. This means that the inbuilt simulator may not
have the required trapdoor when it has to execute the final rZAP of a session. The oracle
calls allowed to Π come to the rescue here. For such a session, let the description of its
trapdoor string be denoted by trap. The program Π makes an oracle call with the string
trap. This string trap and its opening (s, r) with trap = Com(s; r) is guaranteed to be
found in y2 by construction. Hence, Π can obtain the required witness for the statement
“trap is a commitment to 1” and use that to complete the final rZAP. The program Π runs
for the number of steps specified in the input y1, regenerates the transcript in T between z
and r and halts outputting r (in section D, we show that the number of steps is bounded
by nlog log n as required). To conclude, the opening to the commitment z and the pair
(y1, y2) constitute a witness to the statement (h, z, r) ∈ Λ. The simulator uses this witness
to execute the universal argument and hence complete the non black-box zero-knowledge
argument, as long as y2 contains all the necessary (s, r) pairs, which must be the case unless
the simulator has already failed and output Ext Fail.

3.4 Rest of the paper

The security properties of this protocol are proven in Appendices C (relaxed concurrent zero
knowledge) and E (hybrid soundness). Then in Appendix F, we present a compiler that
transforms our relaxed concurrent zero-knowledge and hybrid sound argument into a hybrid
zero-knowledge and hybrid sound argument. Finally, the transformation from Appendix B.3
yields our main result, a resettably sound resettable zero-knowledge argument for an NP-
complete language.

13

Note that formal definitions are given in Appendix B, and some building blocks that
we make use of are discussed in Appendix A.

References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS,
pages 106–115, 2001.

[Bar02] Boaz Barak. Constant-round coin-tossing with a man in the middle or realizing
the shared random string model. In Proc. 43rd FOCS. IEEE, 2002. Preliminary
full version available on http://www.math.ias.edu/~boaz.

[BG02] Boaz Barak and Oded Goldreich. Universal arguments and their applications.
In IEEE Conference on Computational Complexity, pages 194–203, 2002.

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell.
Resettably-sound zero-knowledge and its applications. In FOCS, pages 116–
125, 2001.

[BLV03] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for non-black-
box zero knowledge. In FOCS, pages 384–393, 2003.

[BS05] Boaz Barak and Amit Sahai. How to play almost any mental game over the
net - concurrent composition via super-polynomial simulation. In FOCS, pages
543–552. IEEE, 2005.

[Can01] R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. 42nd FOCS, pages 136–147. IEEE, 2001. Preliminary full
version available as Cryptology ePrint Archive Report 2000/067.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable
zero-knowledge (extended abstract). In STOC, pages 235–244, 2000.

[CPV04] Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti. Constant-round
resettable zero knowledge with concurrent soundness in the bare public-key
model. In CRYPTO, pages 237–253, 2004.

[Den08] Yi Deng. E-mail communications., 2008.

[DL07a] Yi Deng and Dongdai Lin. Instance-dependent verifiable random functions and
their application to simultaneous resettability. In Naor [Nao07], pages 148–168.

[DL07b] Yi Deng and Dongdai Lin. Resettable zero knowledge with concurrent sound-
ness in the bare public-key model under standard assumption. In Inscrypt,
pages 123–137, 2007.

[DL08] Yi Deng and Dongdai Lin. On resettably-sound resttable zero knowledege
arguments. Cryptology ePrint Archive, Report 2008/233, withdrawn, 2008.
http://eprint.iacr.org/.

14

[DN00] Cynthia Dwork and Moni Naor. Zaps and their applications. In FOCS, pages
283–293, 2000.

[DNS98] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. In
STOC, pages 409–418, 1998.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complex-
ity of interactive proof-systems. In Proc. 17th STOC, pages 291–304. ACM,
1985.

[KP01] Joe Kilian and Erez Petrank. Concurrent and resettable zero-knowledge in
poly-loalgorithm rounds. In STOC, pages 560–569, 2001.

[MR01a] Silvio Micali and Leonid Reyzin. Min-round resettable zero-knowledge in the
public-key model. In EUROCRYPT, pages 373–393, 2001.

[MR01b] Silvio Micali and Leonid Reyzin. Soundness in the public-key model. In
CRYPTO, pages 542–565, 2001.

[Nao07] Moni Naor, editor. Advances in Cryptology - EUROCRYPT 2007, 26th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Barcelona, Spain, May 20-24, 2007, Proceedings, volume 4515 of
Lecture Notes in Computer Science. Springer, 2007.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dis-
honest majority. In Proc. 36th STOC, pages 232–241. ACM, 2004.

[PR05] Rafael Pass and Alon Rosen. New and improved constructions of non-malleable
cryptographic protocols. In Proc. 37th STOC. ACM, 2005.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge
with logarithmic round-complexity. In FOCS, pages 366–375, 2002.

[PV08] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. On constant-round
concurrent zero-knowledge. In Ran Canetti, editor, TCC, volume 4948 of Lec-
ture Notes in Computer Science, pages 553–570. Springer, 2008.

[RK99] Ransom Richardson and Joe Kilian. On the concurrent composition of zero-
knowledge proofs. In EUROCRYPT, pages 415–431, 1999.

[YZ07] Moti Yung and Yunlei Zhao. Generic and practical resettable zero-knowledge
in the bare public-key model. In Naor [Nao07], pages 129–147.

[ZDLZ03] Yunlei Zhao, Xiaotie Deng, Chan H. Lee, and Hong Zhu. Resettable zero-
knowledge in the weak public-key model. In EUROCRYPT, pages 123–139,
2003.

15

A Building Blocks

A.1 Non-interactive Perfectly Binding Commitment Scheme with a
Unique Decommitment

In our protocol, we shall use a non-interactive perfectly binding commitment scheme with
the properties that every commitment has a unique decommitment and the verification
of the decommitment is deterministic. An example of such a scheme is the scheme that
commits to the bit b by Com(b; (r, x)) = r||π(x)||(x·r)⊕b where π is a one-way permutation
on the domain {0, 1}k, x·y denotes the inner-product of x and y over GF (2), and x, r ← Uk.
We denote this commitment scheme by Com.

A.2 Resettably Sound Resettable Zaps

Zaps are two round public coin witness indistinguishable proofs introduced by Dwork and
Naor [DN00]. Zaps further have the special property that the first message (sent by the
prover) can be reused for multiple proofs.

As noted in [BGGL01], any ZAP system already has the property of resettable sound-
ness. Furthermore, resettable witness indistinguishability property can be obtained by
applying the transformation in [CGGM00]. We refer to the resulting system as an rZAP
system having the property of resettable soundness as well as resettable witness indistin-
guishability (see Theorem 1.5 in [BGGL01] for more details).

A.3 Resettable Sound Zero-Knowledge Arguments

Resettable sound zero-knowledge (rsZK) arguments studied by Barak et al [BGGL01]. As
in resettable zero-knowledge [CGGM00], rsZK arguments deal with the zero-knowledge
functionality but consider the setting when the verifier is resettable by the prover. Barak
et al [BGGL01] gave a construction of rsZK arguments relying on the non-black techniques
introduced by Barak [Bar01]. They also ruled out rsZK arguments having a black-box sim-
ulator (except for languages in BPP) thus showing that usage of non-black box techniques
is inherent. In our constructions, we rely crucially on the fact that rsZK arguments (as
defined by [BGGL01]) have the property that soundness holds even if the verifier can use
the same random string in multiple zero-knowledge argument executions even for different
statements.

Barak et al [BGGL01] in fact also presented a general transformation from any constant
round public coin zero knowledge argument system to a resettably sound zero knowledge
argument system. We make use of this transformation in our constructions and refer to it
as the BGGL transformation.

B The Model and Definitions

B.1 Relaxed Concurrent Zero Knowledge

Informally speaking, in concurrent zero knowledge, we only quantify over relaxed concurrent
adversaries. We first define relaxed concurrent adversaries in the setting of zero knowledge.

