Efficient Protocols for Set Intersection and Pattern Matching with
Security Against Malicious and Covert Adversaries*

Carmit Hazay' Yehuda Lindellf

September 14, 2008

Abstract

In this paper we construct efficient secure protocols for set intersection and pattern match-
ing. Our protocols for securely computing the set intersection functionality are based on secure
pseudorandom function evaluations, in contrast to previous protocols that are based on polyno-
mials. In addition to the above, we also use secure pseudorandom function evaluation in order to
achieve secure pattern matching. In this case, we utilize specific properties of the Naor-Reingold
pseudorandom function in order to achieve high efficiency.

Our results are presented in two adversary models. Our protocol for secure pattern matching
and one of our protocols for set intersection achieve security against malicious adversaries under
a relaxed definition where one corruption case is simulatable and for the other only privacy
(formalized through indistinguishability) is guaranteed. We also present a protocol for set
intersection that is fully simulatable in the model of covert adversaries. Loosely speaking, this
means that a malicious adversary can cheat, but will then be caught with good probability.

1 Introduction

In the setting of secure two-party computation, two parties wish to jointly compute some function
of their private inputs while preserving a number of security properties. In particular, the parties
wish to ensure that nothing is revealed beyond the output (privacy), that the output is computed
according to the specified function (correctness) and more. The standard definition today (cf.
[6] following [15, 5, 22]) formalizes security by comparing a real protocol execution to an “ideal
execution” where an incorruptible trusted party helps the parties compute the function. Specifically,
in the ideal world the parties just send their inputs over perfectly secure communication lines to
the trusted party, who computes the function honestly and sends the output to the parties. A
real protocol in which parties interact arbitrarily is said to be secure if any adversarial attack on
a real protocol can essentially be carried out also in the ideal world; of course, in the ideal world
the adversary can do almost nothing and this guarantees that the same is true also in the real
world. This definition of security is often called simulation-based because security is demonstrated
by showing that a real protocol execution can be “simulated” in the ideal world.

This setting has been widely studied, and it has been shown that any efficient two-party func-
tionality can be securely computed [28, 14, 13]. These feasibility results demonstrate the wide

*An extended abstract of this paper appeared in TCC 2008. This research was supported by an Eshkol scholarship
and Infrastructures grant from the Israel Ministry of Science and Technology.
TDept. of Computer Science, Bar-Ilan University, Israel. Email: {harelc,lindell}@cs.biu.ac.il.

applicability of secure computation, in principle. However, they fall short of what is needed in
implementations because they are far from efficient enough to be used in practice (with a few
exceptions). This is not surprising because the results are general and do not utilize any special
properties of the specific problem being solved. The focus of this paper is the development of
efficient protocols for specific problems of interest. Constructing such protocols is crucial if secure
computation is ever to be used in practice.

Relaxed notions of security. Recently, the field of data mining has shown great interest in
secure computation for the purpose of “privacy-preserving data mining” [21].! However, most of
the protocols that have been constructed with this aim in mind are only secure in the presence of
semi-honest adversaries who follow the protocol specification (but may try to examine the messages
they receive to learn more than they should). Unfortunately, in many cases, this level of security
is not sufficient. Rather, adversarial parties are willing to behave maliciously — meaning that they
may divert arbitrarily from the protocol specification — in their aim to cheat. It seems that it is
hard to obtain highly efficient protocols that are secure in the presence of malicious adversaries
under the standard simulation-based definitions, and two decades after the foundational feasibility
results of [14] we know very few non-trivial secure computation problems that can be solved with
high efficiency in this model. In this paper, we consider two different relaxations in order to achieve
higher efficiency:

o One-sided simulatability: According to this notion of security, full simulation is provided for
one of the corruption cases, while only privacy (via computational indistinguishability) is
guaranteed for the other corruption case. This notion of security is useful when considering
functionalities for which only one party receives output. In this case, privacy is guaranteed
when the party not receiving output is corrupted (and this is formalized by saying that
the party cannot distinguish between different inputs used by the other party), whereas full
simulation via the ideal/real paradigm is guaranteed when the party receiving output is
corrupted. This notion of security has been considered in the past; see [24, 10] for example.

o Security in the presence of covert adversaries: This notion of security provides the following
guarantee. A malicious adversary may be able to cheat (e.g., learn the other party’s private
input). However, if it follows such a strategy, it is guaranteed to be caught with probability at
least €, where € is called the “deterrence factor” (in this paper, we use e = 1/2). This definition
is formalized within the ideal/real simulation paradigm and so has all the advantages offered
by it. This definition was recently introduced in [2].

We stress that both notions are relaxations and are not necessarily sufficient for all applications.
For example, security in the presence of covert adversaries would not suffice when the computation
relates to highly sensitive data or when there are no repercussions to a party being caught cheating.
However, it is highly suitable in the case that parties may suffer penalties if caught cheating (in
addition, a potentially useful connection to the rational adversary model was pointed out by [17]).
Likewise, the guarantee of privacy alone (as in one-sided simulatability for one of the corruption
cases) is sometimes not sufficient. For example, the properties of independence of inputs and

!There are two main directions of research in privacy-preserving data mining. One area considers the problem
of constructing secure protocols for distributed data mining, where security is in the sense of secure multiparty
computation. The other area focuses on data privacy and uses techniques such as data perturbation [3], and is not
related to our work here.

correctness are not achieved and they are sometimes needed. In order to see this, consider secure
protocols for elections and auctions. Correctness is clearly crucial in elections to ensure that the
candidate with the most votes is elected, and independence of inputs is needed in auctions in order
to prevent an adversary from always winning by giving a bid that is only $1 higher than the other
bids. Despite the above, in many cases, such relaxations are acceptable. Furthermore, using these
relaxations, we are able to construct protocols that are much more efficient than anything known
that achieves full security in the presence of malicious adversaries, where security is formalized via
the ideal/real simulation paradigm.

Secure set intersection. The bulk of this paper is focused on solving the set intersection problem.
In this problem, two parties with private sets wish to learn the intersection of their sets without
revealing anything else. There are many cases where such a computation is useful. For example,
two health insurance companies may wish to ensure that no one has taken out the same insurance
with both of them (if this is forbidden), or the government may wish to ensure that no one receiving
social welfare is currently employed and paying income tax. By running secure protocols for these
tasks, sensitive information about law-abiding citizens is not unnecessarily compromised.

We present two protocols for this task. The first achieves security in the presence of malicious
adversaries with one-sided simulatability while the second is secure in the presence of covert ad-
versaries. Both protocols take a novel approach. Specifically, instead of using protocols for secure
polynomial evaluation [23], our protocols are based on running secure subprotocols for pseudo-
random function evaluation. In addition, we use only standard assumptions (e.g., the decisional
Diffie-Hellman assumption) and do not resort to random oracles.

In order to get a feel of how our protocol works we sketch the general idea underlying it. The
parties run many executions of a protocol for securely computing a pseudorandom function, where
one party inputs the key to the pseudorandom function and the other inputs the elements of its
set. Denoting the pseudorandom function by F', the input of party P; by X and the input of
party P> by Y, we have that at the end of this stage party P holds the set {Fj(y)}yecy while
P; has learned nothing. Then, P; just needs to locally compute the set {Fj(x)},ex and send
it to P,. By comparing which elements appear in both sets, P» can learn the intersection (but
nothing more). This is a completely different approach to that taken until now that has defined
polynomials based on the sets and used secure polynomial evaluations to learn the intersection.
We stress that the “polynomial approach” has only been used successfully to achieve security in
the presence of semi-honest adversaries [18, 11|, or together with random oracles when malicious
adversaries are considered [11]. (We exclude the use of techniques that use general zero-knowledge
proofs because these are not efficient.) We additionally note that the usage of polynomials requires
O(|X| x |Y|) exponentiations without the ability to reduce it. Whereas in our case, the number of
exponentiations depends linearly on the length of the inputs and the complexity of the oblivious
PRF evaluation, which yields a construction with an improved efficiency.

Our protocols deal with the two-party set intersection problem. The multiparty set intersection
problem is also of interest. We remark that our protocol does not seem to naturally extend to the
multiparty setting.

Secure pattern matching. In addition to the above, we present an efficient secure protocol for
solving the basic problem of pattern matching [4, 19]. In this problem, one party holds a text T and
the other a pattern p. The aim is for the party holding the pattern to learn all the locations of the
pattern in the text (and there may be many) while the other learns nothing about the pattern. As
with our protocols for secure set intersection, the use of secure pseudorandom function evaluation

lies at the heart of our solution. However, here we also utilize specific properties of the Naor-
Reingold pseudorandom function [25], enabling us to obtain a simple protocol that is significantly
more efficient than that obtained by running known general protocols. Our protocol is secure in
the presence of malicious adversaries with one-sided simulatability, and is the first to address this
specific problem. Our protocol does not extend to security in the presence of covert adversaries;
see discussion at the end of Section 4.

Related work. The problem of secure set intersection was studied in [11] who presented protocols
for both the semi-honest and malicious cases. However, their protocol for the case of malicious
adversaries assumes a random oracle. This problem was also studied in [18] whose main focus was
the semi-honest model; their protocols for the malicious case use multiple zero-knowledge proofs
for proving correct behavior and as such are not very efficient. As we have mentioned, both of the
above works use oblivious polynomial evaluation as the basic building block in their solutions.

2 Definitions and Tools

2.1 Definitions

We denote the security parameter by n. A function u(-) is negligible in n (or just negligible) if for
every polynomial p(-) there exists a value N such that for all n > N it holds that u(n) < Wln)'
Let X ={X(a,n)},enacio1y @and Y ={Y(a,n)},cn aeq0,1)+ Pe distribution ensembles. Then, we
say that X and Y are computationally indistinguishable, denoted X = Y, if for every non-uniform
distinguisher D there exists a negligible function yu(-) such that for every a € {0,1}*,

| PrD(X(a,n)) = 1] = Pr[D(Y(a,n)) = 1]| < u(n)

We adopt the convention whereby a machine is said to run in polynomial-time if its number of steps
is polynomial in its security parameter alone. We use the shorthand PPT to denote probabilistic
polynomial-time. Two basic building blocks that we utilize in our constructions are ensembles of
pseudorandom functions, denoted by Fprr, and ensembles of pseudorandom permutations, denoted
by Fpgrp, as defined in [12]. We also denote the ensemble of truly random functions by Hg,,. and
the ensemble of truly random permutations by Hp,p,.

2.1.1 Security in the Presence of Malicious Adversaries

In this section we briefly present the standard definition for secure multiparty computation and
refer to [13, Chapter 7] for more details and motivating discussion.

Two-party computation. A two-party protocol problem is cast by specifying a random process
that maps pairs of inputs to pairs of outputs (one for each party). We refer to such a process as a
functionality and denote it f : {0,1}* x {0,1}* — {0,1}* x {0,1}*, where f = (f1, f2). That is, for
every pair of inputs (x,y), the output-vector is a random variable (fi(z,y), fo(z,y) ranging over
pairs of strings where P; receives fi(z,y) and Py receives fa(x,y). We sometimes denote such a
functionality by (z,y) — (fi(x,y), f2(x,y)). Thus, for example, the oblivious transfer functionality
is denoted by ((zo,x1),0) — (A, zs), where (x,z1) is the first party’s input, o is the second party’s
input, and A denotes the empty string (meaning that the first party has no output).

