
Adaptive Preimage Resistance and Permutation-based
Hash Functions

Jooyoung Lee, Je Hong Park

The Attached Institute of Electronics and Telecommunications Research Institute
Yuseong-gu, Daejeon, Korea 305-390

jlee05@ensec.re.kr,jhpark@ensec.re.kr

Abstract. In this paper, we introduce a new notion of security, called adaptive preimage
resistance. We prove that a compression function that is collision resistant and adaptive
preimage resistant can be combined with a public random function to yield a hash function
that is indifferentiable from a random oracle. Specifically, we analyze adaptive preimage
resistance of 2n-bit to n-bit compression functions that use three calls to n-bit public ran-
dom permutations. This analysis also provides a simpler proof of their collision resistance
and preimage resistance than the one provided by Rogaway and Steinberger [19]. By using
such compression functions as building blocks, we obtain permutation-based pseudorandom
oracles that outperform the Sponge construction [4] and the MD6 compression function [9]
both in terms of security and efficiency.

Keywords: hash function, indifferentiability, blockcipher, provable security

1 Introduction

A cryptographic hash function takes a message of arbitrary length, and returns a bit string of
fixed length. The most common way of hashing variable length messages is to iterate a fixed-size
compression function according to the Merkle-Damg̊ard paradigm. The underlying compression
function can either be constructed from scratch, or be built upon off-the-shelf cryptographic prim-
itives. For example, the Whirlpool hash function, adopted as ISO/IEC 10118-3 standard, is based
on the Miyaguchi-Preneel construction using a modified version of AES. Compression functions
based on blockciphers have been widely studied [6, 11, 12, 15, 17, 24, 25]. Recently, researchers has
begun to pay attention to building compression functions from fixed key blockciphers, where just a
small number of constants are used as keys [4, 5, 18, 19, 22]. Since each key of a blockcipher defines
an independent random permutation in the ideal cipher model, such compression functions are
often called permutation-based. Permutation-based compression functions have an obvious advan-
tage over conventional blockcipher-based ones, since fixing the keys allows to save computational
overload for key scheduling.

The security of a permutation-based compression function is usually analyzed in the ideal ci-
pher model. The goal of the analysis has been to prove security notions such as collision resistance
and preimage resistance in an information theoretic sense. However, in many cryptographic pro-
tocols including OAEP [2], PSS [3] and HMQV [13], to name a few, those notions do not seem to
suffice as the security requirement for the underlying hash functions. Instead, their security is guar-
anteed under a stronger assumption that the underlying hash functions behave as random oracles,
publicly available random functions that take a message of arbitrary length. Such a hash func-
tion, called a pseudorandom oracle, is rigorously defined in the indifferentiability framework [16].
To the authors’ knowledge, the Sponge construction [4] and the MD6 compression function [9]
are the only constructions of permutation-based hash functions whose security is proved in the
indifferentiability framework.

In this paper, we attempt to find an alternative method of building a pseudorandom oracle from
public random permutations. A natural approach is to extend the domain of a permutation-based
compression function using the Merkle-Damg̊ard transform, and apply an independent random



function to the output of the MD chaining. This approach is essentially same as the NMAC con-
struction [7]. However, we found that collision resistance of the compression function is not enough
to guarantee the indifferentiability of the “NMAC-type” construction from a random oracle. This
observation motivated us to introduce a new notion of security, called adaptive preimage resis-
tance. Adaptive preimage resistance can be regarded as a strengthening of preimage resistance.
In a conventional definition of preimage resistance, an adversary chooses a point in the range of
a hash function at the beginning of the experiment, and tries to find a preimage of the point by
making adaptive queries to the underlying ideal primitives. In our strengthening, an adversary is
allowed to adaptively choose a target point and include it into a commitment list during making
queries. The only constraint on the choice is that the previous queries should not determine any
preimage of the target point. We say that a hash function is adaptive preimage resistant if no
adversary is able to find a preimage for any point in the commitment list except with negligible
probability.