16

Definition 1 (Relaxed Concurrent Adversary:) An adversary A who interacts with
the prover P concurrently in multiple sessions is a relaxed concurrent adversary if it has
the following property. Before A starts a new session, it writes a string s to a special tape
such that:

• There exists a function f (not necessarily polynomial time computable) fixed before
the start of any interactions such that r = f(s), and,

• All messages of the adversary A (playing as the verifier) in this session are consistent
with the messages of an honest verifier using the random tape r.

Informally speaking, the next message of the adversary A in a session is information
theoretically fixed given the special tape of A for this session and the transcript of inter-
action between P and A in this session alone. In particular, very roughly, if the simulator
rewinds A and changes a prover message (in another session) which appears in the interac-
tion transcript after this session started, the transcript of interaction of this session would
remain unchanged.

Definition 2 (Relaxed Concurrent Zero Knowledge:) A protocol Σ is called relaxed
concurrent zero knowledge if it remains zero knowledge with respect to a relaxed concurrent
adversary A. In other words, for every relaxed concurrent adversary A, there exists a
simulator S such that the distribution of the view of A in interaction with the prover P is
indistinguishable from the distribution of the output of S (which is given only the common
input).

B.2 Resettably Sound Resettable Zero Knowledge Arguments

In this section, we recall the definition of the properties resettable zero knowledge and
resettably sound arguments from the works in [CGGM00, BGGL01]. Our goal would be
to construct an interactive proof system which satisfies both of these properties. The
definitions below are taken almost verbatim from [CGGM00, BGGL01].

Definition 3 (rZK [CGGM00]:) An interactive proof system (P, V) for a language L is
said to be resettable zero-knowledge if for every probabilistic polynomial-time adversary V ∗

there exists a probabilistic polynomial-time simulator M∗ so that the distribution ensembles
D1 and D2 described below are computationally indistinguishable: Let each distribution be
indexed by a sequence of distinct common inputs x̄ = x1, . . . , xpoly(n) ∈ L ∩ {0, 1}n and a
corresponding sequence of prover’s auxiliary-inputs ȳ = y1, . . . , ypoly(n).

Distribution D1 is defined by the following random process which depends on P and V ∗.

1. Randomly select and fix t = poly(n) random-tapes ω1, . . . , ωt for P , resulting in de-
terministic strategies P (i,j) = Pxi,yi,ωj defined by Pxi,yi,ωj (α) = P (xi, yi, ωj , α), for
i, j ∈ {1, . . . , t}. Each P (i,j) is called an incarnation of P .

2. Machine V ∗ is allowed to run polynomially-many sessions with the P (i,j)’s. Through-
out these sessions, V ∗ is required to complete its current interaction with the cur-
rent copy of P (i,j) before starting a new interaction with any P (i′,j′), regardless if

17

(i, j) = (i′, j′) or not. Thus, the activity of V ∗ proceeds in rounds. In each round it
selects one of the P (i,j)’s and conducts a complete interaction with it.

3. Once V ∗ decides it is done interacting with the P (i,j)’s it (i.e, V ∗) produces an output
based on its view of these interactions. This output is denoted by 〈P (ȳ), V ∗〉(x̄) and
is the output of the distribution.

Distribution D2:
The output of M∗(x̄).

Definition 4 (rs [BGGL01]:) A resetting attack of a cheating prover P ∗ on a reset-
table verifier V is defined by the following two-step random process, indexed by a security
parameter n.

1. Uniformly select and fix t = poly(n) random-tapes, denoted r1, . . . , rt, for V , resulting
in deterministic strategies V (j)(x) = Vx,rj defined by Vx,rj (α) = V (x, rj , α), where
x ∈ {0, 1}n and j ∈ [t]. Each V (j)(x) is called an incarnation of V .

2. On input 1n, machine P ∗ is allowed to initiate poly(n)-many interactions with the
V (j)(x)’s. The activity of P ∗ proceeds in rounds. In each round P ∗ chooses x ∈ {0, 1}n
and j ∈ [t], thus defining V (j)(x), and conducts a complete session with it.

Let P and V be some pair of interactive machines, and suppose that V is implementable
in probabilistic polynomial-time. We say that (P, V) is a resettably-sound proof system for
L (resp., resettably-sound argument system for L) if the following two conditions hold:

• Resettable-completeness: Consider an arbitrary resetting attack (resp., polynomial-
size resetting attack), and suppose that in some session after selecting an incarnation
V j(x), the attacker follows the strategy P . The, if x ∈ L then V (j)(x) accepts with
negligible probability.

• Resettable-soundness: For every resetting attack (resp., polynomial size resetting at-
tack), the probability that in some session the corresponding V (j)(x) has accepted and
x /∈ L is negligible.

B.3 The hZK-rZK and hs-rs Transformations

Canetti et al [CGGM00] proposed a general paradigm for constructing resettable zero knowl-
edge protocols. This paradigm was further generalized by Barak et al [BGGL01]. They
defined a class of proof systems called admissible proof systems and a new model called the
hybrid model which is a strengthening of the concurrent model. They proposed a general
transformation applicable to an admissible proof system and showed that if the original
(admissible) proof system was zero knowledge in the hybrid model, the transformed proof
system would be resettable zero knowledge. A similar result was shown for the case of wit-
ness indistinguishability. These results were obtained by showing that any fully resetting
adversary can be emulated by an adversary in the hybrid model.

In this section, we modify the class of admissible proof systems and the corresponding
hybrid model slightly to fit our requirements. We show that even for our definition, the

18

transformation of [CGGM00, BGGL01] still works and a proof of this fact is very similar
to the corresponding proofs in [BGGL01]. Furthermore, we define an analogous transfor-
mation for the case of resettable soundness. That is, we define the class of admissible proof
systems and the hybrid model for this case and then present a transformation to convert
an admissible proof system that is sound in the hybrid model to a resettably sound proof
system. This is done in a manner very similar to the case of resettable zero knowledge by
showing that a fully resetting prover can be emulated by a prover in the hybrid model.

We now discuss our transformations in detail. Our transformations are modifications
of the transformations found in [CGGM00, BGGL01]

Definition 5 (Prover-admissible proof-system) A proof-system (P, V) is called
prover-admissible if the following requirements hold:

1. The prover P consists of two parts P1, P2. Similarly, the prover’s random input ω is
partitioned into two disjoint parts, ω(1), ω(2), where ω(i) is given to Pi

2. A message sent by the verifier may either be labeled as main message or an authenti-
cator message. The first main message sent by the verifier in the protocol is called the
determining message. Each verifier message is first received by P1. In each round of
interaction, the verifier and P1 exchange a number of messages in which exactly one
of the messages is a main message while the rest are authenticator messages. At the
end of an interaction round, P1 decides whether to accept the (only) main message
received based on the transcript of interaction round itself and the transcript of the
verifier main messages and the corresponding replies of P2 so far. If P1 accepts, it
forwards the main message to P2 who generates the reply.

3. Let V ∗ be an arbitrary (deterministic) polynomial-size circuit, where V ∗ may execute
a resetting-attack on P (as described in Distribution 1 of Definition 3). Let V ∗ interact
with some incarnation of P = (P1, P2). Then, except with negligible probability, V ∗ is
unable to generate two different main messages, both accepted by P1, for some round
` in two different interactions with P with the same determining message.