Adversarial behavior. Loosely speaking, the aim of a secure multiparty protocol is to protect
honest parties against dishonest behavior by other parties. In this section, we outline the defini-
tion for malicious adversaries who control some subset of the parties and may instruct them to
arbitrarily deviate from the specified protocol. We also consider static corruptions, meaning that
the set of corrupted parties is fixed at the onset.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an
adversary can do in a real protocol execution to what it can do in an ideal scenario that is secure by
definition. This is formalized by considering an ideal computation involving an incorruptible trusted
third party to whom the parties send their inputs. The trusted party computes the functionality on
the inputs and returns to each party its respective output. Loosely speaking, a protocol is secure if
any adversary interacting in the real protocol (where no trusted third party exists) can do no more
harm than if it was involved in the above-described ideal computation. One technical detail that
arises when considering the setting of no honest majority is that it is impossible to achieve fairness
or guaranteed output delivery [7]. That is, it is possible for the adversary to prevent the honest
party from receiving outputs. Furthermore, it may even be possible for the adversary to receive
output while the honest party does not. We consider malicious adversaries and static corruptions
in this paper.

Execution in the ideal model. In an ideal execution, the parties send their inputs to the trusted
party who computes the output. An honest party just sends the input that it received whereas a
corrupted party can replace its input with any other value of the same length. Since we do not
consider fairness, the trusted party first sends the output of the corrupted parties to the adversary,
and the adversary then decides whether the honest parties receive their (correct) outputs or an
abort symbol L. Let f be a two-party functionality where f = (fi, f2), let A be a non-uniform
probabilistic polynomial-time machine, and let I C [2] be the set of corrupted parties (either Pj is
corrupted or P is corrupted or neither). Then, the ideal execution of f on inputs (z,y), auxiliary
input z to A and security parameter n, denoted IDEALy 4) 1(¥,y,n), is defined as the output pair
of the honest party and the adversary A from the above ideal execution.

Execution in the real model. In the real model there is no trusted third party and the parties
interact directly. The adversary A sends all messages in place of the the corrupted party, and may
follow an arbitrary polynomial-time strategy. In contrast, the honest parties follow the instructions
of the specified protocol 7.

Let f be as above and let 7 be a two-party protocol for computing f. Furthermore, let A be a
non-uniform probabilistic polynomial-time machine and let I be the set of corrupted parties. Then,
the real execution of 7 on inputs (z,y), auxiliary input z to A and security parameter n, denoted
REAL; A(»),1(,y,n), is defined as the output vector of the honest parties and the adversary A from
the real execution of 7.

Security as emulation of a real execution in the ideal model. Having defined the ideal and
real models, we can now define security of protocols. Loosely speaking, the definition asserts that a
secure party protocol (in the real model) emulates the ideal model (in which a trusted party exists).
This is formulated by saying that adversaries in the ideal model are able to simulate executions of
the real-model protocol.

Definition 2.1 Let f and 7 be as above. Protocol w is said to securely compute f with abort in the
presence of malicious adversaries if for every non-uniform probabilistic polynomial-time adversary

A for the real model, there exists a non-uniform probabilistic polynomial-time adversary S for the
ideal model, such that for every I C [2],

<
{IDEALLS(Z),I(J;? Y, n) }z,y,ze{o,l}*,neﬂ\f = {REALT(7A(Z),I($7 Y, n) }x,y,ze{o,l}*,nE]N

where |z| = |y|.

2.1.2 One Sided Simulation for Two-Party Protocols

Two of our protocols achieve a level of security that we call one-sided simulation. In these protocols,
P; receives output while P; should learn nothing. In one-sided simulation, full simulation is possible
when P is corrupted. However, when P; is corrupted we only guarantee privacy, meaning that it
learns nothing whatsoever about P»’s input (this is straightforward to formalize because P; receives
no output). This is a relaxed level of security and does not achieve everything we want; for example,
independence of inputs and correctness are not guaranteed. Nevertheless, for this level of security
we are able to construct highly efficient protocols that are secure in the presence of malicious
adversaries. This notion of security has been considered in the past; see [24] for example. Formally,
let REAL, 4(.),i(%,y,n) denote the output of the honest party and the adversary A (controlling party
P;) after a real execution of protocol m, where P; has input x, P» has input y, A has auxiliary input
z, and the security parameter is n. Let IDEALy (. ;(7,y,n) be the analogous distribution in an
ideal execution with a trusted party who computes f for the parties. Finally, let VIEWﬁ A(z)’i(l', Yy, m)
denote the view of the adversary after a real execution of m as above. Then, we have the following
definition:

Definition 2.2 Let f be a functionality where only Ps receives output. We say that a protocol ®
securely computes f with one-sided simulation if the following holds:

1. For every non-uniform PPT adversary A controlling Py in the real model, there exists a non-
uniform PPT adversary S for the ideal model, such that

£
{REALF,A(Z),Q(:E? Y, n) }x,y,ze{ﬂ,l}*,nGN = {IDEALf,S(z),Q(za Y, n) }x,y,ze{o,l}*,neN
where |z| = |y|.

2. For every non-uniform PPT adversary A controlling Py, and every polynomial p(-)

[llo

{vEw @,y om) | (1)

8 }
VIEW xT n
{ ORI 2,y 2€{0,1}* nEN

x7y7ylzz€{071}*,'n€N
where |z| = |y| = |v/].

Note that the ensembles in Eq. (1) are indexed by two different inputs y and 3’ for P,. The
requirement is that A cannot distinguish between the case that P, used the first input y or the
second input y'.

2.1.3 Security in the Presence of Covert Adversaries

Here we consider an adversary that may deviate from the protocol specification in an attempt
to cheat, and as such is malicious. However, if it follows a strategy which enables it to achieve
something that is not possible in the ideal model (like learning the honest party’s input), then its
cheating is guaranteed to be detected by the honest party with probability at least ¢, where € is a
deterrent parameter. This definition is formalized in three ways in [2]; we consider their strongest
definition here. In this definition, the ideal model is modified so that the adversary may send a
special cheat message to the trusted party. In such a case, the trusted party tosses coins so that
with probability € the adversary is caught and a message corrupted is sent to the honest party
(indicating that the other party attempted to cheat). However, with probability 1 — €, the ideal-
model adversary is allowed to cheat and so the trusted party sends it the honest party’s full input
and also allows it to set the output of the honest party. The output distribution of an execution of
this modified ideal model for a given € and parameters as above is denoted IDEALSC? S(Z)ﬂ.(a:, Y,).
In more details, the ideal execution with € proceeds as follows:

Inputs: P; receives input z and P» receives input y where |z| = |y|. The adversary receives an
auxiliary-input z.

Send inputs to trusted party: The honest party sends its received input to the trusted party
and the corrupted party, controlled by A, may either send its received input or send some
other input of the same length. Denote the pair of inputs sent to the trusted party by (wy, ws).

Abort options: If a corrupted party P; sends w; = abort; to the trusted party as its input, then
the trusted party sends abort; to the honest party and halts. If a corrupted party P; sends
w; = corrupted, to the trusted party as its input, then the trusted party sends corrupted, to
the honest party and halts.

Attempted cheat option: If a corrupted party P; sends w; = cheat; to the trusted party as its
input, then the trusted party works as follows:

1. With probability €, the trusted party sends corrupted; to A and the honest party.

2. With probability 1 — €, the trusted party sends undetected to the adversary along with
the honest party’s input. Following this, the adversary sends the trusted party an output
value z of its choice for the honest party. Then, the trusted party sends z to the honest
party as its output.

The ideal execution then ends at this point.

If no w; equals abort;, corrupted; or cheat;, the ideal execution continues below.

Trusted party answers adversary: The trusted party computes (fi(w1,ws), fo(wi,ws)) and
sends A the output of the corrupted party (i.e., for I = {i}, the trusted party sends A
the value f;(wi,ws)).

Trusted party answers the honest party: After receiving its output, the adversary sends ei-
ther abort; for some i € I, or continue to the trusted party. If the trusted party receives
continue then it sends f;(w1,w2) to the honest party P; (j #). Otherwise, if it receives
abort;, it sends abort; to the honest party.

Outputs: The honest party always outputs the message it obtained from the trusted party. The
corrupted party outputs nothing. The adversary A outputs any arbitrary (probabilistic
polynomial-time computable) function of the initial input x; to the corrupted party, the
auxiliary input z, and the messages obtained from the trusted party.

The output of the honest parties and the adversary in an execution of the above ideal model is
denoted by IDEALSCS g) ;(x,y,n). We define:

Definition 2.3 Let f, m and € be as above. Protocol 7 is said to securely compute f in the presence
of covert adversaries with e-deterrent if for every non-uniform probabilistic polynomial-time adversary
A for the real model, there exists a non-uniform probabilistic polynomial-time adversary S for the
ideal model such that for every I C [2],

e

{IDEALSC?S(Z)J(:C, v, n)} {REALW,A(Z),I(% Y, n)}

z,y,2,€{0,1}*,nelN z,y,2,€{0,1}*,n€lN

where |z| = |y|.

The two notions of security. We remark that one-sided simulatability and security in the pres-
ence of covert adversaries are incomparable notions. On the one hand, the guarantees provided by
security under one-sided simulation cannot be breached, even by a malicious adversary. This is not
the case for security in the presence of covert adversaries where it is possible for a malicious adver-
sary to successfully cheat. On the other hand, the formalization of security for covert adversaries is
such that any deviation from what can be achieved in the ideal model is considered cheating (and
so will result in the adversary being caught with probability €). This is not the case for one-sided
simulatability where party P; may cause P, to receive an output that is not correctly computed
without ever being caught.

2.1.4 Sequential Composition

Sequential composition theorems for secure computation are important for two reasons. First, they
constitute a security goal within themselves. Second, they are useful tools that help in writing
proofs of security. The basic idea behind these composition theorems is that it is possible to design
a protocol that uses an ideal functionality as a subroutine, and then analyze the security of the
protocol when a trusted party computes this functionality. For example, assume that a protocol
is constructed that uses the secure computation of some functionality as a subroutine. Then, first
we construct a protocol for the functionality in question and prove its security. Next, we prove
the security of the larger protocol that uses the functionality as a subroutine in a model where the
parties have access to a trusted party computing the functionality. The composition theorem then
states that when the “ideal calls” to the trusted party for the functionality are replaced by real
executions of a secure protocol computing this functionality, the protocol remains secure.

The hybrid model. The aforementioned composition theorems are formalized by considering a
hybrid model where parties both interact with each other (as in the real model) and use trusted
help (as in the ideal model). Specifically, the parties run a protocol 7 that contains “ideal calls” to
a trusted party computing some functionalities fi,..., f;,. These ideal calls are just instructions
to send an input to the trusted party. Upon receiving the output back from the trusted party,
the protocol 7 continues. We stress that honest parties do not send messages in © between the

time that they send input to the trusted party and the time that they receive back output (this
is because we consider sequential composition here). Of course, the trusted party may be used a
number of times throughout the m-execution. However, each time is independent (i.e., the trusted
party does not maintain any state between these calls). We call the regular messages of 7 that are
sent amongst the parties standard messages and the messages that are sent between parties and the
trusted party ideal messages.

Let f1,..., fm be probabilistic polynomial-time functionalities and let m be a two-party proto-
col that uses ideal calls to a trusted party computing fi,..., fm. Furthermore, let A be a non-
uniform probabilistic polynomial-time machine and let I be the set of corrupted parties. Then,
the f1,..., fm-hybrid execution of 7 on inputs (z,y), auxiliary input z to A and security parameter
n, denoted HYBRIDfr IAZJ;"}(m,y,n), is defined as the output vector of the honest parties and the
adversary A from the hybrid execution of 7w with a trusted party computing fi,..., fim-

Sequential modular composition. Let fi,..., f,, and m be as above, and let p1,...,pm be
protocols. Consider the real protocol wPtfm that is defined as follows. All standard messages
of m are unchanged. When a party FP; is instructed to send an ideal message «; to the trusted
party to compute functionality f;, it begins a real execution of p; with input «; instead. When
this execution of p; concludes with output (;, party P; continues with 7 as if 8; was the output
received by the trusted party (i.e. as if it were running in the f1,..., fi,-hybrid model). Then, the
composition theorem of [6] states that if p; securely computes f; for every j € {1,...,m}, then
the output distribution of a protocol 7 in a hybrid execution with fi,..., fi, is computationally
indistinguishable from the output distribution of the real protocol 7w**~#m This holds for security
in the presence of malicious adversaries [6], one-sided simulation when considering the corruption
case that has a simulator (an easy corollary from [6]), and security in the presence of covert
adversaries (see [2]). We refer the reader to [2] and [6] for formal statements of the composition
theorem.