We prove that a hash/compression function that is collision resistant and adaptive preimage
resistant can be composed with a public random function to yield a hash function that is indifferen-
tiable from a random oracle (Theorem 2). We also show that the plain Merkle-Damg̊ard transform
preserves adaptive preimage resistance and collision resistance as a combination (Theorem 1). As a
related work, Ristenpart and Shrimpton proposed so called Mix-Compress-Mix construction that
transforms any collision resistant functions into a pseudorandom oracle [18]. However, their work
is based on a complexity-theoretic definition of collision resistance. We also note that Dodis et. al.
independently introduced a security notion called preimage awareness [10]. The authors proved a
similar result that preimage awareness is preserved by the strengthened Merkle-Damg̊ard trans-
form, and any preimage aware function can be composed with a public random function to yield
a pseudorandom oracle. However, we emphasize that adaptive preimage resistance is a separate
notion from collision resistance, while preimage awareness is a strengthening of collision resis-
tance. We believe that our notion is more suitable for the modular approach of security analysis.
A detailed comparison between adaptive preimage resistance and preimage awareness is made in
Section 3.2.

Results We summarize our results as follows.

– We introduce a new notion of security, called adaptive preimage resistance. This notion can
be regarded as a natural strengthening of preimage resistance. We prove that a compression
function that is collision resistant and adaptive preimage resistant can be composed with a
public random function to yield a hash function that is indifferentiable from a random oracle.
We also show that the plain Merkle-Damg̊ard transform preserves adaptive preimage resistance
and collision resistance as a combination.

– We prove adaptive preimage resistance for a certain class of permutation-based compression
functions. They are 2n-bit to n-bit compression functions that use three calls to public random
permutations, denoted “LP231” in [19]. A unified approach allows us to prove their collision
resistance and preimage resistance within the proof of adaptive preimage resistance. Our anal-
ysis is not only simpler than the one given in [19], but also provides for better asymptotic
bounds (at least for the bounds that are explicitly approximated). In [19], the bounds on the
number of queries for collision resistance and preimage resistance are given by O

(
2n(1/2−ε)

)

and O
(
2n(2/3−ε)

)
, respectively, for any ε > 0. (The bounds are misprinted as O

(
2n/2−ε

)

and O
(
22n/3−ε

)
in [19].) Our proof guarantees the two properties up to O

(
2n/2/n

)
and

O
(
f(n)22n/3

)
queries, respectively, for any decreasing function f(n). The adaptive preimage

resistance of LP231 is guaranteed up to O
(
2n/2/n

)
queries. LP231 is the first permutation-

based compression function whose adaptive preimage resistance is proved. (However, we also
note that Steinberger independently proved the preimage awareness of LP231 [23].)

– With a “filtering” function built upon public random permutations, we obtain an alternative
construction of permutation-based pseudorandom oracles, comparable to the Sponge construc-
tion and the MD6 compression function. As an example, one might use F = σ ⊕ σ−1 for a



public random permutation σ. This function is known to be indifferentiable from a noncom-
pressive public random function up to the birthday bound [8]. Combined with LP231, the
resulting hash function is purely permutation-based with rate 1/3. The indifferentiability from
a random oracle is guaranteed up to the birthday bound. On contrast, the Sponge construc-
tion and the MD6 compression function with rate 1/3 achieve the indifferentiability only up
to O

(
2n/3

)
queries.

2 Preliminaries

General Notations For a positive integer n, we let In = {0, 1}n denote the set of all bitstrings
of length n, and let I∗n =

⋃∞
i=1 Ii

n. We simply write I∗ = I∗1 . We let F2n denote a finite field of
order 2n. Throughout our work, we will identify F2n and In, assuming a fixed mapping between
the two sets. We write Πn for the set of permutations on In.

For a set U , we write u
$← U to denote uniform random sampling from the set U and assignment

to u. The multiplicity of u in a multiset U is denoted as multU (u). For an event E , the complement
of E is denoted as E .

Linearly-dependent Permutation-based Compression Functions For positive integers m,
k and r with m > r, let MF2n (m, k, r) be a set of (k + r)× (m + k) matrices A = (aij) over F2n

such that
aij = 0 for 1 ≤ i ≤ k and j ≥ m + i.

Then each matrix A ∈ MF2n (m, k, r) defines a compression function H[A] with oracle access to
independent random permutations π1, . . . , πk ∈ Πn as follows.

