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Abstract

We study further CCZ-equivalence of (n, m)-functions. We prove
that for Boolean functions (that is, for m = 1), CCZ-equivalence
coincides with EA-equivalence. On the contrary, we show that for
(n,m)- functions, CCZ-equivalence is strictly more general than EA-
equivalence when n > 5 and m is greater or equal to the smallest
positive divisor of n different from 1. Our result on Boolean functions
allows us to study the natural generalization of CCZ-equivalence cor-
responding to the CCZ-equivalence of the indicators of the graphs of
the functions. We show that it coincides with CCZ-equivalence.

Keywords: Affine equivalence, Almost perfect nonlinear, Bent
function, Boolean function, CCZ-equivalence, Nonlinearity.

1 Introduction

The notion of CCZ-equivalence of vectorial functions, introduced in [4] (the
name came later in [2]), seems to be the proper notion of equivalence for
vectorial functions used as S-boxes in cryptosystems and has led to new APN
and AB functions. Two vectorial functions F' and F’ from Fj to F5' (that
is, two (n, m)-functions) are called CCZ-equivalent if their graphs Gp =
{(z,F(z)); x € F3} and Gp = {(z, F'(z)); € F3} are affine equivalent,
that is, if there exists an affine permutation £ of F§ x 7' such that L(Gr) =
Gp. If F is an almost perfect nonlinear (APN) function from Fy to Fy,
that is, if any derivative D, F(x) = F(x) + F(x 4+ a), a # 0, of F is 2-to-1
(which implies that F' contributes to an optimal resistance to the differential
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attack of the cipher in which it is used as an S-box), then F’ is APN too. If
F is almost bent (AB), that is, if its nonlinearity equals 2"~! —2"2" (which
implies that F' contributes to an optimal resistance of the cipher to the linear
attack), then F” is also AB. In fact, these two central notions for the design of
S-boxes in block ciphers, APNness and ABness, can be expressed in a natural
way by means of the graph of the S-box and this is why CCZ-equivalence is
the proper notion of equivalence in this framework.

Recall that F' and F' are called EA-equivalent if there exist affine au-
tomorphisms L : F; — Fj and L' : F}' — F3" and an affine function
L" : Fy — F3" such that F/ = L'o Fo L+ L" (if L” = 0 and L, L’ are
linear, the functions are called linearly equivalent). EA-equivalence is a par-
ticular case of CCZ-equivalence [4].

In the present paper we investigate the question of knowing whether
CCZ-equivalence of (n, m)-functions is strictly more general than their EA-
equivalence. We already know that the answer to this question is yes when
n = m since every permutation is CCZ-equivalent to its inverse and, more-
over, as shown in [2], CCZ-equivalence is still more general than the EA-
equivalence of the functions or their inverses (when they exist). A result
in the other sense has been proven in [1]: CCZ-equivalence coincides with
EA-equivalence when applied to bent (n, m)-functions, that is, to functions
whose derivatives D, F(x) = F(z) + F(z + a), a # 0, are balanced (i.e. uni-
formly distributed over F5'; bent functions exist only for n even and m < n/2,
see [6]). The question is open for general (n, m)-functions when n # m. In
Subsection 2.1 we prove that the answer is also negative for (n, m)-functions
when m = 1, that is, for Boolean functions. This poses then the question of
knowing whether the case m = 1 is a particular case or if the same situa-
tion occurs for larger values of m. We give a partial answer to this question
in Subsection 2.2 by showing that CCZ-equivalence of (n,m)-functions is
strictly more general than their EA-equivalence when n > 5 and m is greater
or equal to the smallest positive divisor of n different from 1.

The question of knowing whether a notion still more general than CCZ-
equivalence for vectorial functions has been raised by several authors. A
notion having potentially such property, that we call ECCZ-equivalence, is
introduced and studied in Section 3.

2 CCZ-equivalence of (n, m)-functions

If we identify F} with the finite field Fon then a function F': Fon — Fon is
uniquely represented as a univariate polynomial over Fon of degree smaller



than 2"
on_q

F(z) = Z ', ¢ € Fon.
i=0

If m is a divisor of n then a function F' from Fsn to Fom can be viewed as
a function from Fy. to itself and, therefore, it admits a univariate polynomial
representation. More precisely, if tr,(x) denotes the trace function from Fyn
into 5, and tr,,/m,(x) denotes the trace function from Fan into Fom, that is,

tr,(z) = z+a22+at+. +22,

n/m—1)m

trm(r) = o+ + 2" 4 :

then F can be represented in the form tr, (3>, " c;z') (and in the form

tr, (37 ' e;a?) for m = 1). Indeed, there exists a function G from Fan to
Fon (for example G(z) = aF'(z), where a € Fon and tr,,/,(a) = 1) such that
F equals tr,, ), (G(x)).