2.2 Tools

In this section, we consider two basic tools used in our constructions; oblivious transfer and oblivious
pseudorandom function, for which we present the construction of Naor-Reingold [25] that uses
oblivious transfer.

2.2.1 Oblivious Transfer

We use oblivious transfer in order to achieve secure pseudorandom function evaluation (see below),
which in turn is used for our set intersection protocols. Our protocols can use any oblivious transfer
subprotocol that achieves the appropriate level of security (one-sided simulatability, covert or full
security in the presence of malicious adversaries). For example, we can use the construction of [16]
that is fully simulatable and achieves Definition 2.1. This construction is based on the protocols
of [1, 24] and only requires 26 exponentiations per execution.

Batched oblivious transfers. We remark that our protocols actually need to run multiple obliv-
ious transfers in parallel. For the sake of this, we define the batched oblivious transfer functionality
with m executions, denoted F7. as follows:

(29, 21), .. (@0, 2h), Gy yim)) — (N, (2. 2km))

A fully simulatable protocol that securely computes FJ. in the presence of malicious adversaries

can be found in [16]. The protocol runs in a constant number of rounds, requires 14m + 14
exponentiations for all m executions, and is of comparative complexity to [1] (with the advantage
of full simulatability). When considering covert adversaries, we can use the batched oblivious
transfer construction from [2] that requires on average four exponentiations per transfer.

2.2.2 Oblivious Pseudorandom Function Evaluation

Let (Ipgp, Frrr) be an ensemble of pseudorandom functions, where Ipgy is a probabilistic polynomial-
time algorithm that generates keys (or more exactly, that samples a function from the ensemble).
The task of oblivious pseudorandom function evaluation with Fpre is that of securely computing
the functionality Fprp defined by

(k,z) — (A, Fpgre(k, x)) (2)

where k « Ipp(1") and = € {0,1}".2 We will use the Naor-Reingold [25] pseudorandom function
ensemble Fprp (with some minor modifications). For every n, the function’s key is the tuple
k= (p,q,9%,a1,...,a,), where p is a prime, ¢ is an n-bit prime divisor of p — 1, g € Z} is of order
¢, and ag,a1,...,a, €r Zj. (This is slightly different from the description in [25] but makes no
difference to the pseudorandomness of the ensemble.) The function itself is defined by

Fogpp(k,x) = g““ny:l %" mod D

We remark that this function is not pseudorandom in the classic sense of it being indistinguishable
from a random function whose range is composed of all strings of a given length. Rather, it
is indistinguishable from a random function whose range is the group generated by ¢ as defined
above. This suffices for our purposes. A protocol for oblivious pseudorandom function evaluation of
this function was presented in [10] and involves the parties running an oblivious transfer execution
for every bit of the input x. For the sake of completeness, we provide a formal description and
analysis, explicitly dealing with security in the presence of malicious adversaries (with simulation),
security in the presence of covert adversaries, and one-sided simulation. As we will see, the only
difference between the different levels of security is the security of the oblivious transfer protocol
used. The protocol follows.

Protocol mpre
e Inputs: The input of P; is k = (p, ¢, 9%, a1,...,ay,) and the input of Ps is a value z of length n.
e Auxiliary inputs: Both parties have the security parameter 1™ and are given the primes p and q.
e The protocol:

1. P; chooses n random values r1,...,r, €R Z;.

2. The parties engage in a 1-out-2 multi-oblivious transfer protocol 777 (with m = n executions).
In the ith iteration, Py inputs y§ = r; and y = r; - a; (with multiplication in Z}), and P, enters
the bit o; = x; where x = x1,...,x,. If the output of any of the oblivious transfers is 1, then
both parties output L and halt. Otherwise:

2If k is not a “valid” key in the range of Iprp(17), then we allow the function to take any arbitrary value. This simplifies
our presentation.

10

3. Py’s output from the n executions is a series of values y} L Yp o If any value y; is not in Z7,
then P, redefines it to equal 1.

ao-[I7 >

4. Py computes g =g i and sends it to Ps.

5. P, aborts if the order of g is different than gq. Otherwise, P, computes y = gn?zly;i and
outputs y.

Before proceeding, note that if P; and P» follow the instructions of the protocol, then the output
of Py is:

Yy = §Hi=1 Ya; — gao i Tio= g“o'Hizl %" = Fprp(k,)

where the second last equality is due to the fact that for z; = 0 it holds that a;* = 1 and
Y, /Ti = Yo/ = 1, and for x; = 1 it holds that a;’ = a; and Y, /Ti = Y1/ = a;. We now prove
security:

Proposition 2.4 Assume that (. securely computes the multi-oblivious transfer functionality in
the presence of malicious adversaries and that the DDH assumption holds in the subgroup generated
by g. Then mpre securely computes Fprp in the presence of malicious adversaries.

Proof: We separately analyze the case that P} is corrupted and the case that P» is corrupted. We
prove the proposition in the hybrid model where a trusted party is used to compute the oblivious
transfers; see Section 2.1.4.

Py is corrupted. Let A be an adversary controlling P;. We construct a simulator S as follows.
S receives A’s inputs for all the n iterations of the oblivious transfers (recall our analysis is in the
hybrid model). Let y;, and y;, denote the inputs that A handed S in the ith iteration. In addition,
S receives from A the message g. In case A does not send a valid message (where S conducts
the same check as the honest P; does), S simulates P, aborting and sends L to the trusted party.
Otherwise, S checks the validity of all the yj and ! values and modifies them to 1 if necessary (as
would an honest P). S defines gy = g. Then, for every i = 1,...,n, S defines:

4 (g)
a; = — and g9i = (9171)
Yo
S defines the key used by A to be k = (p, q, gn, a1, ..., a,) and sends it to Fpre. This completes the
description of S. It is immediate that the view of A is identical in a real and simulated execution
because it receives no messages in a hybrid execution where the oblivious transfers are run by a
trusted party. It thus remains to show that the output received by P, in a real execution is the
same as in the ideal model. In order to see this, first note that S and P» replace any invalid y; or

Y% values in the same way. Next, note that for any z € {0,1}":
Fone(k, 2) = ghlim @6 — gIlisywbeal — oTTin b/ (v)" ()™

where the first equality is by the definition of the key by S, the second equality is by the fact that
gn = glli=1% and the third equality is by the fact that a; = yi/ yé. Notice now that if x; = 0
we have that y3/(y8)% - (y%)% = yj, whereas if x; = 1 we have that y§/(y})™ - (y})% = yi. Thus,
Ty wo/ (W)™ - (i)™ = TIi-y vk, exactly as computed by P; in a real execution. That is, the
computation of Fprp(k,x) as carried out by the trusted party using the key supplied by S is the
same as that obtained by P, in a real execution. This completes the case that P; is corrupted.

11

P, is corrupted. In this case, S learns the full input x of A controlling P» (through the oblivious
transfer inputs). In each oblivious transfer, S hands A a random value r; €r Z;. After all of the
oblivious transfers have concluded, S sends x to Fpgrr and receives back a value y = Fpgp(k,z). S
then sets g = ymz:1 " and sends it to A. This completes the simulation.

We claim that the view of A in an execution of mprr with P; (using a trusted party for the
oblivious transfers) is identical to its view in an ideal execution with S. This is true because all of
the r; values are distributed identically to the messages sent in a real execution (note that r; and

r; - a; have the same distribution). In particular, giving g and all the r; values is it easy to define
a valid random PRF key. Furthermore, in a real execution, it holds that gn?:l% =g =y,

where the x; values are those used by P in the oblivious transfers. Likewise, in the simulation it
holds that

s
aolli_ja;*

n 1

~TI7™ yi i—1 Hgl:lri aoll™ arz
gz:lxi: ylf T :y:gozzlz

where first equality is due to the fact that the simulator sets each y* value received by A to 7;, and
the last equality is by the fact that y is computed correctly by the trusted party. Thus, the joint
distribution over the values received by A and g in the hybrid and ideal executions are exactly the
same. Formally,

{IDEAL.'FPRF,S(Z),2 (X7 Y, n)} = {HYBRIDggRF,A(z)Q (X’ Y, n)}
and the proof is concluded. [l

Security with one-sided simulation and in the presence of covert adversaries. Almost
identical proofs yield the following proposition:

Proposition 2.5 Assume that the DDH assumption holds in the subgroup generated by g, and
assume that w3} securely computes the multi-oblivious transfer functionality in the presence of
covert adversaries with deterrent € (resp., is secure under one-sided simulation). Then Tpgrp securely
computes Fpryp in the presence of covert adversaries with deterrent € (resp., is secure under one-
sided simulation).

Multi-execution protocol. We remark that if the oblivious transfers that are used can be run
simultaneously (or batched), as with the simultaneous oblivious transfer of [2, 16], then we can
run many executions of mprp simultaneously. This is of great importance for efficiency. Using the
oblivious transfer of [2] we have that for 2 € {0,1}¢, the cost of securely computing Fprp in the
presence of covert adversaries is essentially 4¢ exponentiations, and using the oblivious transfer
of [16], we have 14¢ 4 14 exponentiations.

3 Secure Set-Intersection

In this section we present our main result. We show how to securely compute the two-party set-
intersection functionality Fn, where each party enters a set of values from some predetermined
domain. If the input sets are legal, i.e. they are made up of distinct values, then the functionality
sends the intersection of these inputs to P» and nothing to P;. Otherwise P; is given 1. Let X and
Y denote the respective input sets of P and P», and let the domain of elements be {0, 1}7’(") for

12

some known polynomial p(n). We assume that p(n) = w(logn); this is needed for proving security
and can always be achieved by padding the elements if necessary. Functionality Fn is defined by:

(X,Y) (A XNY), if X,Y C{0,1}*() and are legal sets
’ (A, L), otherwise

We present two protocols in this section: the first achieves one-sided simulatability in the presence
of malicious adversaries, and the second achieves security in the presence of covert adversaries with
deterrent € = 1/2.

3.1 Secure Set Intersection with One-Sided Simulatability

The basic idea behind this protocol was described in the introduction. We therefore proceed
directly to the protocol, which uses a subprotocol mprr that securely computes Fprr with one-sided
simulatability (functionality Ferr was defined in Eq. (2) above).

Protocol myr

e Inputs: The input of P; is X where X C {0, 1}p(”) contains my items, and the input of P is Y where
Y C {0,1}*(™ contains ms items.

e Auxiliary inputs: Both parties have the security parameter 1™ and the polynomial p bounding the
lengths of all elements in X and Y. In addition, P; is given ms (the size of Y) and P, is given my
(the size of X).

e The protocol:

1. Party P chooses a key k «— IPRF(lp(”)) for the pseudorandom function. Then, the parties run
my parallel executions of mprr. P; enters the key k chosen above in all of the executions, whereas
P; enters a different value y € Y in each execution. The output of P; from these executions is
the set U = {(Frre(k, y)) }yey-

2. Py sends P, the set V = {Fppp(k,) }zex in a randomly permuted order, where k is the same
key P; used in Protocol mpgp in the previous step.

3. P, outputs all y’s for which Fyre(k,y) € V. Le., for every y let f, be the output of P> from mpge
when it used input y. Then, P> outputs the set {y | f, € V'}.

Theorem 3.1 Assume that mprr Securely computes Fpry with one-sided simulation. Then ey
securely computes Fn with one-sided simulation.

Proof: In the case that P; is corrupted we need only show that P; learns nothing about P»’s
inputs. This follows from the fact that the only messages that P; receives are in the executions of
mprre Which also reveals nothing about P»’s input to P;. The formal proof of this follows from a
standard hybrid argument, where the ability to break the security of a single execution is reduced
to the ability to break the security of multiple executions.