The Hybrid Model Loosely speaking, in our hybrid model, as in [CGGM00, BGGL01],
the verifier is given the ability to “partially reset” the prover (while otherwise interacting
in the concurrent setting). More precisely, in the prover admissible proof system, each
incarnation of the prover is identified by a three indices: P (i,j,k) = Pxi,yi,ωj,k

where ωj,k =

(ω(1)
j , ω

(2)
k). The string ω

(1)
j represents the random input to P1 while ω

(2)
k represents the

random input to P2. The verifier can interact with these incarnations in the concurrent
setting where it is allowed to have a single session with each incarnation. However, the
verifier is not allowed to interact with two different incarnations P (i,j,k) and P (i′,j′,k′) such
that k = k′. Furthermore, the verifier is given the power to request P1 (in an incarnation)
to restart the interaction from the beginning while leaving P2 in the same state as it was
(we prefer not to use the term “reset P1” since such a restart does not completely erase its
memory)6. After being restarted, P1 operates as usual using the same random tape ω(1)

6Note that such a power was not available to the verifier in the hybrid world of Barak et al [BGGL01].
Giving the verifier such power makes the proof in our setting only easier while allowing us to generalize the

19

except for the following. P1 aborts if the verifier sends a different determining message in
the first round of interaction after P1 restarts. Furthermore, in a round of interaction with
the verifier, P1 does not forward the received main message to P2 (even if it is accepted) in
case a main message in that round has been forwarded earlier (before P1 was requested to
restart the interactions). Instead, P1 simply sends accept or reject to the verifier (without
sending any other reply) depending upon whether it accepted or rejected the main message
in that round. P1 then waits for the verifier messages for the next round as if P2 had sent
the same reply it sent earlier in that round before P1 restarted the interaction. Intuitively,
such a setting ensures that P1 and P2 do not go out of sync even though only P1 restarts
the interaction (with the same randomness).

Definition 6 (hZK) A hybrid cheating verifier V ∗ works against prover-admissible proof
systems in the hybrid model as described above. A proof system is hZK if it is prover
admissible and satisfies Definition 3 with respect to hybrid cheating verifiers.

The transformation below is identical to the ones in [CGGM00, BGGL01].

Transformation hZK-rZK Given a prover-admissible proof system (P, V), where P =
(P1, P2), and a collection f of pseudorandom functions, we define a new proof system (P,V)
as follows.

The new verifier V is identical to V .
The new prover P: The new prover P’s randomness is viewed as a pair (ω(1), f), where

ω(1) ∈ {0, 1}poly(n) is of length adequate for the random-tape of P1 and f : {0, 1}≤poly(n) →
{0, 1}poly(n) is a description of a function taken from an ensemble of pseudorandom func-
tions. For convenience, we describe the new prover P as a pair P = (P1,P2). P1 is identical
to P1 with random-tape ω(1); P2 emulates the actions of P2 with a random tape that is
determined by applying f to the input, the random coins ω(1) and the determining message.
That is, upon receiving the determining message, denote msg, P2 sets ω(2) = f(x, ω(1),msg)
and runs P2 with random input ω(2). From this step on, P2 emulates the actions of P2

using ω(2) as P2’s random-tape.

Theorem 2 Suppose that (P, V) is prover-admissible, and let P be the prover strategy
obtained from P by applying Transformation hZK-rZK. Then:

Assuming that pseudorandom functions exist, for every probabilistic polynomial-time
resetting cheating verifier V∗ (as in Definition 3) there exists a probabilistic polynomial-time
hybrid cheating verifier W ∗ (as in Definition 6) such that 〈P (ȳ),W ∗〉(x̄) is computationally
indistinguishable from 〈P(ȳ),V∗〉(x̄).

Proof. We will only provide a sketch of the proof and defer the details to the full version
since it easily follows from the corresponding proof in [BGGL01]. Consider a fully resetting
verifier V ∗. We will construct an adversary W ∗ in the hybrid model which would be able
to simulate the view of V ∗. Consider an incarnation of the prover P i,j,k = (P i,j,k

1 , P i,j,k
2).

W ∗ simply relays messages between V ∗ and P i,j,k until the point V ∗ resets P i,j,k. At this
point, W ∗ starts interaction with another incarnation of the prover P i,j,k′

with k 6= k′

class of (prover) admissible proof systems.

20

and simply relays messages of the first round of interaction between V ∗ and P i,j,k. At the
completion of the first round (i.e., assuming that the interaction is not already aborted
by this point), W ∗ forwards V ∗ the reply of P i,j,k′

2 only if the determining message of V ∗

was different from the one in the interaction with P i,j,k (and if so, continues to live their
messages between V ∗ and P i,j,k′

). Otherwise, if the determining message was the same, W ∗

aborts the interaction with P i,j,k′
and forwards to V ∗ the reply received earlier from P i,j,k

in the first round. Further, W ∗ executes the same (first) round of interaction with P i,j,k as
V ∗ did with P i,j,k′

1 (this is possible since the random tape of P i,j,k
1 and P i,j,k′

1 is identical) to
get “in sync”. From the second round onwards, W ∗ again simply relays messages between
V ∗ and P i,j,k with the following exception. In case a reply in the current round was already
given by P i,j,k

2 earlier, W ∗ would not receive a reply in that case. However, by the property
of a prover admissible proof system, except with negligible probability, the transcript of
interaction of this session consisting of V ∗ main message and the replies of P i,j,k

2 is identical
to the earlier one (since the determining message is identical). Hence, W ∗ forwards the
reply received earlier in that case.

Now observe that the main difference between the view of V ∗ between when it is interact-
ing with W ∗ in such a setting and when it is directly interacting with prover incarnations
and resetting them is the following. W ∗ “switches” the interaction of V ∗ from P i,j,k to
another incarnation P i,j,k′

whenever V ∗ resets P i,j,k and starts a session with another de-
termining message. The indistinguishability of the views in these two cases then follows
from the pseudorandomness of the function f . �

We now define an analogous class of admissible proof systems, hybrid model and a
transformation for the case of resettable soundness. This case is symmetric to the case of
resettable zero knowledge and the proof again follows from the fact that a fully resetting
adversary can be emulated by an adversary in the hybrid model. For completeness, we give
some of the details in the following.

Definition 7 (Verifier-admissible proof-system) A proof-system (P, V) is called
verifier-admissible if the following requirements hold:

1. The verifier V consists of two parts V1, V2. Similarly, the verifier’s random input ω
is partitioned into two disjoint parts, ω(1), ω(2), where ω(i) is given to Vi

2. A message sent by the prover may either be labeled as main message or an authenti-
cator message. The first main message sent by the prover in the protocol is called the
determining message. Each prover message is first received by V1. In each round of
interaction, the prover and V1 exchange a number of messages in which exactly one
of the messages is a main message while the rest are authenticator messages. At the
end of an interaction round, V1 decides whether to accept the (only) main message
received based on the transcript of interaction round itself and the transcript of the
prover main messages and the corresponding replies of V2 so far. If V1 accepts, it
forwards the main message to V2 who generates the reply.

3. Let P ∗ be an arbitrary (deterministic) polynomial-size circuit, where P ∗ may execute
a resetting-attack on V (see Definition 4). Let P ∗ interact with some incarnation
of V = (V1, V2). Then, except with negligible probability, P ∗ is unable to generate

21

two different main messages, both accepted by V1, for some round ` in two different
interactions with V with the same determining message.

The hybrid model for this case is exactly symmetric to the hybrid model for the case of
prover admissible proof system (with the roles of the prover and the verifier exchanged).

Definition 8 (hs) A hybrid cheating prover P ∗ works against verifier-admissible proof
systems in the hybrid model as described above. A proof system is hs if it is verifier admis-
sible and satisfies Definition 4 with respect to hybrid cheating provers.

Transformation hs-rs Given a verifier-admissible proof system (P, V), where V =
(V1, V2), and a collection f of pseudorandom functions, we define a new proof system
(P,V) as follows.