For any integer k, 0 < k < 2"—1, the number wy(k) of nonzero coefficients
ks, 0 < ks <1, in the binary expansion ZZ:_OI 2%k, of k is called the 2-weight
of k. The algebraic degree of a function F' : Fon — IFon is equal to the
maximum 2-weight of the exponents i of the polynomial F(z) such that
¢; # 0, that is,

d°(F) = oJBaX wo (7).
¢;#0

The algebraic degree of a function (if it is not linear) is invariant under EA-
equivalence but it is not preserved by CCZ-equivalence. This has been proved
in [2]. Let us recall why the structure of CCZ-equivalence implies this: for
an (n, m)-function F and an affine permutation £(z,y) = (Li(z,y), La(z, y))
of Fy x FJ' the set L(GF) equals {(Fi(z), Fo(z)) : © € F3} where Fi(z) =
Ly(z, F(z)), Fy(x) = Lo(z, F(x)). It is the graph of a function if and only if
the function Fj is a permutation. The function CCZ-equivalent to F' whose
graph equals £(Gp) is then I’ = Fy o F;*. The composition by the inverse
of F; modifies in general the algebraic degree (examples are given in [2]).

2.1 CCZ-equivalence of Boolean functions

We first consider the question whether CCZ-equivalence is strictly more gen-
eral than EA-equivalence for Boolean functions. Let a Boolean function f’
be CCZ-equivalent to a Boolean function f and EA-inequivalent to it. Then
there exist linear functions L : Fy — Fj, and [ : F; — F,, and elements
a € F3\{0}, n € Fy, such that

L(z,y) = (L(z) + ay,l(z) + ny) (1)
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is a linear permutation of 5 x Fy, and for

F(r) = L(z)+af(z) (2)
Fy(x) = IU(z) +nf(x), (3)

F} is a permutation of Fy and
fl(z) = Fyo Fy (). (4)

Hence we need characterizing the permutations of the form (2). Note that for
any permutation (2) the function L must be either a permutation or 2-to-1.
Thus, we have only two possibilities for the function Fj, that is, either

Fi(z) = L(z+ L™ '(a) f(z))

when L is a permutation, or

Fa(@) = L' ((0/b)? +a/b+ L' (a) f () (5)

when L is 2-to-1 and its kernel equals {0,b} where b € F5,, and L' is a
linear permutation of Fa» such that L'((x/b)* + x/b) = L(z). Note that if
we take L™ o Fy (when L is a permutation) or L'~! o F} (when L is 2-to-1)
in (4) instead of F} then we get "o L and f’ o L', respectively, which are
EA-equivalent to f’. Therefore, without loss of generality we can neglect L
and L’. Then (5) gives

Fi(z) = (2/b)* +/b+af(x) (6)
Fi(bz) = 2* +2+af(bz) =2° + + ag(x) (7)

where g(z) = f(bx). Hence it is sufficient to consider permutations (2) of
the following two types

z+af(z) (8)
2 +af(x). 9)

A lemma will simplify the study of permutations (2):

Lemma 1 Let n be any positive integer, a any nonzero element of Fon and
f a Boolean function on Fon.

- The function F(x) = x + af(x) is a permutation over Fan if and only if F
s an involution.

- The function F'(z) = x+z*+af(x) is a permutation over Fan if and only if
trp(a) =1 and f(x + 1) = f(z) + 1 for every x € Fan. Under this condition,
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let H be any linear hyperplane of Fon not containing 1; for every y € Fon,
there exists a unique element ¢(y) € Fon such that ¢(y) € H and

oY)+ (o) =y if tra(y)
P(y) =0y +a)+1 if try(y)

0
1

Then ¢ is a linear automorphism of Fon and we have

F'= Y (y) = ¢(y) + traly) + f(0(y))

for every y € Fon.

Proof. Let us assume that F'is a permutation. We have
FoF(x)=z+af(x)+af(x+ af(zx)).

If f(z) = 0 then obviously FoF(z) = z. If f(x) =1 then FoF(x) =x+a+
af(x+a). Moreover, we have f(x+ a) = 1 since otherwise F'(z + a) = F(z)
which contradicts F' being a permutation. Hence, when f(z) = 1, we have
also F o F(x) = x. Hence, F~! = F.