H[A] : Im
n −→ Ir

n

(v1, . . . , vm) 7−→ (w1, . . . , wr),
(1)

where (w1, . . . , wr) is computed by the algorithm described in Figure 1(a). In [19], such a com-
pression function is called linearly-dependent permutation-based (or simply LP), and denoted as
LPA

mkr. A compression function H[A] for A ∈MF2n (2, 3, 1) is separately described in Figure 1(b).

Algorithm H[A](v1, . . . , vm)

for i ← 1 to k do
xi ←

∑m
j=1 aijvj +

∑i−1
j=1 ai(m+j)yj

yi ← πi(xi)

for i ← 1 to r do
wi ←

∑m
j=1 a(k+i)jvj +

∑k
j=1 a(k+i)(m+j)yj

return (w1, . . . , wr)

(a) H[A] for A ∈MF2n (m, k, r)

Algorithm H[A](v1, v2)

x1 ← a11v1 + a12v2

y1 ← π1(x1)
x2 ← a21v1 + a22v2 + a23y1

y2 ← π2(x2)
x3 ← a31v1 + a32v2 + a33y1 + a34y2

y3 ← π3(x3)
w ← a41v1 + a42v2 + a43y1 + a44y2 + a45y3

return w

(b) H[A] for A ∈MF2n (2, 3, 1)

Fig. 1. Compression function H[A]

Collision Resistance and Preimage Resistance For simplicity of notations, we will define se-
curity notions including collision resistance, preimage resistance and adaptive preimage resistance
for linearly-dependent permutation-based compression functions. However, we note that these se-
curity notions can be extended in an obvious way to any hash function based on public ideal
primitives.



Given a compression function H = H[A] for A ∈ MF2n (m, k, r) and an information-theoretic
adversary A with oracle access to πi and π−1

i , i = 1, . . . , k, we execute the experiment Expcoll
A

described in Figure 2(a) in order to quantify the collision resistance of H. The experiment records
the queries that the adversary A makes into a query history Q. A pair (i, x, y) is in the query
history if A asks πi(x) and gets back y, or it asks π−1

i (y) and gets back x. For k = 1, we simply
write (x, y) for (1, x, y). Given a query history Q, then MapH(Q) ⊂ Im

n × Ir
n is defined to be the

set of pairs (v, w) such that there exist query-response pairs (i, xi, yi) ∈ Q, i = 1, . . . , k, satisfying
the following equations.

xi =
m∑

j=1

aijvj +
i−1∑

j=1

ai(m+j)yj , i = 1, . . . , k,

wi =
m∑

j=1

a(k+i)jvj +
k∑

j=1

a(k+i)(m+j)yj , i = 1, . . . , r, (2)

for v = (v1, . . . , vm) and w = (w1, . . . , wr). Informally, MapH(Q) is the set of the evaluations of H
that are determined by the query history Q. Now the collision-finding advantage of A is defined
to be

Advcoll
H (A) = Pr

[
Expcoll

A = 1
]
. (3)

The probability is taken over the random permutations π1, . . . , πk, and A’s coins (if any). For
q > 0, we define Advcoll

H (q) as the maximum of Advcoll
H (A) over all adversaries A making at most

q queries.
The preimage resistance of H is quantified similarly using the experiment Exppre

A described in
Figure 2(b). The adversary A chooses a single “commitment” point w ∈ Ir

n before it begins making
queries to π±1

i , i = 1, . . . , k. (In a weaker version, the point w is chosen uniformly at random.)
The preimage-finding advantage of A is defined to be

Advpre
H (A) = Pr [Exppre

A = 1] . (4)

For q > 0, Advpre
H (q) is the maximum of Advpre

H (A) over all adversaries A making at most q
queries.