The new prover P is identical to P .
The new verifier V: The new verifier V’s randomness is viewed as a pair (ω(1), f),

where ω(1) ∈ {0, 1}poly(n) is of length adequate for the random-tape of V1 and f :
{0, 1}≤poly(n) → {0, 1}poly(n) is a description of a function taken from an ensemble of pseudo-
random functions. For convenience, we describe the new verifier V as a pair V = (V1,V2).
V1 is identical to V1 with random-tape ω(1); V2 emulates the actions of V2 with a random
tape that is determined by applying f to the input, the random coins ω(1) and the deter-
mining message. That is, upon receiving the determining message, denote msg, V2 sets
ω(2) = f(x, ω(1),msg) and runs V2 with random input ω(2). From this step on, V2 emulates
the actions of V2 using ω(2) as V2’s random-tape.

Theorem 3 Suppose that (P, V) is verifier-admissible, and let V be the verifier strategy
obtained from V by applying Transformation hs-rs. Then:

Assuming that pseudorandom functions exist, for every probabilistic polynomial-time
resetting cheating prover P∗ (as in Definition 4) there exists a probabilistic polynomial-
time hybrid cheating prover W ∗ (as in Definition 8) such that 〈W ∗, V 〉(x̄) is computationally
indistinguishable from 〈P∗,V〉(x̄).

The proof of the above theorem easily follows from the proof of Theorem 2 and the
techniques in [CGGM00, BGGL01]. It is omitted from this extended abstract.

We remark that our hZK-rZK transformation (resp., hs-rs transformation) only specifies
a new prover (resp., verifier) strategy without changing the verifier (resp., prover) strategy.
Hence, if the original proof system is resettably sound (resp., resettable zero knowledge), so
is the transformed proof system. Similar statement holds for the case of hybrid soundness
and concurrent soundness (resp., hybrid zero knowledge, concurrent zero knowledge and
relaxed concurrent zero knowledge).

C Indistinguishability of the Real and Simulated Views

In this section, we prove:

Theorem 4 Assume that trapdoor permutations and collision-resistant hash function fam-
ilies exist. Then the protocol in Section 2 is a relaxed concurrent zero-knowledge argument.

22

Proof. We will consider a series of hybrid experiments and show that the views of V ∗ in
successive hybrids are indistinguishable from each other. Our initial experiment will be the
actual protocol as executed by the prover and the verifier. Our final experiment will be the
simulated protocol as described above.

Experiment H0. This experiment corresponds to when the simulator Sim has the re-
quired witness and runs the protocol honestly with the malicious verifier V ∗ .

Experiment H1. In this experiment, Sim starts creating the look-ahead threads as per
our rewinding strategy but with the following two modifications. For a slot being simulated
in any look-ahead thread, Sim chooses a challenge at random as usual. However, the first
modification is that Sim executes the associated non black-box zero knowledge argument
in such a slot using a witness to the statement “x ∈ L” as opposed to simulating using the
trapdoor condition (h, z, r) ∈ Λ (recall that in the non-black-box zero knowledge arguments,
the prover proves that either the challenge string is the correct one it committed to or
x ∈ L). Secondly, Sim does not use the extracted witnesses in any way in any thread (i.e,
Sim continues to use the witness for the statement x ∈ L to complete the final rZAP in all
threads), just as the honest prover would do in an honest execution. The only difference
between the view of V ∗ in H0 and H1 is that Sim might abort the interaction (and hence
the main thread) because of one of the following 2 reasons (for reference, see the description
of Sim in the previous section):

1. A random challenge, ch, picked by Sim for a simulated slot becomes equal to either
the real challenge or another simulated challenge generated previously in a different
thread for the same slot. Now since ch

$← {0, 1}n and, as shown in section D, there
are only a polynomial number of threads, the probability of this event happening is
bounded by poly(n)

2n (which is negligible in n).

2. Sim fails to extract a valid witness in one of the sessions (i.e outputs Ext Fail). We
show in Lemma 1 that the probability of this event happening is negligible.

Taken together, the above points imply that the view of V ∗ in experiment H1 is indis-
tinguishable from that in experiment H0.

Lemma 1 The probability with which the simulator Sim outputs Ext Fail in experiment H1

is negligible.

Proof. We prove the above claim by contradiction. Assume that this probability is
noticeable. Now since there are a polynomial number of threads, a polynomial number of
sessions in each thread and a polynomial number of slots per session, there would exist a
constant c, a thread7 T , a session i and a slot j (of session i) such that Sim outputs Ext Fail

7A thread T is defined by a slot number (from 1 to m · 2n2) and an attempt number (from 1 to n) for
every recursive level. This is to uniquely pick the path from the root to a leaf node in the execution tree
(see Section D). Of course, it could be the case that in a particular execution of the simulator, the thread
T doesn’t appear or appears only partially because not every slot at every level occurs and is rewound n
times

23

at least with probability 1
nc after trying to solve session i by rewinding slots j to j + 2n− 1

appearing at some level in thread T (see description of Sim in Section 3.2. Now consider
the following hybrid experiments:

Experiment G0. This experiment is the same as hybrid experiment H1 with the following
exceptions. The simulator Sim only runs the thread T . In addition, Sim runs the look
ahead threads forking off T from the beginning of the slots j to j + 2n − 1 of session i if
they all appear at the same level (there could be up to 2n2 such look ahead threads: n
for each slot). Sim outputs Ext Fail if it runs these 2n2 look ahead threads but fails to
extract a witness for session i. In other words, Sim only generates the message exchange
transcript for thread T by only making a look ahead thread from the slots specified in the
description of T (till the point the slots occur in the simulation8), choosing challenges for
them randomly and then making up to 2n2 look ahead threads for slot j to j + 2n− 1 (if
they occur and at the same level).

By the contradictions assumption, even in this experiment the simulator Sim will output
Ext Fail at least with probability 1

nc . In other words, Sim outputs Ext Fail at least with
the probability with which Sim outputs Ext Fail in session i when started rewinding from
slot j in thread T in the experiment H2 (since the thread T and 2n2 look ahead threads
in this experiment provide a perfect emulation of the corresponding threads in H1 to the
point they occur).

If in a given execution, the 2n slots (from j to j + 2n− 1) occur at the same level, let
` denote that level. Since the total number of new slots starting and ending at level ` is
bounded by m·2n2

n` , at least n of these 2n slots have a maximum of m·2n2

n`+1 new slots between
their start and finish messages. We call these slots (` + 1)-good. Now, Sim (mentally)
selects 4c slots at random from slots j to j + 2n − 1 of session i (but does not utilize the
outcome of this selection in any way in this experiment). Let Fail denote the event that
Sim outputs Ext Fail and at least 2c of the selected 4c slots are (`+1)-good. By symmetry,
it can be easily seen that:

Pr[Fail] ≥ 1
2nc

Experiment G1. This experiment is identical to the previous one except that now Sim
starts using a witness for the statement x ∈ L to complete the universal argument in each
of the selected 4c slots. The witness indistinguishability property of the universal argument
scheme directly implies the indistinguishability of the view of V ∗ in this experiment from
that in the previous one. Hence, following the previous experiment, we have that Pr[Fail] ≥

1
2nc − negl(n).

Experiment G2. This experiment is identical to the previous one except that now Sim
gives a random challenge in each of these 4c slots (as opposed to giving the ones it committed
to). Observe that at this point, Sim is not using the openings of the commitments to

8Of course, the occurrence of these slots is not guaranteed because the verifier might abort or a slot may
not be chosen to be rewound.

24

these challenges any time during the simulation (since the associated non black-box zero-
knowledge argument is being executed using a witness to the statement x ∈ L). Hence,
the computational hiding property of the scheme Com directly implies that the view of
V ∗ in this experiment is indistinguishable from that in the previous one. Hence, as in the
previous experiment, we have that Pr[Fail] ≥ 1

2nc − negl(n).
Now consider a slot k from these 4c slots and the n look ahead threads for this slot.

Clearly the transcript of slot k in thread T (i.e., the transcript in thread T from the start
of k to its end) is identically distributed to the transcript of k that appears in any look
ahead thread for k (forking off thread T). Now observe that when the event Fail occurs:
(a) all the 2n slots (from j to 2n + j − 1) occur at the same level, and, (b) at least 2c of
the selected 4c slots in thread T are (` + 1)-good while none of the slots in the look ahead
threads are (since otherwise Sim would have extracted a witness for session i).