If F’ is a permutation over Fan, then tr,(a) = 1 since otherwise we have
tr,(F'(x)) = 0 for every x € Fayn (and F’ is not surjective), and f(z +
1) = f(z) + 1 for every x since if f(x 4+ 1) = f(x) for some = € Fan, then
F'(x +1) = F'(x) and F’ is not injective. Conversely, if tr,(a) = 1 and
flx+1) = f(x) + 1 for every z € Fan then, for every z,y € Fon, we have
F'(xz) = y if and only if:

- either tr,(y) = f(x) = 0 and x is the unique element of Fon \ supp(f) such
that = + 22 = y;

- or tr,(y) = f(z) = 1 and «x is the unique element of supp(f) such that
r+a2?=y+a.

Hence, F’ is a permutation over Fon.

Moreover, since tr,(a) = 1 and f(z+1) = f(z)+1 for every x € Fan, we have
F'~Yy+a) = F""'(y) + 1 for every y € Fan. The existence and uniqueness
of ¢(y) is straightforward. The restriction of ¢ to the hyperplane of equation
tr,(y) = 0 is an isomorphism between this hyperplane and H. The restriction
of ¢ to the hyperplane of equation tr,(y) = 1 is an isomorphism between this
hyperplane and Fon \ H. Hence ¢ is a linear automorphism of Fyn. Moreover,
for every x,y € Fan, we have F'(z) = y if and only if:

- either tr,(y) = f(z) = 0 and =z = ¢(y) + f(é(y)) (indeed, if ¢(y) & supp(f)
then ¢(y) is the unique element z of Fon \supp(f) such that x + 2> = y and
if ¢(y) € supp(f) then ¢(y) + 1 is the unique element x of Fan \supp(f) such



that = + 22 = y since f(z + 1) = f(x) + 1);
- or tr,(y) = f(z) =1 and

r=F"y+a)+1=0¢y+a)+ floly+a)+1=0(y)+1+ f(d(y))

This completes the proof. O

We deduce the main result of this subsection:

Theorem 1 Two Boolean functions of Fon are CCZ-equivalent if and only
if they are EA-equivalent.

Proof. Assume that two Boolean functions f and [’ on Fyn are CCZ-
equivalent and EA-inequivalent. Then there is a linear permutation £ of
5. such that (1)-(4) take place. We first assume that 7 = 1.

In case L is a permutation, we have Fy(z) = L(z + L™(a)f(z)) and
therefore by Lemma 1

Fyi(z) = L7 (z) + L™ (a) f (L™} (2)).

Then we have

f(L(x) = WF(L(x) + f(FH(L(x))
= l(z+ L7 (a)f(x)) + f(z+ L (a)f(x)).

If f(z) = 0 then f'(L(z)) = l(x). If f(z) = 1 then we have f(z+L *(a)) = 1.
Indeed, since a is assumed to be nonzero, and F} being a permutation we
have L(z + L~Y(a) + L~'(a)f(x + L7(a))) = Fi(x + L(a) # Fi(z) =
L(z + L7(a)). Hence, f'(L(z)) = l(x) + (L *(a)) + 1 when f(z) = 1.

Therefore,
f1(L(2)) = Uz) + (L + (L7 (a))) f(2).

Note that {(L7*(a)) = 0. Indeed, if [(L'(a)) = 1 then the system of equa-
tions

L(x)+ay = 0
l(x)+y =
has two solutions (0,0) and (L* (a),1) which contradicts £ being a permu-
tation. Hence, f'(x) = (L (z)) + f(L '(x)) and f is EA-equivalent to f’,
a contradiction.

Let L be now 2-to-1. Then, as observed above, we can assume without
loss of generality that (6) and (7) take place. Then, since £ is bijective,
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we have [(b) = 1 (otherwise, the vector (b,0) would belong to the kernel of
L). By Lemma 1, we have g(z + 1) = g(x) + 1 for any = € Fan, that is,
f(bx +b) = f(bx) + 1 for any x € Fon, that is, f(x 4+ b) = f(z) + 1 for any
r € Fyu. By Lemma 1, the inverse of the function z? + x + ag(z) equals
o(x) + trp(z) + g(P(x)) for a certain linear permutation ¢ of Fan. Then

Fy i (z) = b(6(2) + tra(2) + f(b ¢(2)))

and therefore

@) = 1(b(o(a) + tralw) + £ 6(x)) ) + £ (b(8(x) + tra(a) + (b 6()))

= (bo +trn( )+ f(b o)) + (b d(x)) + tra(z) + f(b ¢())
= 1(bp(z)) + f(b o(x)).