More formally, assume by contradiction that there exist a probabilistic polynomial-time ad-
versary A, and probabilistic polynomial-time distinguisher D and infinitely many input sets X,
Y ={y1,.. ., ympy and Y' = {y],...,y,,} (subjected to the length constraints), such that D dis-
tinguishes between the views of A when running myr with P> who has input Y, and when running
mint With Py who has input Y’. Then we show that there exists an adversary A’ and infinitely
many pairs of inputs ¥,y such that the view of A when running mpgr with P, who has input y can
be distinguished from the view of A when running mprr with P, who has input 3. Let H; denote

13

the view of A such that the first ¢ elements in the input of P are y1,...,y; and the last mg — i
elements are yj_ ;,...,¥,,. Using a standard hybrid argument, there exists an index ¢ such that the
distributions H; and H;41 are distinguishable. Then we construct an adversary Apgr that controls
Py and runs against an external P, such that P’s input is either y;;1 or y;, |, and a distinguisher
Dyrrr that breaks the security of a single execution of mprp. Fix Y)Y’ and X. Then on input 1"
and auxiliary input Y,Y”, z, X and i, Apgpr does the following: it invokes A on input 1™, X and
auxiliary input z and plays the role of the honest P, for all but execution i + 1 of the oblivious PRF
evaluation. That is, Apgr internally runs P, for all but the (i + 1)th execution: for j < ¢ it uses
y; and for j > i+ 1 it uses yé», whereas for the (i + 1)th execution, Apgp forwards all the messages
between A and the external P», and outputs whatever A does (note that the PRF executions are
independent from P»’s viewpoint). Finally, Dpgp invokes D on the output of Apgp and returns its
output. Clearly, if the external Py uses input y;+1, the view of A is distributed as in H;11, whereas
if it uses y, then this yields a distribution identical to H;. Thus the non-negligible distinguishing
gap of D can be reduced to breaking the privacy property of wpgp.

P, is corrupted. We now proceed to the case that P, is corrupted; here we must present a
simulator but can also rely on the fact that the mprr subprotocol is simulatable. Thus, we can
analyze the security of 7wyt in a hybrid model where a trusted party computes Fprr for the parties.
In this model, P, and P> just send their inputs to mpryr to the trusted party. Thus, the simulator
S for A who controls P, receives A’s inputs Y = {y1,...,Ym,} to the pseudorandom function
evaluations. S chooses a unique random value (; for each distinct y;, hands it to A as its output in
the ith evaluation and records the pair (y;, (;). S then sends Y to the trusted party computing Fn
and receives back a subset of the values (this is the output X NY); let ¢ be the number of values in
the subset. S completes X NY with a set R of m; —t random values of length p(n) each, computes
the set V from this set as an honest P; would and hands it to A.3 Finally, S outputs whatever A
outputs. Note that the difference between the hybrid and the simulated executions is due to the
fact that S provides random values rather than pseudorandom ones (this is equivalent to saying
that S computes (; = Hpyn(y;) for every 7). In addition, the set R that represents X — (X NY) is
random as well. We complete the proof through the following series of games;

Game H;: We begin by modifying S so that it uses an oracle Oy, . instead of computing the
function Hp,,.. That is, S sends its oracle the sets Y and R. By the definition of Hpy,., this is
exactly the same distribution as generated by S above.

Game Hs: We now modify S so that it uses the real input X of P;. The resulting distribution is
identical because the oracle computes a truly random function and all inputs are distinct in both
cases.

Game Hj: Next, we replace the oracle Oy, . with an oracle Op,, computing Fpgp. Clearly, the
resulting distributions in both games are computationally indistinguishable. This can be proven
via a reduction to the pseudorandomness of the function Fprp.

Informally, let Dprr denote a distinguisher who attempts to distinguish Fprp from Hpg,.. Then
Dregy, playing the roles of P, as & above, invokes its oracle on the sets Y and R. Now, any
distinguisher for the distributions of games Hy and Hg can be utilized by Dpgr to distinguish
between Fprr and Hyype.

3Since p(n) is superlogarithmic, the probability that any of the random values sent by S are in P;’s input set is negligible.

14

Game Hy: Finally, S computes the pseudorandom function instead of using an oracle. Again, this
makes no difference whatsoever for the output distribution.

Noting that the last game is exactly the distribution generated in a hybrid execution, we have
that the hybrid and ideal executions are computationally indistinguishable, completing the proof.

Efficiency. Note first that since mpgr can be run in parallel and has only a constant number of
rounds, protocol myr also has only a constant number of rounds. Next, the number of exponentia-
tions is O(mag-p(n)+my). This is due to the fact that each local computation of the Naor-Reingold
pseudorandom function can be carried out with just one modular exponentiation and n modular
multiplications (which are equivalent to another exponentiation). Thus, computing the set V' re-
quires O(m1) exponentiations. In addition, for inputs of length p(n), Protocol mprp consists of
running p(n) oblivious transfers (each requiring O(1) exponentiations). Thus mgy such executions
require O(mg - p(n)) exponentiations. We remark that since p(n) is the size of the input elements it
is typically quite small (e.g., the size of an SSN). Thus, ms-p(n)+m4 will typically be much smaller
than m; - mg. (Recall that we do need to assume that p(n) is large enough so that a randomly
chosen string does not intersect with any of the sets except with very small probability. However,
this can still be quite small.)

We remark that our protocol is much more efficient than that of [18] (although they achieve full
simulatability). This is due to the fact that in their protocol every party P; is required to execute
O(mq-mg) zero-knowledge proofs of knowledge, and a similar number of asymmetric computations.
(Many of these proofs can be made efficient but not all. In particular, their protocol is only secure
as long as the players prove that they do not send the all-zero polynomial. However, no efficient
protocol for proving this is known.)

3.2 Secure Set Intersection in the Presence of Covert Adversaries

In this section we present a protocol for securely computing the two-party set-intersection function-
ality in the presence of covert adversaries. Our protocol is based on the high-level idea demonstrated
in protocol myr (achieving one-sided simulation for malicious adversaries). In order to motivate this
protocol, we explain why 7yt cannot be simulated in the case that P; is corrupted. The problem
arises from the fact that P; may use different keys in the different evaluations of wpry and in the
computation of V. In such a case, the simulator cannot construct a set of values X that corresponds
with P;’s behavior. Another problem that arises is that if P; can choose the key k by itself, then
it can make it so that for some distinct values y and o’ it holds that Fore(k,y) = Fpre(k,y’). This
enables P to effectively make its set X larger, affecting the size of the intersection. Needless to say,
this strategy cannot be carried out in the ideal model. Thus, the main objective of the additional
steps in our protocol below is to ensure that P; uses the same randomly chosen k in all of the
mprr evaluations as well as in the construction V. This is achieved in the following ways. First,
the parties run two series of executions of the mprr protocol where in one execution real values are
used and in the other dummy values are used. Party P, then checks that P; used the same key in
all of dummy executions. This check is carried out by having P; and P, generate the randomness
that P; should use in these subprotocols by coin tossing (where P; receives coins and Py receives
a commitment to those coins). Then, P; simply reveals the coins used in the dummy series and
P, can fully verify its behavior. Second, P; and P; first apply a pseudorandom permutation to
their inputs and then a pseudorandom function. Then, P; sends two sets Vj and V1, and opens one

15

of them to P, in order to prove that it was constructed by applying the pseudorandom function
with the same key as used in the dummy evaluations (this means that if P; attempts to cheat
by constructing Vp or V; incorrectly it will be caught with probability 1/2). The reason that the
pseudorandom permutation is first applied is to hide P;’s values from P, when one of the sets
Vo, V1 is “opened”. The difficulty in implementing this idea is to devise a way that P» can compute
the intersection and check all of the above, without revealing more about P;’s input than allowed.
Technically, this is achieved by having Vj equal the set of values Fprp(ko, Forp(S0,x)) and having
V1 equal the values Fpgrp(k1, Ferp(s1,2)). Then, P, learns either (ko, s1) or (ki1,s0). In this way, it
cannot derive any information from the sets (it only knows one of the keys). However, it is enough
to check P;’s behavior. We remark that security in the case that Ps is corrupted is of the same level
as the subprotocols used for oblivious transfer, coin tossing and pseudorandom function evaluation
(i.e., full security if the subprotocols are fully secure in the presence of malicious adversaries and
covert in the case that they are secure in the presence of covert adversaries).

We stress that only P receives output in our protocol. In order to have P; also receive output,
we cannot have P just send the values in the intersection. This is due to the fact that P» can
omit values from the intersection that it sends back to P;. (Note that it is not so difficult to have
P, prove that every value returned to P; is in the intersection. However, it seems much harder to
prevent P from omitting values.)

A high-level overview of the protocol appears in Figure 1 and the full description (starting with
the tools that we use) follows below.

Tools: Our protocol uses the following primitives and subprotocols:

e An efficiently computable and invertible pseudorandom permutation with sampling algorithm
Ipgp; see [12, Chapter 2]. We denote a sampled key by s and the computation of the permu-
tation with key s and input by Fprp(s,).

e A pseudorandom function with sampling algorithm Iprr. We denote a sampled key by k and
the computation of the function with key & and input x by Fpge(k,x).

e A perfectly-binding commitment scheme com; we denote by com(z;r) the commitment to a
string x using random coins 7.

e An oblivious transfer protocol that is secure in the presence of covert adversaries with deter-
rent € = 1/2 and can be run in parallel. An efficient protocol that achieves this was presented
in [2]. We denote this protocol by mor.

e An efficient coin-tossing protocol, denoted by mcr, that is secure in the presence of covert
adversaries with deterrent e = 1/2. The exact functionality we need is not plain coin-tossing
but rather (17,1") — ((p,r),com(p;r)) where p €r {0,1}" and r is random and of sufficient
length for committing to p. Such a protocol can be constructed by an instantiation of the
generic coin-tossing protocol that appears in [20], with commitments based on El-Gamal
encryption [8]. The instantiation of El-Gamal enables highly efficient zero-knowledge proofs
of knowledge with soundness 1/2 for the discrete logarithm and Diffie-Hellman tuple languages
(which suffice for achieving security in the covert model with deterrent ¢ = 1/2).

In particular, in [20] the committer first sends a commitment ¢ = com(sy;71) for s1 € {0,1}",
and then the parties engage in a zero-knowledge argument of knowledge in which P; proves
it knows s1. Next, P» chooses sy €r {0,1}" and sends it to P;. Then P; outputs si,s2

16

P (X) Py (Y)

(s0,s1) — | Oblivious transfer| «— a

— S
For g € {0,1}:
— mi CPR,P07 C’PRPl
CPRPg ={com(Fprp(ss, -Ti))}izl
- —r
(pos 7o), (p1,71) — — com(po; 7o), com(p1; 71)

Using coins pg: kg — ’ Frerr €valuations ‘

Th— {Frre(80,%:i)}, ifa=0
0 {random}, ifa=1

B {FPRF(k07 t) }teTo

o —
USiIlg coins pP1: kl — ’ fPRF evaluations ‘ le{ {random}, fa=0

{Ferp(s1,9i)}, ifa=1
— {Ferr(k1,t) bren;

I7 = Frerr (Ko, (Fprp (S0, (1)) Vo= {fzo}’ Vi= {fll}
V1<i<moe€{0,1}

Sa
kl—om d17 d2
dy = decommit(Cpgrp,_,,) {Frrp(S1—a,Ti)} verify Cprp,_,, and that
dy = decommit(com(pi_q)) Py used coins p1_q

Figure 1: A high-level diagram of our protocol.

and 71, and Py outputs ¢ and so. For the particular instantiation of El-Gamal, recall that
its public-key is (p,q, g,9%) and the corresponding private-key is (p,q, g,a). Thus a proof
of knowledge of the committed value s; can be easily achieved if the committer proves the
knowledge of «, since then the committed value can be decrypted.