Experiment G3. Sim now proceeds as follows. Sim runs the thread T as in experiment
G2 till the point when the first of the 4c selected slot begins (i.e., the challenge for the first
of these slots is due). Sim now creates n+1 threads from this point onwards and continues
each of them until the point this slot finishes or verifier aborts. Sim now randomly selects
one of these threads to be part of the thread T and treats the remaining as the n look
ahead threads trying to “solve” this slot. Sim now continues this (extended) thread T till
the point when the second of the 4c selected slots begins and proceeds from there similarly
as for the first slot (by creating n + 1 threats as before and selecting one of them to add to
T). Sim continues this process to generate the entire thread T and the look ahead threads
for the 4c selected slots. Sim now generates look ahead threads for the remaining 2n− 4c
slots (if they all occur the same level). Sim outputs Ext Fail if the 2n slots all occur at the
same level ` and none of the 2n2 look ahead threads are (`+1)-good. Thus, exactly as in the
previous experiment, when event Fail occurs: (a) all the 2n slots (from j to 2n+j−1) occur
at the same level, and, (b) at least 2c of the selected 4c slots in thread T are (` + 1)-good
while none of the slots in the look ahead threads are. The only effective difference from the
previous experiment is that in this experiment, some of the look ahead threads are being
generated as the thread T is being generated (as opposed to generating the thread T first
and then all the look ahead threads as in the previous experiment). Hence it is easy to
see that the probability of event Fail occurring remains identical to that in experiment G2.
Now we try to bound this probability.

To analyze the probability of event Fail in this experiment, we consider an experiment in
which part of the random tape of Sim is supplied by an external party. In detail, as it goes
forward,Sim generates n+1 threads for each of the selected 4c slots and randomly chooses
one of them to be part of the thread T as described except for the following. Whenever
exactly one of the generated n+1 threads is (`+1)-good, Sim queries the external party with
these thread transcripts asking it to randomly choose the thread to be part of the thread
T . The probability with which the external party chooses the thread which is (` + 1)-good
is exactly 1

n+1 . Fail occurs only if Sim makes at least 2c queries to the external party and
each time the external party chooses the only (`+1)-good thread. This implies that in this
experiment

25

Pr[Fail] ≤ 1
(n + 1)2c

This implies that:

1
(n + 1)2c

≥ 1
2nc
− negl(n)

Since without loss of generality, c ≥ 1, the above statement gives a contradiction for
large enough n. Hence Lemma 1 follows. �

Experiment H2. This experiment is defined exactly as the previous one with the ex-
ception that now Sim uses the trapdoor witness (extracted from V ∗) to complete the
final rZAP in all threads. Again, by relying on the witness indistinguishability property of
rZAPs (in the concurrent setting), it can be shown that the view of V ∗ in this experiment
is indistinguishable from that in the previous one.

Experiment H3. This experiment is identical to the previous one except that now in
the non black-box zero-knowledge argument for each of the simulated slots (with a random
challenge as opposed to the one committed to) in every thread, Sim, instead of committing
to h(0), commits to h(Π) where Π is a program to predict the string r and is computed
as described in the previous section. Note that none of the programs Π’s contain the
randomness required to generate these commitments (since it comes from the second part
of the random tape of Sim) and at this point, the opening of these commitments is not being
used anywhere by the Sim (since the corresponding universal arguments are being executed
using a witness to the statement x ∈ L). Hence, the computational hiding property of the
commitment scheme Com directly implies the indistinguishability of the view of V ∗ in this
experiment from that in the previous one.

Note that at this point, in the non-black-box zero knowledge arguments in a simulated
slot, the verifier V ∗ sends a hash function h and the prover sends z = Com(h(Π)) where
Π is a program which can compute the forthcoming verifier challenge string r (with the
appropriate input and Oracle calls as described in section 3.3). Hence we have that the
trapdoor condition (h, z, r) ∈ Λ in the associated universal argument is true (even though
the universal argument is being executed using a witness to the statement x ∈ L at this
point).

Experiment H4. This experiment is identical to the previous one except that now Sim
starts using a witness for the trapdoor condition (h, z, r) ∈ Λ to complete the universal
arguments in each of the simulated slots.

The indistinguishability of this hybrid from the previous one relies on the adversary
being relaxed concurrent. First we observe that since the randomness required to execute
these universal arguments is not committed to as part of any of the programs Π, they are
essentially being executed with “off the record” randomness. Secondly, since the adversary
is relaxed concurrent, it follows that even in the presence of multiple threads, a universal
argument does not have multiple different continuations across different threads with the
same prefix. That is, if it thread with a partially executed universal argument gets “forked

26

off” in multiple different threads, all of these threads will have the same continuation of this
universal argument. Hence, given a V ∗ which can distinguish between the distribution of the
view in experiment H3 from that in experiment H4, it is possible for Sim to have an external
universal argument prover and distinguish the case from when it is using a witness to x ∈ L
from the case when it is using a witness to the statement (h, z, r) ∈ Λ. Hence, the witness
indistinguishable property of the universal arguments implies the indistinguishability of the
view of V ∗ in this experiment from that in the previous one.

Note that the simulator in the experiment H4 is our actual simulator. Thus, the output
of the simulator Sim is computationally indistinguishable from the distribution of the
transcript of a real interaction. Aside from showing that the simulation in polynomial-time
(shown in the next subsection), this completes our proof. �

D The Running Time of Our Simulation

In this section, we analyze the running time of our simulator Sim and prove that it is
polynomial in the security parameter n assuming the running time of V ∗ is polynomial.
It is easy to see that for Sim, computing the next message takes polynomial time for all
messages other than those belonging to the universal argument of a simulated non black-box
zero-knowledge argument. Let nc1 denote the bound on the time taken by the simulator
to compute the next such prover message (i.e, a prover message not part of a universal
argument of a simulated non black box zero knowledge argument). Now consider messages
of a “simulated universal argument” (i.e, universal argument of a simulated non black
box zero knowledge argument). To execute this universal argument, the simulator uses
a witness to the statement (h, z, r) ∈ Λ. Observe that verifying this statement given the
witness (which constitutes of the committed program Π, strings (y1, y2) and the opening of
the commitment z) requires running the program Π to regenerate the protocol transcript
between the messages z and r. Lets consider the time taken to compute all prover messages
between z and r. This time is clearly O(mn2 · nc1) since there can only be O(mn2) such
messages between z and r. All the prover messages belonging to a simulated slot are given
as input as part of string y1 (and only need to be “read” rather than computed). Again, the
time taken to “read” such a message is also bounded by nc1 . Hence, overall the time taken
to generate such prover messages between z and r is O(mn2 · nc1). If the running time of
the verifier’s next message function is bounded by nc2 , it follows that Π can regenerate the
transcript between z and r in time O(mn2 ·nc1+c2). In other words, the theorem statement
(h, z, r) ∈ Λ can be verified in time O(mn2 · nc1+c2). Then by the properties of universal
arguments [BG02], it can be shown that the time taken to execute a simulated universal
argument is bounded by p(mn2 · nc1+c2) where p is a polynomial.

Hence, we conclude that Sim takes polynomial time to compute each next outgoing
message to V ∗ . In other words, each query from Sim to V ∗ (where a query is defined to
be one round of communication between Sim and V ∗ : computing the next prover message
and the verifier’s reply) takes polynomial time. All that remains to be shown now is that
Sim makes only a polynomial number of queries to V ∗ .