This means that f and f’ are EA-equivalent, a contradiction.
According to the observations above and to Lemma 1, if = 0 then
we can reduce ourselves to the cases f'(z) = l(z + af(z)) and f'(z) =

l<b(¢(x) + trp(x) + f(b ¢(x)))> For the first case we necessarily have

[(a) = 1 and for the second case [(b) = 1 since otherwise the kernel of L
would not be trivial (it would contain (a, 1) and (b, 0) respectively). Thus,
fl(x) =1l(x)+ f(z) or f'(x) =1(b ¢(x))+ tr,(z) + f(b ¢(x)), and therefore

f and f’" are EA-equivalent, a contradiction. O

A Boolen function f of Fy» can be considered as a function form Fon to
itself. Hence it is a natural question whether an (n,n)-function f’, which
is CCZ-equivalent to f, is necessarily EA-equivalent to a Boolean function,
or even EA-equivalent to f. The theorem below shows that the answer is
positive.

Theorem 2 Let f be a Boolen function of Fon and [’ a function from Fan
to itself. Then [ and f' are CCZ-equivalent as (n,n)-functions if and only
if they are EA-equivalent as (n,n)-functions.

Proof. 1If f and f’ are CCZ-equivalent as (n,n)-functions then their is a
linear permutation £(z,y) = (Li(x,y), L2(z,y)) of Fa. such that Fi(z) =
Li(z, f(x)) is a permutation of Fy. and f’ = FyolF|* for Fy(z) = Ly(z, f(x)).
As we saw above it is sufficient to consider only the cases

Li(z,y) = z+ay, (10)
Li(z,y) = (2/b)*+z/b+ ay, (11)



where a,b € F3.. We have Ly(z,y) = L'(x) 4+ L"(y) for some linear functions
L' and L” from Fy» to itself, and

Fy(z) = L'(x) + L"(f(x)) = L'(x) + L"(1) f ().
Since L is a permutation then the system
r+ay =0
L'(x)+ L' (y)=0
in case (10), and the system
(x/b)* +2/b+ay =0
L'(x)+ L' (y)=0
in case (11), must have only (0,0) solution. Hence, L'(a) # L"(1) for case
(10) (since otherwise (a, 1) is in the kernel of £), and L'(b) # 0 for case (11)

(since otherwise (b,0) is in the kernel of L).
Using Lemma 1 in case (10) we get

flx) = FoF ' (z)=L'(z+af(x)) +L'(1)f(z+af(r))
L'(z)+ (L'(a) + L"(1)) f(2)

since f(z + af(x)) = f(x) as we see it in the proof of Lemma 1. Hence f
and f’ are EA-equivalent as (n,n)-functions.
Applying Lemma 1 for case (11) we get

Pe) = Fyo by iw) = L' (b(6(x) + tra(2) + (b 6(x)))
+I'(1 ( )+ tro(z () )
= L'(b ¢(x)) + L'(b) tra(z )+L'() f(b o(x))
+L"(1) f(b ¢(z)) + L"(1) try(z) + L"(1) f (b ¢(z ))
= (L’(b o(z)) + L'(b) tr,(z) + L" (1) tr,, x)) + L'(b (7))

since f(z +b) = f(x) + 1 as we see it from the proof of Lemma 1. Thus f
and [’ are EA-equivalent as (n, n)-functions. O

2.2 CCZ-equivalence and EA-equivalence of (n, m)-func-
tions when 1 <m <n

We first show in Proposition 1 that there exist values of (n,m) such that
CCZ-equivalence is strictly more general than EA-equivalence. We extend
then in Theorem 3, thanks to Proposition 2, the hypotheses under which this
Is true.



Proposition 1 Letn > 5 and m > 1 be any divisor of n, or n = m = 4.
Then for (n, m)-functions CCZ-equivalence is strictly more general than EA-
equivalence.