We stress that it suffices to generate a short random value (i.e. one random group element),
and then to use a pseudorandom generator to extend it.
e A protocol mpgp for computing Fpgp as defined in Eq. (2), that is secure in the presence of
covert adversaries with e = 1/2; see Section 2.2.
We are now ready to present our protocol.
Protocol mn

e Inputs: The input of P; is X where X C {0, 1}1’(”) contains my items, and the input of P, is Y where
Y C {0,1}?(") contains my items.

e Auxiliary inputs: Both parties have the security parameter 1™ and the polynomial p bounding the
lengths of all elements in X and Y. In addition, P; is given mgy (the size of Y') and P; is given my
(the size of X).

e The protocol:

17

1. Oblivious transfer (secure in the presence of covert adversaries):

(a)
(b)
()

Party P, chooses a pair of keys sg, 51 < Zppp(1P(™) for a PRP.
Party P, chooses a random bit a € {0, 1}.

P, and P, execute the oblivious transfer protocol mor. P; inputs the keys sg and s; and
plays the sender, and P, inputs a and plays the receiver. If one of the parties receives
corrupt, or abort; as output, it outputs it and halts. Otherwise P» receives s,.

2. P, computes Cprp, = {com(Fprp(80,2))}rex, Corp, = {cOm(Forp(81,2))}rex and sends Crpp,
and Chrgp, to Ps.

3. The parties run two executions of the coin-tossing protocol mer computing (1‘1("), 1‘1(")) —
((p,7),com(p; 7)) that is secure for covert adversaries with e = 1/2. The parties input 19",
where g(n) is the number of random bits needed to both choose a key k +— Inpp(17(™) and run
my executions of the PRF protocol (see below). Party P; receives for output (pg, o) and (p1,71),
and P, receives c,, = com(pg;ro) and c,, = com(p1;71), where pg, p1 are each of length g(n).

4
(a)
(b)

5. Py

. Run oblivious PRF evaluations:

The parties run ms executions of the oblivious PRF evaluation protocol mprr in parallel, in
which P; inputs the same randomly chosen key kg «— IPRF(lp(")) in each execution, and P»
enters the elements of the set Ty = {Fprp(S0,¥) }yey (if @ = 0), and my random values of
size p(n) (if & = 1). Let Uy be the set of outputs received by P» in these executions. The
randomness used by P; in all of the executions (and for choosing the key ko) is the string
po from the coin-tossing above.

The parties run another mo executions of mprr in parallel, in which P; inputs the same
randomly chosen key kq «— IPRF(lp(”)) each time, and P, enters ms random values of size
p(n) (if @ = 0), and the elements of the set 71 = {Frre(s1,¥)}yey (if @ = 1). Let Uy be the
set of outputs received by P, in these executions. The randomness used by P; in all of the
executions (and for choosing the key k1) is the string p; from the coin-tossing above.

computes and sends P, the sets of values Vo = {Fprr(ko, Forr(S0,2))}zex and

Vi = {Forr(k1, Forp($1,)) }zex, in randomly permuted order.
6. Run checks:

(a)
(b)

()

the set-intersection functionality Fn in the presence of covert adversaries with € = 5

If either |Vp| or |V4]| are smaller than m; or not distinct, P» outputs corrupted;; otherwise it
sends P; the key s,.

If P, sends s such that s ¢ {sg,s1}, then P; halts. Otherwise, P, sets o such that s =
Sq. Then, P; sends P, the decommitments for all values in the set Crgrp, ., and the
decommitment of c,, .

Let Wi_4 denote the decommitted values in Cpgp,__ and p1_, the decommitted values in
of ¢,,_. First, P5 checks that the responses of P; to its messages in the my executions of
the PRF evaluations in which it input random strings are exactly the responses of an honest
P, using random coins p;_, to generate ky_, and run the subprotocols. Furthermore, P,
checks that Vi_q = {Forp(k1—a, W)} wew,_, using ki1_, as above. In case the above does
not hold, P> outputs corrupted;. Otherwise, let f, be the output received by P, from the
PRF evaluation in which it input Fere(sa,y). Party P, outputs the set {y | f, € Va}.

We now prove the security of the protocol:

Theorem 3.2 Assume that wor, Ter, Tpre are secure in the presence of covert adversaries with
deterrent € = %, that com is a perfectly-binding commitment scheme, and that Fprr and Fprp are
pseudorandom function and permutation families, respectively. Then Protocol mn securely computes

1
3¢

18

Proof: We will separately consider the case that both parties are honest, the case that P; is
corrupted and the case that P, is corrupted. A joint simulator can be constructed on the basis of
these cases. We present the proof in a hybrid model in which a trusted party is used to compute
the oblivious transfer and coin-tossing computations. We denote these functions by For and Fer.
Since the last step of the protocol involves P checking the actual messages sent by P; in the PRF
evaluations, we cannot replace the PRF evaluations with ideal executions invoking a trusted party.
We do, however, use the simulator Spry that is assumed to exist for this protocol (we assume that
the PRF evaluation protocols are all run simultaneously and so Spgrr can simulate them all together).

No corruptions. Assume both parties are honest (i.e, Z = ¢). Note that in the ideal calls to
For and Fer, the adversary sees nothing when no party is corrupted. The PRF evaluations can
be simulated by running Spgr for the case of no corrupted parties (and so we ignore these from
here on). Thus, prior to the last step of checks, the only messages that remain to be simulated
are the commitment sets Cprp, and Cprp, and the sets of pseudorandom values Vj and Vi, sent
by P to P,. Then, in the last step, P» sends a random string s, to P;, and P; replies with
decommitments to Cprp,_, and the decommitment of ¢,,_,. However, Cpgp,_, is a set of values
obtained by applying a pseudorandom permutation keyed by an unknown s;_,. A straightforward
reduction to the pseudorandom function and permutation shows that a view generated by S by
just sending random values (from the appropriate range) instead of pseudorandom ones, yields a
view that is indistinguishable from a real one. This is standard, and so details are omitted. (We
remark that the simulator S is given the sizes of the sets as auxiliary input and so can carry out
the simulation.)

The above relates to A’s view of the transcript as generated by S versus a real execution.
However, we also need to show that the outputs of the honest parties are indistinguishable in a real
and ideal execution; that is, we need to prove correctness. Now, for every (€ X NY, both honest
parties obtain the same value Fprp(kq, (Fprp(Sa,()) and so P records ¢ as part of its output. Thus,
the output of P, in a real execution includes at least every value in the intersection. It remains
to show that it does not include any additional values. This can occur if there exists an r € X
and y € Y for which x # y but Fprp(ka, (Ferp(Sa,) = Ferr(kas (Fprp(Sa,y)). However, since s,
and k, are uniformly chosen, the probability that any two fixed values x and y collide in this way
is negligible (this follows from the fact that such a collision occurs with a random function with
negligible probability). Since there are a polynomial number of pairs of values overall, it follows
that P» outputs y ¢ X NY with at most negligible probability.

Party P; is corrupted. Let A be an adversary controlling party P;, we informally describe a
simulator S as follows. At the beginning of the simulation, S learns the adversary’s inputs sg and s1
to the oblivious transfer execution, which are used as keys for the PRP. The knowledge of this pair
enables the simulator to learn both (W, ko) and (Wi, k1) by rewinding A in Step 6 of the protocol.
This in turn enables the simulator to extract A’s inputs by computing {Fppp(Sa,w) }wew, ; note
that Fprp is efficiently invertible. We note that if the adversary aborts without responding correctly
to any of the queries in Step 6, then the honest P, aborts in the real execution and so the simulator
just sends L to the trusted party. In contrast, if the adversary responds to only one query correctly,
then the simulator aborts with probability half exactly as in a real execution. Formally,

1. S receives X and z, and invokes A on this input.

2. § plays the trusted party for the oblivious transfer execution with A as the sender, and
receives the input that A sends to the trusted party computing For:

19

(a) If this input is abort; or corrupted;, then S sends abort; or corrupted; (respectively) to
the trusted party computing Fn, simulates Py aborting and halts (outputting whatever
A outputs).

(b) If the input is cheat;, then S sends cheat; to its trusted party computing Fn. If it
receives back corrupted;, then it hands A the message corrupted; as if it received it from
the trusted party, simulates P» aborting and halts (outputting whatever A outputs).
If it receives back undetected (and the input set Y of the honest P5) then S proceeds
as follows. First, it hands A the message undetected together with a random « that A
expects to receive (as P»’s input to mor). Next, it uses the input Y of P» that it obtained
in order to perfectly emulate P» in the rest of the execution. That is, it runs P,’s honest
strategy with input Y while interacting with A playing P; for the rest of the execution.
Let Z be the output for P that it receives. S sends Z to the trusted party computing
Fn (for Py’s output) and outputs whatever A outputs. The simulation ends here in this
case.

(c) If the input is a pair of keys sg, s1, S proceeds with the simulation below.*
3. S receives from A two sets of commitments Cprp, and Cpgp, -

4. S receives from A its input for For. In case it equals abort;, corrupted;, or cheat;, then
S behaves exactly as above in the OT execution. Otherwise S chooses random (pg,rg) and
(p1,71) of the appropriate length and hands them to A.

5. S runs the simulator Sprr guaranteed to exist for the protocol mprr (by the assumption that
it is secure) on the residual A at this point (i.e., S defines an adversary A’ that is just A with
the messages sent until now hardwired into it). If Sprr wishes to send abort;, corrupted; or
cheaty in any of the executions, then S acts exactly as above. Otherwise, S proceeds. Let ¢
be the transcript of messages sent by A in the simulated view of mpry as generated by Sprr
(we define the residual A so that it outputs this transcript and so this is also what is output
by SPRF)'

6. S receives from A two sets of computed values V) and V;. If they are not of size mj or not
distinct, S sends corrupted; to the trusted party computing Fn, simulates P aborting and
halts (outputting whatever A outputs).

7. Otherwise, S hands A the key sy and receives back A’s decommitments of Cprp, and c,,. S
then rewinds A, hands it s; and receives back its decommitments of Cprp, and c,,. Simulator
S runs the same checks as an honest P, would run (note that the checks regarding the behavior
of A in the PRF evaluations can be run even though S used Spryr because the check just involves
verifying the responses of P; to the messages that it received in these executions.) We have
two cases:

(a) Case 1 — all of the checks carried out by S in both rewindings pass: Let ko and k; denote
the keys that an honest P; would have used in the PRF evaluations when its coins are pg
and p1, respectively (where p; is value committed to in ¢,,). Then, S chooses a random
bit o € {0,1} and sends the trusted party computing Fn the set {Fpnp(Sa, w)bwew,
(recall that we assume that Fprp can be efficiently invertible).

We assume a mapping from any string to a valid key for the pseudorandom permutation.

20

(b) Case 2 — there exists a bit o € {0,1} so that the checks when S sent s1_q failed: Sim-
ulator S sends cheat; to the trusted party computing Fn. If it receives back corrupted;
then it rewinds A and sends it s;_, again. If it receives back undetected then it rewinds
A and sends it s,. Then, it runs the last step of the protocol exactly as P, would,
using P»’s real input. (We note that in a real execution, P» uses its input in the Fpgp
evaluations. However, S received all of the keys used by A in these executions from what
Sprr intended to send to the trusted party computing Fpgrr in its simulation. Thus, S
can compute the outputs that P, would have received even if A used different keys in
the different executions.) S then sends the trusted party computing F~ whatever P
would output in the ideal model.