To bound the number of queries Sim makes to V ∗ , we consider the recursive execution
tree (of constant depth) resulting out of Sim rewinding V ∗ . Each call to the function
SOLVE(·, ·, ·, ·, ·) will represent one node in the execution tree. The nodes resulting from

27

all further recursive calls to SOLVE will be treated as children of this node. Thus, the root
node (at depth 0) is the call SOLVE(x, 0, ·, ·, ·) made by Sim(x, z). This call results in the
main thread while recursive calls give rise to the look ahead threads.

Now consider the transcript generated by a function call representing a node at depth
` (excluding the transcripts generated by any further recursive calls). The number of new
slots in this transcript is bounded by m · 2n2 (in fact m·2n2

n`). Now, each of these slots may
have up to n look ahead threads resulting in a total of up to 2mn3 children for this node.
Hence, the execution tree is a tree of depth up to d and degree up to 2mn3. Hence, the total
number of nodes is bounded by (2mn3)d+1. The transcript of each node contains O(2mn2)
queries. Hence, the total number of queries Sim makes to V ∗ is O((2mn3)d+2) which is a
polynomial (since d is a constant). This concludes our analysis.

E Hybrid Soundness of our Construction

In this section, we first prove that our protocol is hybrid sound (i.e hs, see Definition 8). We
then apply our hs-rs transformation to obtain a resettably sound protocol (which is a still
relaxed concurrent zero knowledge). As a first step, we analyze the (standalone) soundness
of our new non black box zero knowledge argument system.

Lemma 2 The zero knowledge argument system described in Figure 1 is computationally
sound in the standalone setting.

Proof. Recall that in the protocol, after receiving h from the verifier, the (possibly
malicious)- prover sends z = Com(h(Π)) where Π could be any arbitrary program. We first
analyze the probability of such a program being able to output the verifier random string
r (∈R {0, 1}n4

) given the input y1 ∈ {0, 1}≤n3
and access to the oracle queries which are

answered using y2 ∈ {0, 1}≤nlog log n
as described in the specification of language Λ. Now

when Π is executed, there are a number of possibilities of the output depending upon what
the input y1 is and how the oracle queries are answered. Since Π only makes queries of the
form trap expecting (s, r) in return with trap = Com(s; r), by the unique opening property
of the commitment scheme Com (See Appendix A.1), the answer to the query is information
theoretically fixed given the query itself. Hence the input y1 alone information theoretically
determines the output of Π. Since y1 ∈ {0, 1}n3

, there are a total of 2n3
possible outputs

of Π. Denote by S the set of these possible outputs. Now the probability of a string
r ∈R {0, 1}n4

being an element of this set is bounded by 2n4−n3
which is negligible in n.

The above argument still does not imply that (h, z, r) /∈ Λ since z(= Com(h(Π))) does not
information theoretically fix the program Π.

The rest of our soundness proof is along the lines of the one in [Bar01]. Assume x′ /∈ L′

and a malicious prover P ∗ is still able to successfully complete the protocol such that a
honest verifier V outputs accept with a noticeable probability ε. We can assume P ∗ is
deterministic without loss of generality. Call the first verifier message h to be the prefix for
the rest of the protocol. Now it has to be the case that for atleast a fraction ε

2 of the prefixes,
the probability (over rest of the verifier random coins) that P ∗ will succeed is atleast ε

2 .
We call such prefixes good. Now the verifier executes the protocol with P ∗ and invokes
the weak knowledge extractor associated with the universal argument system [BG02]. The

28

probability (over all verifier random coins) of the prefix being good and the extractor
succeeding given that the prefix is good is atleast ε

2 · p(ε
2) where p is a polynomial (recall

that the probability of success of the extractor is polynomially related to the probability
of success of the prover). Now if the extractor succeed and extracted a program (say Π1),
the verifier restarts the execution, sends the same first message h and receiving the same
z = Com(h(Π1)) and continues from there on with independent random coins and running
the knowledge extractor (the verifier in particular chooses an independent random string
r ∈R {0, 1}n4

). As argued in the previous section, if SΠ1 is the set of all possible outputs of
Π1, the probability that r ∈ SΠ1 is negligible. If the extraction succeeds again, the verifier
has obtained another program Π2. As argued before, except with negligible probability,
Π1 could not have predicted r and hence Π1 6= Π2. However since h(Π1) = h(Π2), we
have obtained a collision in the hash function. The probability of this event COLL can be
computed as follows:

Pr[Coll] ≥ Pr[The prefix h is good] · Pr[Extractor succeeds in two independent executions with prefix h]
−Pr[Π1 = Π2]

≥ ε

2
·
(
p
(ε

2
)2)− negl(n)

which is still noticeable. This violates the collision resistance property of the function
family H. Hence the lemma follows. �

Since our argument system is constant round and public coin in addition, the application
of the BGGL transformation (proposition 3.5 of [BGGL01]) results in a resettably sound
argument system. The hybrid soundness of our construction will crucially depend upon the
resettable soundness of our non black box zero knowledge argument system.

Theorem 5 The construction presented in Section 2 is hybrid sound.

Proof. We first show that our protocol is a verifier admissible proof system. We divide
the messages of the prover into main and authenticator messages naturally as follows. The
first prover message (i.e the commitment to the challenges) is considered to be a main
(and the determining) message. All the prover messages of the (resettable sound) non
black box zero knowledge argument system are considered to be authenticator messages
for the associated challenge which is considered to be a main message. The final rZAP is
regarded as authenticator message for the (implicit message) “x ∈ L”. Each incarnation of
the verifier V is divided into (V1, V2). We view the random tape of V1 as a tuple ω

(1)
1 , ω

(2)
1

where ω
(1)
1 is used for emulating the verifier of the non black box zero knowledge argument

system whenever required while ω
(2)
1 is used for emulating the verifier of the rZAP system.

V1 simply forwards the first main message received from P to V2 who sends back the reply.
Now in each slot, V1 receives the challenge string and acts as the verifier of the non black box
zero knowledge argument system on its own (using random tape ω

(1)
1) to verify correctness

of the challenge string. If the argument completes successfully, i.e V1 accepts, it forwards
the challenge string to V2 who sends back the response. Finally when P sends the final

29

rZAP, V1 verifies it on its own (using randomness ω
(2)
1) and forwards the message “x ∈ L”

by convention. V2 outputs accept if it receives such a message from V1.
To summarize, P sends three types of main messages: the determining message (i.e,

the commitment to the challenges), the challenges themselves in various slots, and the final
(implicit) message “x ∈ L”. Now consider an arbitrary resetting PPT prover P ∗. For the
same determining message M , it follows from the soundness of our non black box zero
knowledge that except with negligible probability, P ∗ is unable to generate two different
challenge strings in a slot such that V1 accepts both. This is because since the first main
message contains a perfectly binding commitment to the challenge strings, doing so would
amount to proving a false theorem (and in particular, given such a P ∗ one could construct a
resetting prover for a resettable sound zero knowledge argument system which can prove an
adaptively chosen false theorem to an honest verifier with noticeable probability). Finally,
we observe that there is only one possibility for the final main message. Hence it follows
that our protocol is a verifiable admissible proof system.

All that remains to be shown now is that our protocol is sound in the hybrid model.
This is shown by focusing on the view of one incarnation of V2. V2 interacts with V1 and
handles a single execution with fresh randomness without getting reset. We focus on one
such incarnation of V2 (while playing honestly in others) and, very roughly, (a) make a
look ahead thread to learn all the challenges committed by the verifier, (b) rewind back to
the point it has to generate a trapdoor string and generate a false trapdoor string (i.e a
string trap which is a commitment to 0), and, (c) still complete the Blum hamiltonian cycle
protocol since it already knows the challenges of P ∗. Now if P ∗ still manages to complete
the proof successfully, it violates the resettable soundness of the rZAP system. More details
follow.