Proof. We need to treat the cases n odd and n even differently.
- Let n be any odd positive integer, m any divisor of n and

F(z) = tr,/m(?). (12)

The linear function from Fon X Fom to itself:

Llw,y) = (Li(2, ), La(@, ) = (24 tra(@) + tr(y), y + tra (@) + trn(y) )
is an involution, and
Fi(@) = Li(w, F(2)) = & + tr, (1) + tra(2?)
is an involution too (which is easy to check). Let:
Fy(z) = Lo, F(2)) = trym(2°) + trp(x) + tr, (%)
then the function:
F'(z) = FyoF Y (z)=FyoF(x)
= trn/m(:t?’) + trn/m(:ﬂ2 + ) tr,(x) + trn/m(:ﬂ2 + ) tr, (2%)

is CCZ-equivalent to F' by definition.
The part tr,,/,,, (x> 4+ x) tr, (2*) is nonquadratic for n > 5 and m > 1. Indeed,

2 9i+1 9i y 9jm 9i+1 4 9i 4 9jm+1
oy (@7 2) tro(2) = Y 2T Y 2 (13)
0<i<n 0<i<n
0<j<n/m 0<j<n/m

and for n > 5, m > 1, the item 22 722" does not vanish in the sum above.
By construction the (n,m)-functions F' and F’ are CCZ-equivalent. When
n > 5 and m > 1 they are EA-inequivalent because they have different
algebraic degrees.

- Let now n be any even positive integer, m any divisor of n and F' be given
by (12). The linear function

L(z,y) = (Li(z,y), La(,y)) = (& + trp(y), v)

is an involution, and

Fi(z) = Ly(z, F(z)) = 2 + tr,,(z*)
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is also involutive (this can be easily checked). Let:
Fy(x) = Lo(z, F(x)) = tr,,/m(2?)
then
F'(x) = FyoF['(z) = Fyo Fi(x) :trn/m< T + tr,(z 3)
=t (2°) + tr (1) tr, (2%) + tr (2% + 2) t1, (7).

The part tr,,/m(z? + x) tr,(z*) is nonquadratic when n > 6, m > 1, or when
n =m = 4. Indeed, in these cases the item % *2'*2” does not vanish in (13).
Hence, the (n,m)-functions F' and F’" are CCZ-equivalent by construction,
and when n > 6, m > 1, or when n = m = 4 they are EA-inequivalent
because of the difference of their algebraic degrees. O

The next proposition will allow us to generalize the conditions under
which the statement of Proposition 1 is valid.

Proposition 2 If there exist CCZ-equivalent (n, m)-functions F and F" which
are EA-inequivalent then for any positive integer k the (n,m + k)-functions
H(z) = (F(2),0) and H'(x) = (F'(x),0) are also CCZ-equivalent and EA-
inequivalent.

Proof. Let
L(I‘, y) - (Ll(xv y)7 LQ(xv y))

be a linear permutation of Fon X Fom which maps the graph of F' to the graph
of F’. Then we have:

Fl(l') = Ll(ZL‘,F(ZE)),
Fy(z) = Loz, F(z)),
F'(z) = FyoF ' (z),

where [} is a permutation. Let

w(f’?a (ya Z)) = (wl(x’ (y’ Z))> ¢2(37a (ya Z)))

be a function from Fon X Fom X For to itself, where

¢1(I, (y7 Z)) = Ll(x7y) + LO(Z)

for some linear function Ly from For to Fon, and where
1/)2(.’E, (y, Z)) - (L2(I7 y)? Z)

10



¥ is linear and it is a permutation; indeed its kernel is the set of solutions of
the system of two linear equations

Li(z,y) + Lo(2) =
(LQ(xay)’Z) = O'

From the second equation we get z = 0, and since Ly is linear then Lg(0) =0
and we come down to the system

Li(z,y) = 0
LQ(:B?y) =0

which has only solution (0,0). Hence the kernel of ® is trivial. Denote
Hi(xz) = ¢y (z, H(x)) and Hy(x) = ¢o(x, H(x)) then

H(z) = 12, H(z)) = ¥1 (2, (F(2),0)) = Li(z, F(2)) + Lo(0) = Fi(x)

which is a permutation and

HQ(I) = ¢2(I7 H(%)) - 77/)2(%‘, (F(ZL‘),O)) - (LQ(ZE,F(ZE‘)),O) - (FQ(‘I)70)

Hence,
H'(z) = Hyo H{ '(z) = (Fy o Fy '(2),0) = (F'(2),0)

is CCZ-equivalent to H(z). If F' and I are EA-inequivalent then obviously
H and H' are EA-inequivalent too. O

Proposition 1 and Proposition 2 give

Theorem 3 Letn > 5 and k > 1 be the smallest divisor of n. Then for any
m >k, the CCZ-equivalence of (n, m)-functions is strictly more general than
their EA-equivalence.