8. S outputs whatever A outputs and halts.

Let e = % We prove that

{IDEALSC}m S(1(X,Y, n)} = {HYBRID?::S{EZ)?I (XY, n)}

where the ensembles are indexed by X C {0,1}?("™ of size my, Y C {0, 1} of size mo, z € {0,1}*
and n € IN. Recall that in the above {For, For }-hybrid model, the view of P; includes its output
from For, the messages sent during the mpry executions, and the value s, that P, sends after
receiving Vp and V;. Thus the only difference between the hybrid and ideal executions is within
the mprr executions. This is due to the fact that S invokes Sprr Whereas in a hybrid execution
a real mprp execution is run between P; and P,. Clearly, the views of A in these executions are
computationally indistinguishable because A receives no output (playing the role of P;) and so the
security of mprr implies that A cannot distinguish between a real execution with P, using real inputs
and a simulation with Sprr with no input at all. The more interesting challenge is thus to prove
that the joint output distributions of P, and these views are computationally indistinguishable.

We consider three different cases that occur with almost the same probability in both executions,
due to the indistinguishable views. In the first case A’s input to For or Ferp is either corrupted;,
abort; or cheat;. Let bad; denote this event. Now, since S forwards corrupted; and abort; to the
trusted party computing Fn, P» outputs these messages with the exact same probability in both
executions. As for cheat;, whenever A sends this message during the above executions, if S receives
back corrupted; then the simulation immediately halts. Furthermore, if it receives back undetected
then the simulator also receives the real input Y of P, from the trusted party computing Fn and is
able to complete the execution emulating the honest P» (note that the messages until this point of
the execution are independent of P»’s input and so S can conclude the execution consistently with
the input set Y'). At the end of this execution (using P»’s real input Y'), S obtains the output that
P, would obtain in a real execution with A and sends it to the trusted party computing Fn to be
Py’s output in the ideal model. Thus, the output distributions are identical. That is,

{IDEALSCY | 5,y 1(X, Y, n) | badi} = {HYBRID;{:JI&S)T& (X,Y,n) | bad;}

In the second case, A provides valid inputs for For and Fer, yet there exists an a € {0, 1} for which
A does not provide a valid response in Step 6 of the protocol; denote this event by bady. Now, if Py
sent « to For then A cannot deviate from the protocol within the mpgryr executions on T7_,, without
definitely getting caught by P, (and the simulator). This holds because all of the parameters for
these computations are already set without A having the ability to change them (i.e., A must use

21

the coins p1_q to choose the key ki_,, and run all of the mprp evaluations that use this key). Then,
after sending s, to Py, party Ps is given p;_, and is able to recompute the entire transcript of the
PRF evaluations in order to compare it against the actual messages it received during its interaction
with 4. Thus, in both the hybrid and ideal executions, P, outputs corrupted; with probability at
least % In particular, if A provides two invalid responses it is always caught, and P, always outputs
corrupted; (recall that in the ideal execution, S sends corrupted; to the trusted party computing
Fn). Whereas, if A provides exactly one valid response, then P» outputs corrupted; with probability
%. Furthermore, when it does not output corrupted;, simulator & concludes the simulation with
Py’s real input (note that although these inputs are already used earlier in mpgp, since S knows
the values kg, k1 and sg, s1 it can conclude the simulation even when receiving P,’s inputs later).
Thus, the only difference is that in the real protocol, the mprr executions are run with P»’s inputs
whereas in the simulation Sprr is used. By the security of mprr we have:

C

{nyBrIDC YT (X, Y, n) | bads}

{IDEALSC;Q,S(Z)J(X7 Y, n) ‘ badQ} m,A(2),1

The last case we need to consider is when neither bad; nor bad, occur; denote this event by —bad.
In this case the simulator does not have access to Y and needs to fully extract A’s input. Let kg
and k1 be the keys that A used in all of the mprr executions, and let sgp and s; be the values that
A input to the oblivious transfer. Then we have the following claim:

Claim 3.3 Let X, = {Fio (50, w) Ywew, and consider the event =bad where neither bad; nor bads
occur. Then, for every o € {0,1} and set Y C {0,1}P") it holds that ¢ € Xo NY if and only if
Frrr(ka, Frrp(8a,C)) € Vo NU,, except with negligible probability.

Proof: 1If (€ X, NY, then Fogp(ka, Frrp(Sa,()) € Vo NUy. This is due to the fact that A
uses the same key k, for the PRF evaluation that defines U, and for computing V. In particular,
we consider here the case where A provides valid responses for both o = 0 and « = 1, combined
with the fact that it can be verified that 4 indeed used k,, for computing U,. This implies that if
Frgr(ka, Frrp(Sa,C)) € VaNU,, then it must be that there exists an o € {0, 1} for which A cannot
provide a valid response in Step 6, and this is a contradiction.

As for the other direction, assume that Fprp(ko, Frrp(Sa,C)) € Vo N U,. Then a problem
can arise if there exist y € Y and z € X such that @ # y and yet Fprp(ka, Frrp(Sa,x)) =
Frgr(ka, Forp(Sa,y)). If A could choose X after k, is known, then it could indeed cause such an
event to happen. However, notice that A is committed to its inputs (in Cprp, and Cpgp,) before
ko is chosen in the coin tossing. Thus, the probability that such a “collision” occurs, where the
probability is taken over the choice of k, and the sets X and Y are already fixed, is negligible (or
else Fprp can be distinguished from random). More formally, assume that there exists an infinite
series of input sets Y, and a PPT adversary A such that the probability that there exists a value
x € X where Fprp(ka, Forp(Sa,)) € Vo NUy yet © ¢ X NY is non-negligible. Then we construct
a distinguisher Dpgrr that distinguishes Fpre from a truly random function Heg,,. given an oracle
O that computes one of these functions. Fix Y and let (Y, z) denote Dpgp’s auxiliary input. Then
Dyrrr(1™) invokes A on (17, z) and plays the honest P»(1™,Y") until the point where .4 opens its input
commitments Cprp,, into the values F' = (fi,..., fa,) at step 6¢ (note A opens these commitments
always since we consider the case where A is not caught cheating). Then Dprp sends its oracle the
sets {{Fprp(5a,¥)}yey and F and outputs 1 if and only if there exists a collision between the sets
(i.e., a pair of distinct values v € {{Fprp(Sa,¥y)}yey and v € F for which O(u) = O(v)). Note that

22

if O is a truly random function, then the probability that Dprr outputs 1 is negligible. On the
other hand, if @ computes Fprp, then by our assumption the probability that Dprp outputs 1 is
non-negligible. This holds because the question of whether or not there is a collision depends only
on the committed set provided by A (that defines F'), the value s,, and the honest party’s input
Y. All of this is fixed before k, is chosen (via the coin tossing) and so the probability of a collision
depends only on the choice of the key k,. Since this key is uniformly chosen, a collision occurs
in the oracle with the same probability that it occurs in the hybrid model (with a trusted party
computing the coin tossing functionality).5 Thus, we have that Dprr distinguishes between Fpgp
and a random function with non-negligible probability, in contradiction to the security of Fpgp.

This implies that the output received by P, in the hybrid and ideal executions is the same
(except with negligible probability). Combining this with the fact that the view of A is clearly
indistinguishable in both executions, we have:

= {nyBrip°S" (X, Y, n) | —bad}

{IDEALSC;:O’S(Z)J(Xy Y,n) | —bad} m,A(2),1

Combining the above three cases, and noting that the events bad; and bad; happen with probability
that is negligibly close in the hybrid and ideal executions, we have that the output distributions
are computationally indistinguishable, as required.

Party P, is corrupted. Let A be an adversary controlling party P». Intuitively, the simulator S
works as follows. First, it learns A’s input « to the oblivious transfer execution which enables S to
know in which of the PRF evaluations A uses its real inputs. Thus, S defines A’s inputs to m to be
its inputs to the a'" series of oblivious PRF evaluations. In addition to the above, S’s knowledge
of o enables it to prepare replies to the checks in Step 6 that A would expect to receive from an
honest P;. Details follow,

1. S receives Y and z, and invokes A on this input.

2. § plays the trusted party for the oblivious transfer execution with A as the receiver. S
receives the input that A sends to the trusted party computing For:

(a) If this input is aborty or corrupted,, then S sends aborty or corrupted, (respectively) to
the trusted party computing Fpn, simulates P; aborting and halts (outputting whatever
A outputs).

(b) If the input is cheaty, then S sends cheaty to the trusted party computing Fn. If it
receives back corrupted,, then it hands A the message corrupted; as if it received it from
the trusted party, simulates P, aborting and halts (outputting whatever A outputs). If
it receives back undetected (together with the input X of the honest P;), then it proceeds
as follows. First, at this point A expects to receive a pair (sg, s1) and A gives it a pair
of random keys sq, 81 « ZPRP(lp(”)). Next, it uses the input X of P; that it obtained
in order to perfectly emulate P; in the rest of the execution. S then sends the output
that P; receives from this execution with A to the trusted party computing Fn to be
the output of the honest party P; in the ideal execution. The simulation ends here in
this case.

®The proof here relies crucially on the fact that .4 commits to the values Cprp,, Crrp, before the keys ko, k1 for
the pseudorandom functions are determined, and furthermore that these keys are uniformly chosen via coin tossing
and not determined by P;.

23

(c) If the input equals a bit «, then S samples a key s, «— ZpRp(lp(”)) as the honest P;
does, and hands it to A emulating For’s answer. In addition, S samples a second key
S1_q — IpRp(lp(”)) as above, and keeps it for later.

3. S sends A two sets of mo commitments Cprp, and Cprp, to distinct random values of length
p(n).

4. S receives from A its input for For. In case it equals aborty, corrupted,, or cheaty, then
S behaves exactly as above in the OT execution. Otherwise S chooses random (pg,rg) and
(p1,71) of the appropriate length and hands c,, = com(po; 7o) and c,, = com(p1;71) to A.

5. S simulates the PRF evaluations as follows. If & = 0 (where « is A’s input to the oblivious
transfer), then S runs the simulator Spryr on the residual A for the first mg executions, and
follows the honest P;’s instructions using random coins p; for the second mgy executions (where
the “first” and “second” set is as in the order described in the protocol). In contrast, if « = 1,
then S follows the honest P;’s instructions using random coins pg for the first mo executions
and runs the simulator Sprr on the residual A for the second ms executions.

In the mo executions simulated by Spry, simulator S receives the input that Sprr wishes to
send to the trusted party computing Fprr as its input in the PRF executions:

(a) If any of these inputs is aborty, corrupted,, or cheats, then S behaves exactly as above
in the OT execution.

(b) Else, let T denote the set of mg elements (with length bounded by p(n)) that Sprr wishes
to send as A’s inputs to mprp. Then, S hands Sprr the set { Fprp(kq, t) brer as its output
from the trusted party computing Fpgry, where kq, < [pRF(lp(")) is a randomly generated
key. In addition, S defines the set Y/ = {Fpu(sa,t) herr. (If Y/ is not exactly of size
ma, then S adds my — |Y’| random elements of size p(n); recall that p(n) = w(logn) and
so random values are in the intersection with only negligible probability.)

6. S sends the trusted party computing Fn the set Y’ that it recorded and receives back for
output the set Z (note Z = X NY”’). Then it chooses my — | Z| distinct random elements and
adds them to Z. Finally, S computes and sends A the sets Vi, = {Fprp(ka, Fere(Sa,())}cez
and Vi_o = {Fprr(k1—-a, w)}com(w)eCpRpl_a . We remark that the elements of V,, are randomly
permuted before being sent.

7. S receives from A the value s, and responds with the decommitments of Cpgp, , and the
decommitment of ¢, . In case A did not send s, S halts. (Note that there is a possibility
that A will send s1_, instead of s, which would not cause P; to halt in a real execution.
However, in the hybrid model s;_, only appears in Cprp,_, and in Vj_, from which s;_g,
cannot be determined except with negligible probability; this follows from an easy reduction
to the security of the pseudorandom permutation.)

8. S outputs whatever A outputs.

Let e = % We prove that

{IDEALSC?_—H’S(Z)Q (X,Y,n) }nEN

where the ensembles are indexed by X C {0, 1}P("™ of size m1, Y C {0, 1}?(™) of size my, z € {0,1}*
and n € IN.