Suppose x /∈ L and a malicious prover P ∗ still manages to complete the protocol suc-
cessfully (such that V outputs accept) in the hybrid model with a noticeable probability ε.
Since P ∗ interacts directly only with V1 which in turn interacts with V2, we view V1(P ∗) as
a single machine which interacts with V2 as described before. We can assume that V1(P ∗)
is deterministic without loss of generality. Call the first prover message M consisting of the
commitment to the challenge string to be the prefix for the rest of the protocol. Now it has
be the case that for atleast a fraction ε

2 of prefixes, the probability (over the random coins
of V2) that V1(P ∗) will succeed is atleast ε

2 . We call such prefixes good. Now, V2 executes
the protocol with V1(P ∗) honestly. The probability (over the random coins of V2) of the
prefix being good and V1(P ∗) succeeding given that the prefix is good is atleast ε2

4 . Now if
V1(P ∗) succeeded (which means that V2 learns all that challenge strings committed to), V2

restarts the execution and receives the same prefix M from V1(P ∗). V2 however generates
a false trapdoor string trap this time (i.e., trap = Com(0)). By the resettable soundness
of the non black box zero knowledge argument as before, all the challenge strings given by
V1(P ∗) in this execution would be identical to the ones in the previous execution. Hence,
V2 already has all the challenge strings of V1(P ∗). It now follows from standard techniques
that V2 can still successfully complete the Blum hamiltonian cycle protocol as executed
between V2 and V1(P ∗). Simply by relying on the computationally hiding property of the
commitment scheme, Com, it follows that V1(P ∗) would still succeed in this execution with
probability ε

2 −negl(n) if the prefix M is good. This would violate the resettable soundness
of the rZAP system (since x /∈ L and trap = Com(0)). The probability of this event VIO

30

can be computed as follows:

Pr[VIO] ≥ Pr[The prefix M is good] · Pr[V1(P ∗) succeeds in both executions with prefix M]

≥ ε2

4
·
(ε

2
− negl(n)

)

which is still noticeable. This violates the resettable soundness property of the rZAP
system. Hence the theorem follows. �

F Getting Resettably Sound Resettable Zero Knowledge

In this section, our goal is to construct a general compiler to transform any resettably sound
relaxed concurrent zero knowledge argument Σ into one that is resettably sound resettable
zero knowledge argument. Combining this with the protocol in our previous section, gives
us our main result.

As an intermediate step, we first present a compiler to transform any given resettably
sound relaxed concurrent zero knowledge protocol Σ into one that is hZK and hs (see Def-
inition 6 and Definition 8). Once we have a protocol that is both hZK and hs, we can
immediately obtain one that is rZK and rs by applying our hZK-rZK and hs-rs transfor-
mations. Given a protocol Σ, our compiler works as follows.

The common input to P and V is x supposedly in the language L ∈ NP , and a security
parameter n. The auxiliary input to P is an NP -witness w for x ∈ L. The compiled
protocol proceeds as follows:

1. The prover P generates a random string Rp (of appropriate length to be used to
emulate the verifier of a resettably sound zero knowledge argument system). P further
generates the first verifier message σp of a rZAP system and sends Com(Rp) and σp

to the verifier V .

2. The verifier V similar generates a first verifier message σv of a rZAP system. V
further generates a string trap such that trap = Com(0). V sends σv and trap to P .

3. The prover P and the verifier V now execute a protocol in which V proves to P that
the string trap is a commitment to 0 (in other words, there exists a r s.t. trap =
Com(0; r)). This protocol is a resettably sound zero knowledge argument [BGGL01]
in which P uses the random tape Rp to emulate the verifier. In addition, P sends a
rZAP along with every message of this argument proving that either:

(a) The message is “honestly computed” and is consistent with Rp. More precisely,
this message is what an honest verifier using the random tape Rp (as committed
in the first step) would have sent given the transcript of the resettably sound
zero knowledge argument so far, or,

(b) x ∈ L

31

4. Let τ denote the string consisting of the protocol transcript so far except the prover
messages of the rZAP system (i.e., the rZAPs in step 3). The verifier V chooses
a function f : {0, 1}≤poly(n) → {0, 1}≤poly(n) from an ensemble of pseudorandom
functions. All further random coins required by V in the protocol will come from
random tape f(τ).

The verifier V now generates a random string Rv (of appropriate length to emulate
the verifier in the protocol Σ). V then sends Com(Rv) and trap to P . (Sending trap is
only required for technical reasons for our hZK-rZK transformation to be applicable.)

5. The prover P and the verifier V now execute the protocol Σ in which P proves to V
that x ∈ L. In this protocol, V uses the random tape Rv to emulate the verifier. In
addition, V sends a rZAP along with every message of this argument proving that
either:

(a) The message is “honestly computed” and is consistent with Rv. More precisely,
this message is what an honest verifier using the random tape Rv (as committed
in step 4) would have sent given the transcript of the protocol Σ so far, or,

(b) the string trap is a commitment to 1. That is, there exists a r such that trap =
Com(1; r).

The verifier V outputs accept if the verifier of Σ outputs accept.

Theorem 6 Assuming that the protocol Σ is relaxed concurrent zero knowledge, the com-
piled protocol described above is hZK.

Proof. We start by proving that the compiled protocol is a prover-admissible proof system.

Lemma 3 Assuming that the protocol Σ is relaxed concurrent zero knowledge, the compiled
protocol is a prover-admissible proof system as per Definition 5.

Proof. We partition the prover P into (P1, P2) as follows. The first main verifier message
(i.e., the determining message) is the one containing Com(Rv) (See step 4 of our protocol).
All verifier messages before the determining message are considered to be authenticator
messages to be handled by P1. In case the resettably sound zero knowledge argument is
successful in step 3, P1 forwards the first round main message (Com(Rv), trap) to P2. Next,
during the execution of the protocol, all rZAP messages are considered to be authenticator
messages associated with a verifier message of Σ which is considered to be a main message
itself. P1 verifies the rZAP on its own and if successful, forwards the associated verifier
message of protocol Σ to P2. We view the random tape of P1 as a tuple (ω(1)

1 , ω
(2)
1 , ω

(3)
1 , ω

(4)
1).

ω
(1)
1 is used to emulate the prover of the rZAP system in step 3, ω

(2)
1 is identical to Rp and

used when emulating the verifier of the resettably sound zero knowledge argument system
in step 3, ω

(3)
1 is used to emulate the verifier of the rZAP in step 5 and ω

(4)
1 is used for the

remainder of the tasks.
We prove that our protocol is a prover-admissible proof system by contradiction. Sup-

pose that a resetting adversarial verifier V ∗ can interact with (an incarnation of) the prover
P = (P1, P2) and with a noticeable probability ε produces two different main messages, both

32

accepted by P1, for some round ` in two different interactions with P with the same de-
termining message (trap, Com(Rv)). We say, as a short hand, that V ∗ violates property
of the prover-admissible proof system with probability ε. We consider the following hybrid
experiment:

Experiment H1. This experiment is identical to the actual proof system as described
above with the exception that P2 uses a witness to the statement x ∈ L to complete all the
rZAPs in step 3. By the resettable witness indistinguishability of the rZAP system, it follows
that V ∗ still violates property 3 of the prover-admissible proof system with probability
ε− negl1(n).

Experiment H2. This experiment is identical to the previous one with the exception that
P2 starts sending Com(0) as opposed to Com(Rp) in step 1. This in particular means that,
P2 is using “off the record” randomness to emulate the verifier of the resettably sound zero
knowledge argument system in step 3. Since the message sent by P2 to V ∗ in the first step
is always fixed (across resets), from the computation hiding property of the commitment
scheme Com it follows that V ∗ still violates property 3 of the prover-admissible proof system
with probability ε− negl2(n).