In particular, when n > 6 is even, this is true for every m > 2.

Remark.
The paper [5] is dedicated to the study of permutations of the kind G(z) +
f(z) where f is a Boolean function of Fon and G is either a permutation or
a linear function from Fy. to itself. Lemma 1 gives us a description of the
inverses of all such permutations:

Corollary 1 Let L be a linear function from Fon to itself and f be a Boolean
function of Fon. If F(z) = L(x) + f(x) is a permutation then F~' is EA-
equivalent to F.
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Corollary 2 Let G be a permutation of Fon and f be a Boolean function of
Fon. If F(x) = G(z) + f(x) is a permutation then

F Y z)=G Yz + foG'(2)).

Proof. We have F(z) = H o G(x), where H(z) = x + fo G !(x) is a
permutation. H is involutive by Lemma 1. Hence

Flao)=Gl'oH Y2) =G o H(z) =G Yo+ foG ().

3 Consequence on a notion of equivalence of
vectorial functions whose definition is more
general than CCZ-equivalence

It is not hard to check that CCZ-equivalence of functions is the same as EA-
equivalence of the graphs of these functions. Indeed, for a given function F
from 5 to Fy', let us denote the indicator of its graph Gg by lg,., that is,

1 it y=F(z)
lop(z,y) = { 0 otherwise,

lg, is a Boolean function over 3. It is obvious that when composing 14,
by an affine permutation £ of Fj ™™ on the right, that is, taking 1¢, o £, we
are within the definition of CCZ- equivalence of functions. If we compose 14,
by an affine permutation £ of F; on the left, then we get Lo 15, = 1g, +0
for b € Fy. Hence, we have only to prove that if for an (n, m)-function F”
and for an affine Boolean function ¢ of Fy*"

la, (z,y) = lap (7, y) + (2, 9)

then F and F’ are CCZ-equivalent. In case m > 2 we must have o = 0
because 1g, and 1g,, have Hamming weight 2" while, if ¢ is not null, it has
then Hamming weight 2"t™~1 or 2" a contradiction, since 2"+t ~1 > 27+l
Thus, for m > 2 we get F' = F’. Let us consider now the case m = 1. Then
lgp(z,y) = F(x)+y+1and p(x,y) = A(x) +ay + b for some affine Boolean
function A of Fy and a,b € Fy. Therefore,

la,, (z,y) = lep(z,y) + o(z,y) = F(z) + A(z) + (e + Dy + b+ 1.
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If a = 1then 1¢,, is not an indicator of a graph of a function since 1, (z,0) =
lg,.(z,1) = 1 when F(x) + A(x) = b. If a = 0 then 1g,,(x,y) = 1 if and
only if y = F(x) + A(z) + b, that is, F'(z) = F(z) + A(x) + b and F and
F' are EA-equivalent and therefore CCZ-equivalent. Let now m = 2. Then
¢ has Hamming weight 2"*! while 15, and lg,, have Hamming weight 2".
Therefore, ¢(z, F(x)) = 1 for any € Fy. Besides, since 1¢,, is the in-
dicator of the graph of a function then for any z € I} there is a unique
a, € Fy, ap # F(x), that o(z,a,) = 1. Withought loss of generality we
can assume that F'(0) = 0. Then ¢(0,0) = ¢(0,F(0)) = 1. We also have
©(0,9) = 1 and ¢(0,8) = 0 for any 5 € F4\{0,p}. Since ¢ is affine then
for any = € Fy we have p(z, FI(x) + o) = ¢o(x, F(x)) + ¢(0,a0) +1 =1 and
o(z, F(x) + B) = ¢(x, F(x)) + ¢(0,3) +1 = 0. Thus, 1g,,(z,y) = 1 if and
only if y = F(x) + ap, that is, F'(z) = F(x) + ap.

Hence, (n, m)-functions F' and F’ are CCZ-equivalent if and only if the
graphs of F' and F’ are EA-equivalent. A natural question is to know whether
CCZ-equivalence of the graphs is more general than their EA-equivalence.

Definition 1 Two (n,m)-functions F' and F' are called ECCZ-equivalent
if the indicators of their graphs Grp = {(z,F(z)); x € F}} and Gpr =
{(z, F'(z)); x € F}'} are CCZ-equivalent.

According to Theorem 1 we have:

Corollary 3 Let F' and F' be two (n,m)-functions. F and F' are ECCZ-
equivalent if and only if they are CCZ-equivalent.
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