Note first that the simulation differs from a real execution with respect to how the sets Cprp,
and V, are generated, and with respect to the decommitments of Cpry, , (recall that in the real
execution P; uses its input X for these computations whereas the simulator does not know X).
Nevertheless, the views cannot be distinguished due to the hiding property of Fprr, Frrp and com.
As in the previous analysis, we begin with the case where A sends aborts, cheaty or corrupted, to
For or Fer. Due to the similarity to the case where P; is corrupted we omit the details here.
Let bad denote the event that A sends aborts, corrupted, or cheats. Then relying on the above
discussion it holds that,

{IDEALSC, 5, (X, Y, 7) | bad} = {HYBRID??;’SZT)J(X, Y,n) | bad}
Next we analyze the security in case A provides valid inputs to For and Fer, and prove through
a series of games that the output distributions are computationally indistinguishable. In game H;,
we denote the simulator by S;.

Game H;j: In the first game the simulator S; has access to an oracle Op,,, for computing Fpgp
and instead of computing Fprp using s;_q, it queries the oracle. In contrast, the computation
using s, remains the same. Recall that S; does not make any use of the actual key s1_, at any
stage of the protocol, and so an oracle can easily be used. We stress that the execution in this
game still involves a trusted party that computes Fn. Now, for every X C {0, 1}p(") of size m1 and
Y C {0,1}P™) of size my, and every z € {0,1}* let

{H]-S(z) (X7 Y, n)}nGN

denote the output distribution of & in this game. Clearly the output distribution of the current
and original simulation are identical.

Game Hj: In this game we define S» who is the same as S; except that it uses an oracle Opy,
computing a truly random permutation instead of Op, ., while the rest of the execution is as above.
Then for every X C {0,1}?(™ of size m; and Y C {0, 1}?(™) of size my, and every z € {0,1}* let

{H2$(z) (X7 Y, n)}nGN

denote the output distribution of A in this game. We prove the following:
Claim 3.4 {Hlgq)(X,Y,n)}tnen = {H25()(X, Y,)} nen

Proof: The proof follows from the security of Frrp. Namely, we show that a distinguisher that
distinguishes the above distributions can be translated into a distinguisher for Fprp. Assume that
there exist an adversary 4, a distinguisher D and infinitely many inputs (1", X) and (1",Y), such
that D distinguishes A’s output in the above games whenever the inputs are (1", X) and (17, Y).
Then a distinguisher Dpgrp with oracle access to either Opupp or Opy,,,., and an auxiliary input
(X,Y, 2) is constructed the following way (note that Dpgp is given X in order for it to be able
to compute X NY, where Y is the input of A as extracted by the simulator). On input 17,
Dyygp invokes A(1™,Y,z) and plays the roles of the simulator and the trusted party computing
Fn. However, whenever Dpgp is required to carry out a computation using s;_,, it forwards the

25

evaluated values to its oracle instead and continues with the oracle’s answer. Clearly, if Dpgp’s
oracle computes Opgp, then the execution is identical to the execution in game H;, whereas if
the oracle computes Opy,, . then it is identical to Hy. Thus Dpgrp distinguishes between Fprp and
Hop.,,, with the same probability that D distinguishes between H; and Ho. W

Game Hj: The next game is identical to the previous one except that the simulator S3 knows the
real input X of P; but uses it only for the computation of Vi_, and Cprp, . Since the oracle is
a truly random permutation, the distribution here is identical (note that X is a set and thus all
items are distinct). Note that Ss still uses a trusted party that computes Fn.

Game Hy: In this game the simulator Sy, that is still given access to a trusted party computing
Fn, is given an oracle Op,y, for computing Frrr (with a random key) which it uses instead of
computing Fpre using ko. Note that the simulator (invoking Spry) extracts A’s input to the ath
set of oblivious PRF evaluations, and merely forwards these values to its oracle. It additionally
forwards A the oracle’s responses on the set {Frrp(Sa,()}cez in step 6 (recall that the simulator
knows s,,). In both Hs and Hy the distribution generated by the pseudorandom function is identical.
The only difference is that in Hgz, the coins used to generate k, are committed to in c,, whereas
in Hy the oracle uses a random key that is independent of those coins. The fact that these games
are indistinguishable therefore follows from the hiding property of the commitment scheme. Note
that the executions using ki_, remain the same.

Game Hj: Next we replace O, With a truly random function Opy, .. Using a similar reduc-
tion as above, we have that the output distribution of A in this current game is computationally
indistinguishable from its output distribution of the previous game.

Game Hg: In this game, the simulator Sg computes the commitments in Cprp, using the real
input set X of P; instead of using random values. Since these commitments are never opened,
the indistinguishability of this game to the previous one follows from the hiding property of the
commitments.

Game H7: In this game, the simulator Sg queries its PRF oracle on the real input set X of P; in
order to construct V. That is, S uses X instead of constructing V,, using the output received by
the trusted party computing F and adding random values (thus in Hs the simulator uses distinct
random values to complete the set Zp while here it uses X \ X NY). Note that the only difference
from the previous game is regarding the values in V,, that are not included in X NY’; see step 6 of the
simulation. Now, since Opy, . is a truly random function, we achieve the same output distribution
in both games.

Game Hg: Here we modify Op,, . back into Op,y,. This replacement affects the PRP computation
for the (1 — «)th set of PRP evaluations. Using a similar reduction as above we have that H7 and
Hg are computationally indistinguishable.

Game Hy: In this game we modify Oy, . back into Op,p,.. This replacement affects the ath set
of PRF evaluations.

Game Hig: Finally, we let the simulator Sig to perfectly emulate the role of P;. In particular, Sig
carries out the PRF and PRP computations by itself, and uses k, as generated by p, committed to
in ¢y, . This does not affect the outputs of these functions, but as above a reduction to the hiding
property of the commitment c,, is needed because now the coins used to generate the key k, are
committed to in c,.

26

We summarize the steps of the proof in the following table:

Game Change from previous game Indistinguishability argument
H; PRF using s1_, replaced with Opppp Identical to simulation
Hs Replace Opppp with Opy,, Pseudorandomness of Fppp
Hjs Computation of Vi_, and Cpgp, , uses Identical to Hz because truly
real input X of P; and not random values random permutation is used
Hy Replace Frrp(ka,-) with Oppp, Based on hiding property of
using a random key commitment c,, = com(pqa;ra)
Hs Replace Op,gp with Opy,.. Pseudorandomness of Fpgrp
Hg Use real input X for Cpgrp,, Hiding property of commitments
H~ Use real input X for V, Identical because Hp,,. is random
Hg Replace Ogyp,,,. With Opppp As in Hy
Hyg Replace Oy, With Opopp As in Hs
Hio Replace Oppp, using random key Hiding property of commitment
with Fprp using k, Cpo O pa (used to generate k)

Noting again that H; is identical to the simulation by S and that Hjg is identical to the real
execution, we conclude that the ideal simulation by § is computationally indistinguishable from a
real execution in the hybrid model, completing the proof. |l

Efficiency. We analyze the complexity of protocol mn. We first count the number of asymmetric
operations; in particular, modular exponentiations. Note that each invocation of mpgrr with inputs
of length p(n) requires 4p(n) + 1 exponentiations, because every invocation of the covert oblivious
transfer requires at most 4 such computations, and 7prr runs an oblivious transfer for every bit
of Py’s input (one additional exponentiation is used for obtaining the final result). Given that
there are 2my executions of mpgr, we have that the number of exponentiations is approximately
8ma - (p(n) + 1) + my. As we have already mentioned, p(n) is expected to be quite small in most
cases. We note that our protocol is completely modular meaning that any protocol mpgr for any
pseudorandom function Fpgr can be used. Thus, the development of a more efficient protocol wpgre
will automatically result in our protocol also being more efficient. In terms of round efficiency, mn
has a constant number of rounds due to the round efficiency of 7wy in the covert model, and the
fact that all these executions can be run in parallel.

4 Secure Pattern Matching

The basic problem of pattern matching is the following one: given a text T' of length N (for
simplicity we assume that N is a power of 2) and a pattern p of length m, find all the locations in
the text where pattern p appears in the text. Stated differently, for every i =1,..., N —m +1, let
T; be the substring of length m that begins at the ith position in 7. Then, the basic problem of
pattern matching is to return the set {¢ | 7; = p}. This problem has been intensively studied and
can be solved optimally in time that is linear in size of the text [4, 19].

In this section, we address the question of how to securely compute the above basic pattern
matching functionality. The functionality, denoted Fpyy, is defined by

A {i | T = pb) if [p| <m
(T, m),p) — { i | T :];1 .o Pm}) ot}irwise

27

where T; is defined as above, T' and p are binary strings and p; is the ¢th bit in p. Note that P;
who holds the text learns nothing about the pattern held by P>, and the only thing that P learns
about the text held by P, is the locations where its pattern appears.

Although similar questions have been considered in the past (e.g., keyword search [10]), to the
best of our knowledge, this is the first work considering the basic problem of pattern matching as
described above. The main difference between keyword search and the problem that we consider
here is that in keyword search, each keyword is assumed to appear only once. However, here the text
is viewed as a stream and a pattern can appear multiple times. Furthermore, the strings T;, 1541, ...
are dependent on each other (e.g. adjacent T;’s only differ in their first and last characters). Thus, it
is not possible to apply a pseudorandom function to each T; and use a protocol to securely compute
Frrp On p as in the case of keyword search. Thus, it seems that finding a secure simulation based
solution for this problem is harder.

We present a protocol for securely computing Fpy in the presence of malicious adversaries
with one-sided simulatability. The basic idea behind our protocol is for P, and P to run a single
execution of mpgp for securely computing a pseudorandom function with one-sided simulatability;
let f = Fpre(k,p) be the output received by P,. Then, P; locally computes the pseudorandom
function on T for every i and sends the results { Fprr(k,T;)} to Py. Party P, can then find all the
matches by just seeing where f appears in the series sent by P;. Unfortunately, within itself, this is
insufficient because P can then detect repetitions within 7". That is, if T; = T); then P will learn
this because this implies that Fpre(k,T;) = Fere(k,Tj). However, if T; # p, this should not be
revealed. We therefore include the index ¢ of the subtext T; in the computation and have P; send
the values Fogrp(k, T;||(i)) where (i) denotes the binary representation of 4. This in turns generates
another problem because now it is not possible for P to see where p appears given only Fpge(k,p);
this is solved by having P, obtain Fpge(k, pl|(i)) for every i. Although this means that P, obtains n
different outputs of Fprr (because there are n different indices i), we utilize specific properties of the
Naor-Reingold pseudorandom function, and the protocol mprr for computing it (see section 2.2.2),
in order to have P, obtain all of these values while running only a single execution of mprr. We
therefore consider a modified version of mpryr for computing the Naor-Reingold function such that
Py’s output is the set {Fpgpp(k,p||(i))};""", rather than just the single value Fopp(k,p). The
corresponding functionality, denoted by Fyprr, is defined by

((k, 1Y), 9) = O { Fene (R, pII(E) 1,5

This modification can be achieved as follows. P; is given a PRF key k = (p,q, 9%, a1, ..., Gmtlog N)

I L
with m+log N. Recall that in mpge the last message received by Py is § = ¢™° =17 Then instead
of this P; computes and sends the set

HlogN <1>J N—m+1
i,g; = g =1 “mt
=1

where (i); denotes the jth bit in (7). Finally, P, completes its run as in the original execution of
Tprr DUt relative to every element from the above set, yielding the set {f; = Fprr(k, p||<z>}zj\i TR
Formally,

Protocol mypre

o Inputs: The input of P; is k = (p, ¢, 9%, a1,...,0nt10g v) and a value 1V, and the input of Py is a
value z of length n.