It can be shown that in experiment H2, the string trap is a commitment to 0 except with
negligible probability. This directly follows from the resettable soundness of the argument
system being used in step 3. Now, the determining message of V ∗ contains Com(Rv) such
that V ∗ has to give a rZAP with every following main message (i.e., a verifier message of
Σ) essentially proving its consistency with Rp (since trap is a commitment to 0). Thus,
violating property 3 (of the prover-admissible proof system) in our protocol amounts to
violating the resettable soundness of the rZAP system. This contradicts the fact that ε is
noticeable. �

All that remains to be shown now is that our protocol is zero knowledge in the hybrid
model. To prove that, we focus on the view of all incarnations of P2. Let M denote the
machine resulting from the combination of all incarnations of P2 (i.e., M simply has the
code of each incarnation of P2 and handles all their interactions). M interacts with various
incarnations of P1 and handles multiple concurrent executions each with fresh randomness
(without getting reset). Since V ∗ interacts directly only with an incarnation of P1 which in
turn interacts with the corresponding incarnation of P2, we view P1(V ∗) as a single machine
constructed using the code of V ∗ and each incarnation of P1. This machine in turn interacts
withM as described before.

To show zero knowledge, we construct a simulator which interacts with the machine
P1(V ∗). This simulator S is essentially identical to the relaxed concurrent zero knowl-
edge simulator SΣ of protocol Σ. Note that the first message of P1(V ∗) in a session is
(Com(Rv), trap) which can be seen as P1(V ∗) writing on a special tape before beginning
the session. Further, P1(V ∗) just serves as the verifier of the protocol Σ (after sending the
first message). From the resettable soundness of the rZAP system, except with negligible
probability, all messages of P1(V ∗) in Σ are consistent with Rv (where Com(Rv) appears
on the special tape). Hence during the entire simulation, the view of S is statistically in-
distinguishable from the view when S was interacting with a relaxed concurrent adversary
A. Now recall that for relaxed concurrent adversary A, the advantage of a distinguisher in

33

distinguishing between the output of SΣ and the output of A in a real interaction withM
is negligible. Thus it follows that such a statement holds even when A is instantiated with
P1(V ∗). This concludes the proof that our protocol is hZK. �

Theorem 7 Assuming that the protocol Σ is resettably sound, the compiled protocol is hs
(i.e., hybrid sound).

Proof. We start by showing that our protocol is a verifiable admissible proof system. We
divide the verifier V into V1 and V2 as follows. The first message sent by P ∗ (containing
a commitment to Rp) is considered to be the determining message. V2 sends the reply to
this message as in step 2. In step 3, each verifier message of P ∗ contains a verifier message
of a resettably sound zero knowledge argument system which is considered to be a main
message. The accompanying rZAP is considered to be an authenticator message handled
by V1 which verifies it and forwards the associated main message to V2 (which then sends
the next prover message of the resettably sound zero knowledge argument system). Finally,
step 4 and 5 are handled by V1 alone which sends a message “x ∈ L” by convention to V2

if P ∗ completes Σ successfully. In other words, all the messages of P ∗ in step 4 and 5 are
authenticator messages for the (implicit) main message “x ∈ L”. We view the random tape
of V1 as a tuple (ω(1)

1 , ω
(2)
1) where ω

(1)
1 is used to emulate the verifier of the rZAP system (in

step 3) while ω
(2)
1 is identical to the pseudorandom function f used to produce the random

tape used by V1 in step 4 and 5. We define two parts of V1: V part1
1 and V part2

1 . V part1
1 has

randomness ω
(1)
1 and executes step 1 to 3 of our protocol. V part2

1 has the description of f
and executes step 4 and 5.

To see that our protocol is a verifiable admissible proof system, the first message of
P ∗ contains a commitment to Rp. In step 3, all main messages accompanied by a rZAP
proving their consistency with Rp. Finally, there is only one possible main message in step
4 and 5 (i.e., x ∈ L). Hence from the resettable soundness of the rZAP system, it follows
that our protocol is a verifiable admissible proof system.

All that remains to be shown now is that our protocol is sound in the hybrid model.
To prove this, we focus on one incarnation I of V = (V1, V2). We first define machines
M1(P ∗) and M2 as follows. M1(P ∗) is made of a combination of P ∗, all incarnations of V
except I and V part1

1 of incarnation I. Machine M2 is made of a combination of V part2
1 and

V2 of incarnation I. In other words, M1(P ∗) interacts with P ∗ and honestly handles all
the messages of interaction with it internally which either V part1

1 of incarnation I or any
verifier V of any of the incarnation are supposed to handle. For the remaining messages of
incarnation I, M1(P ∗) interacts with M2 (which is capable of executing V part2

1 and V2 of
incarnation I).

Suppose x /∈ L and the malicious prover P ∗ still manages to complete the protocol suc-
cessfully with incarnation of verifier V = (V part1

1 , V part2
1 , V2) with a noticeable probability

ε in the hybrid model. We will focus on the view of M2. Now consider the following hybrid
experiments:

Experiment H1. This experiment is identical to our protocol (as described in the termi-
nology of M1(P ∗) and M2 as above) except for the following. The machine M2, to emulate
V part2

1 , uses a separate random tape R as opposed to using the output of f applied on τ .

34

Note that τ is exactly the transcript of interaction between M1(P ∗) and V2 which is en-
capsulated inside M2 (V2 gets the last “x ∈ L” message from V part2

1 rather than M1(P ∗)).
Observe that this interaction between M1(P ∗) and V2 would have concluded by the time
V part2

1 starts any interaction with M1(P ∗).
Now recall that the random tape used by V2 is independent of any random tape used by

any incarnation of V2 encapsulated in machine M1(P ∗). From this it can be shown that with
high probability, the string τ is different from any string τ ′ on which f(τ ′) is evaluated by
any other incarnation of V2 encapsulated in M1(P ∗). Thus, just by the pseudorandomness
property of the function f , the view of P ∗ (inside M1(P ∗)) in this experiment remains
indistinguishable from the one in the real protocol. This in particular means that V2

(inside M2) still outputs accept with probability at least ε− negl1(n).
Observe that at this point both V2 and V part2

1 are using random coins independent of
any random coins used by M1(P ∗). V2 cannot be reset by M1(P ∗) while V part2

1 might
be. Further, V2 completes step 3 of the protocol before V part2

1 is invoked by M2 for any
interaction.

Experiment H2. This experiment is identical to the previous one except for the following.
V2 sets string trap = Com(1) in step 2. Furthermore, V2 runs the simulator Srs associated
with the resettably sound zero knowledge argument system to complete step 3. Note that
it is sufficient for Srs to only work in the standalone setting. By the computationally hiding
property of commitment scheme Com and the indistinguishability of the view generated
by Srs from when this argument was honestly executed, it follows that the view of M1(P ∗)
in this experiment is indistinguishable from the one in the previous experiment. This in
particular means that V2 still outputs accept with probability at least ε− negl2(n).

Experiment H3. This experiment is identical to the previous one except for the following.
V part2

1 , instead of sending Com(Rv) in its first outgoing message, sends Com(0). Further,
V part2

1 uses the trapdoor condition “string trap is a commitment to 1” to compute the
rZAP it is required to send along with every verifier message of the protocol Σ (a witness
for the statement “trap is a commitment to 1” is passed from V2 on to V part2

1 by machine
M2). Note that the commitment in the first outgoing message of V part2

1 (i.e., Com(Rv) in
the previous experiment, Com(0) in this one) is identical across all sessions resulting from
the resets. Thus the computational hiding property of the commitment scheme Com along
with the resettable witness indistinguishability of rZAP system implies that the view of
M1(P ∗) in this experiment is indistinguishable from the one in the previous experiment.
This in particular means that V2 still outputs accept with probability at least ε− negl3(n).

Note that in experiment H3, V part2
1 is using “off the record” random tape Rv to emulate

the verifier of protocol Σ. Furthermore, for V2 to output accept, V part2
1 should accept in Σ

(and send the message “x ∈ L” to V2). Hence the fact that ε is noticeable contradicts the
resettable soundness of the protocol Σ. Thus, the theorem follows. �

35