28

e Auxiliary inputs: Both parties have the security parameter 17 and are given the primes p and gq.

e The protocol:

1. P; chooses n random values 71,...,r, €Rr Z:;.

2. The parties engage in a 1-out-2 multi-oblivious transfer protocol #7% (with m = n executions).
In the ith iteration, P; inputs y§ = r; and y} = r; - a; (with multiplication in ZZ;)7 and P, enters
the bit 0; = z; where x = z1,...,z,. If the output of any of the oblivious transfers is |, then
both parties output L and halt. Otherwise:

3. Py’s output from the n executions is a series of values y} L Yp o If any value y; is not in Zg,
then P, redefines it to equal 1.

Ir . L
4. Py sets § = g™ li=1 7 and sends P the set

. _qioe N ¢ N-m+l
i,9; =g =t “mti
=1

5. P, aborts if the order of any g; is different than ¢. Otherwise, P, computes and outputs the set

mn- yi N—m+1 N L
{(iayi =g, T)} = {(i,FpRp(k,pH(i)))}i:;m+

=1

We continue with the security proof of myprr. Due to the similarity to the proof of wprr we
present a proof sketch only.

Proposition 4.1 Assume that (. securely computes the multi-oblivious transfer functionality with
one-sided simulation. Then myprr Securely computes Fypry with one-sided simulation.

Proof Sketch: Note first that the only changes in mypgrr are relative to P, and thus the security
argument for the case that P; is corrupted is as in the proof of Proposition 2.4.

As for the case that P, is corrupted, we present the proof in the 7(-hybrid model. Let A
denote the adversary that controls P,, then construct a simulator S as follows. S receives A’s
input z’ for the multi-oblivious transfer execution, sends it to the trusted party computing Fprp

and receives its answer, the set Z = {2} ;™. Then, in each oblivious transfer S hands A a

n 1
random value 7; €g Z;. Next, S sets Z; = z i for every z; € Z and sends (i,%) to A. This
completes the simulation.

The proof that A’s view is identical in both the simulated and hybrid executions and that A
returns the same value in both executions is as in the proof of Proposition 2.4. This is because the
only difference between the executions is with respect to the PRF computation of the set { (i)}, ™.
Briefly, all the r; values are distributed identically to the messages sent in the hybrid execution,
and given the set Z and all the r; values, it is easy to define a valid random PRF key (using the
original values of {an1,...,a0g N} that were sent to the trusted party by P;). Therefore the exact

same proof can be applied here as well.

Efficiency. Note first that the round efficiency of mypgrr has not been changed with respect to mpgp
and is constant. In addition, the number of exponentiations in the batch oT is 14n + 14. Thus the
total number of exponentiations is 14n 4 14 + 2N (where the additional 2N exponentiations are
required to compute the set of N values).

29

The Protocol

We are now ready to present our main result for this section.
Protocol mpy,

e Inputs: The input of P; is a binary string T of size IV, and the input of P, is a binary pattern p of
size m.

e Auxiliary Inputs: the security parameter 1", and the input sizes N and m.
e The protocol:

1. Party P; chooses a key for computing the Naor-Reingold function on inputs of length m + log IV;
denote the key k& = (p, ¢, 9%, a1, ..., Gm+iog N)-

2. The parties execute myprr Where P; enters the key k and P» enters its pattern p of length m.
The output of P, from this execution is the set {(4, f;)}; ;™.

3. For every i, let t; = Fpgp(k, Tj||(4)). Then, Py sends Py the set {(i,t;)}~ ;™
4. P, outputs the set of indices {i} for which f; = ¢;.

Theorem 4.2 Let Fogrp denote the Naor-Reingold function and assume that it is pseudorandom.
Furthermore, assume that protocol wprr securely computes the functionality
((k, 1Y), p) = (A {Fore (b, p|| (1) Y™) with one-sided simulation. Then protocol mpy securely
computes Fpy with one-sided szmulatzon.

Proof: We separately consider the case that P, and P» is corrupted.

Party P; is corrupted. Since we are only proving one-sided simulatability here, all we need to
show is that P; learns nothing about P,’s input. Now, due to the fact that P;’s view only includes
messages within myprr, by the security of myprr with one-sided simulatability we have that P;
learns nothing about P,’s input p. Beyond that P, does not receive any message.

Party P, is corrupted. The motivation has been discussed above and we therefore proceed
directly to the proof. We present the proof here in the Fyprp-hybrid model. Let A denote an
adversary controlling P». Then we construct a simulator S as follows:

1. S receives p and z and invokes A on this input.

2. 8 receives from A its input p’ as handed to Fyprr, sends it to the trusted party and receives
back the set of text locations I for which there exists a match.

3. S chooses a key k « Zppp(1™ + log N) and sends A the set {(i, Forrp(k, p'[[(1))} 1™, as
the trusted party that computes Fyprr would.

4. Let k = (p,q,9™,a1,...,0m+logn). Then for every i € 1 <i < N —m+1, S continues as
follows:

e If i € I, the simulator S defines t; = Fpre(k, p'[|{i)).
e Otherwise, S defines t; = Fpre(k, p||(i)) where p # p’ is an arbitrary string.

5. § hands A the set {(4,¢;)} and outputs whatever A outputs.

30

Note that the only difference between the real and the simulated executions is in the last step
where, for every text location ¢ such that T; # p’, S defines ¢; based on a fixed p # p’ instead
of basing it on the substring 7; (which is unknown to the simulator). Intuitively, this makes no
difference by the pseudorandomness of the function. Formally, we have the following steps:

Game H;: We begin by modifying S so that it uses an oracle O, for computing the function
Fere. S can use this oracle by handing A the set F = {Oppp, (0'](0)) };™ " as its output
from the trusted party computing Fypge. Furthermore, it can define t; = Oppp, (0'[|(2)) if ¢ € T,
and t; = Oppgp (D||(@)) otherwise. By definition of Fpgy, this is exactly the same distribution as
generated by S above. We stress that a trusted party that computes Fpy, still involves in this game.

Game Hj: Next, we replace Oppy, with an oracle Opy, . computing a truly random function.
Clearly, the resulting distributions in both games are computationally indistinguishable. This can
be proven via a reduction to the pseudorandomness of the function Fprp. Informally, let Dpgpe
denote a distinguisher who attempts to distinguish Fprp from Hg,,.. Then Dpgr, playing the role
of S above, invokes its oracle on the sets {p; = p/||(i)} o™ and {t;};™", where t; = p; when
i € I, and t; = p||(i) otherwise (note that the difference is if p’ or p is used). Now, any distinguisher
for the distributions of games H; and Hs can be utilized by Dpgr to distinguish between Fprr and
Hipyne-

Game Hjs: We now modify S so that it computes all of the ¢; values correctly using the honest
Py’s text T instead of invoking a trusted party. The resulting distribution is identical because the
oracle computes a truly random function and all inputs are distinct in both cases (the distinction
is due to the index ¢ that is concatenated each time).

Game Hy: Next, we modify the oracle Oy, . back to an oracle Opgr computing Fprr. Again,
the distributions in games Hy and Hy are computationally indistinguishable by a straightforward
reduction.

Game Hj: Finally, we compute the pseudorandom function instead of using an oracle. This makes
no difference whatsoever for the output distribution.

Noting that the last game is exactly the distribution generated in a hybrid execution, we have
that the hybrid and ideal executions are computationally indistinguishable, completing the proof.

Efficiency. As for every protocol presented here, mpy, has a constant number of rounds. In addition,
the number of exponentiations computed is 14m + 14 + 3N.

One-sided versus full simulatability. Observe that our protocol does not achieve correctness
when Pj is corrupted because P; may construct the ¢; values in a way that is not consistent with
any text T. Specifically, for every ¢, the last m — 1 bits of T; are supposed to be the first m — 1
bits of Tj+1, but P; is not forced to construct the values in this way. Our protocol is therefore not
simulatable in this case (even when considering only covert adversaries), and we do not know how
to enforce such behavior efficiently.

References

[1] W. Aiello, Y. Ishai, and O. Reingold. Priced Oblivious Transfer: How to Sell Digital Goods.
EUROCRYPT 01, Springer-Verlag (LNCS 2045), pages 110-135, 2001.

31

2]

3]

[4]

[5]

[14]

[15]

[16]

[17]

[18]

Y. Aumann, and Y. Lindell. Security Against Covert Adversaries: Efficient Protocols for
Realistic Adversaries. In TCC 2007, Springer-Verlag (LNCS 4392), pages 137-156, 2007.

R. Agrawal and R. Srikant. Privacy-Preserving Data Mining. In the 2000 SIGMOD Con-
ference, pages 439450, 2000.

R.S. Boyer, and J.S. Moore. A Fast String Searching Algorithm. Communications of the
Association for Computing Machinery, 20:762-772, 1977.

D. Beaver. Foundations of Secure Interactive Computing. In CRYPTO’91, Springer-Verlag
(LNCS 576), pages 377-391, 1991.

R. Canetti. Security and Composition of Multiparty Cryptographic Protocols. Journal of
Cryptology, 13(1):143-202, 2000.

R. Cleve. Limits on the Security of Coin Flips when Half the Processors are Faulty. In 18th
STOC, pages 364-369, 1986.

T. El-Gamal A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Log-
arithms. In CRYPTO’8/, Springer-Verlag (LNCS 196), pages 10-18, 1984.

U. Feige and A. Shamir. Zero Knowledge Proofs of Knowledge in Two Rounds. In
CRYPTO’89, Springer-Verlag (LNCS 435), pages 526544, 1989.

M.J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword Search and Oblivious
Pseudorandom Functions. In TCC 2005, Springer-Verlag (LNCS 3378), pages 303-324,
2005.

M.J. Freedman, K. Nissim and B. Pinkas. Efficient Private Matching and Set Intersection.
In EUROCRYPT 2004, Springer-Verlag (LNCS 3027), pages 1-19, 2004.

O. Goldreich. Foundations of Cryptography: Volume 1 - Basic tools. Cambridge University
Press, 2001.

O. Goldreich. Foundations of Cryptography: Volume 2 — Basic Applications. Cambridge
University Press, 2004.

O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game — A Completeness
Theorem for Protocols with Honest Majority. In 19th STOC, pages 218-229, 1987.

S. Goldwasser and L. Levin. Fair Computation of General Functions in Presence of Immoral
Majority. In CRYPTO’90, Springer-Verlag (LNCS 537), pages 77-93, 1990.

C. Hazay and Y. Lindell. Efficient Oblivious Polynomial Evaluation and Transfer with
Simulation-Based Security. Manuscript, 2008.

J. Katz. Bridging Game Theory and Cryptography: Recent Results and Future Directions.
In the 5th TCC, Springer-Verlag (LNCS 4948), pages 251-272, 2008.

L. Kissner and D.X. Song. Privacy-Preserving Set Operations. In CRYPTO 2005, Springer-
Verlag (LNCS 3621), pages 241-257, 2005.

32

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast Pattern Matching in Strings. SIAM Journal
on Computing, 6:323-350, 1977.

Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation.
Journal of Cryptology, 16(3):143-184, 2003.

Y. Lindell and B. Pinkas. Privacy Preserving Data Mining. Journal of Cryptology, 15(3):177—
206, 2002.

S. Micali and P. Rogaway. Secure Computation. Unpublished manuscript, 1992. Preliminary
version in CRYPTO’91, Springer-Verlag (LNCS 576), pages 392-404, 1991.

M. Naor and B. Pinkas. Oblivious Transfer and Polynomial Evaluation. In 31st STOC,
pages 245-254, 1999.

M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols. In 12th SODA, pages
448-457, 2001.

M. Naor and O. Reingold. Number-Theoretic Constructions of Efficient Pseudo-Random
Functions. In 38th FOCS, pages 231-262, 1997.

T. P. Pedersen. Non-Interactive and Information-Theoretical Secure Verifiable Secret Shar-
ing. In CRYPTO 1991, Springer-Verlag (LNCS 576) pp. 129-140, 1991.

M. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo TR-81, Aiken
Computation Laboratory, Harvard U., 1981.

A. Yao. How to Generate and Exchange Secrets. In 27th FOCS, pages 162-167, 1986.

33