Experiment Expcoll
A

π1, . . . , πk
$← Πn

Aπ±1
1 ,...,π±1

k updates Q
if ∃ v 6= v′, w s.t. (v, w), (v′, w) ∈ MapH(Q) then

output 1
else

output 0

(a) Quantification of collision resistance

Experiment Exppre
A

π1, . . . , πk
$← Πn

A chooses w ∈ Ir
n

Aπ±1
1 ,...,π±1

k updates Q
if ∃ v such that (v, w) ∈ MapH(Q) then

output 1
else

output 0

(b) Quantification of preimage resistance

Fig. 2. Experiments for quantification of collision resistance and preimage resistance

Indifferentiability The indifferentiability framework was introduced by Maurer et al. in [16] as an
extension of the classical notion of indistinguishability. This general notion allows to discuss secure
construction of a public ideal primitive that uses another public ideal primitives as building blocks.
In this paper, we are interested in construction of a random oracle based on a certain number of
independent random permutations. In the indifferentiability framework, a distinguisher is given



two systems (CF ,F) and (P,SP). Here F is an ideal primitive used as a building block for the
construction of CF . An ideal primitive P and a probabilistic Turing machine SP with oracle access
to P have the same interfaces as CF and F , respectively. SP , called a simulator, tries to emulate the
ideal primitive F so that no distinguisher can tell apart the two systems (P,SP) and (CF ,F) with
non-negligible probability, based on their responses to queries that the distinguisher may send.
We say that the construction CF is indifferentiable from P if the existence of such a simulator is
proved. The indifferentiability implies the absence of a generic attack against CF that regards F
merely as a black-box. Here we give an information-theoretic definition of indifferentiability. For
more comprehensive introduction of the indifferentiability framework, we refer to [7, 16].

Definition 1. A Turing machine C with oracle access to an ideal primitive F is said to be (q, ε)-
indifferentiable from an ideal primitive P if there exists a simulator S with oracle access to P such
that for any distinguisher D making at most q queries, it holds that

∣∣∣Pr
[
DCF ,F = 1

]
− Pr

[
DP,SP = 1

]∣∣∣ < ε.

3 Adaptive Preimage Resistance

3.1 Definition

In this section, we define a new notion of security, called adaptive preimage resistance. Given a
compression function H = H[A] for A ∈MF2n (m, k, r) and an information-theoretic adversary A
with oracle access to π±1

i , i = 1, . . . , k, the adaptive preimage resistance of H is quantified by the
experiment Expapre

A described in Figure 3. At any point during the experiment, the adversary A
can choose a commitment point w ∈ Ir

n\RangeH(Q), where

RangeH(Q) = {w ∈ Ir
n : (v, w) ∈ MapH(Q) for some v ∈ Im

n }.
Then the experiment Expapre

A records the element w into a commitment list L ⊂ Ir
n. At the end of

the experiment, A would like to succeed in finding a preimage of some element in the commitment
list. Now the adaptive preimage-finding advantage of A is defined to be

Advapre
H (A) = Pr [Expapre

A = 1] . (5)

For q, qc > 0, we define Advapre
H (q, qc) as the maximum of Advapre

H (A) over all adversaries A that
make at most q queries and at most qc commitments.

Experiment Expapre
A

π1, . . . , πk
$← Πn

Aπ±1
1 ,...,π±1

k updatesQ and L (in an arbitrarily interleaved order)
if ∃ v such that (v, w) ∈ MapH(Q) for some w ∈ L then

output 1
else

output 0

Fig. 3. Experiment for quantification of adaptive preimage resistance

3.2 Comparison of Adaptive Preimage Resistance and Preimage Awareness

From the definition, it is easy to prove that

Advpre
H (q) ≤ Advapre

H (q, 1), (6)



for any compression function H. Therefore, adaptive preimage resistance can be regarded as a
natural strengthening of preimage resistance. As seen in the security proof of LP231, a bound for
adaptive preimage resistance allows us to instantly upper bound preimage resistance (by setting
qc = 1). In our framework, it is sufficient to prove adaptive preimage resistance for existing com-
pression functions whose collision resistance are proved. We note that adaptive preimage resistance
is much easier to prove than collision resistance in general. This property is in sharp contrast to
preimage awareness that is a strengthening of collision resistance. In the most security proofs of
preimage awareness, they begin by bounding away collision resistance and continue in a setting
where no collisions are allowed. Thus, we believe that adaptive preimage resistance better captures
the modular approach for security analysis compared to preimage awareness.

Interestingly, adaptive preimage resistance has a symbiotic relationship with collision resis-
tance. Neither is preserved by the plain Merkle-Damg̊ard transform on its own, yet the combina-
tion is (Theorem 1). On contrast, preimage awareness is preserved by the strengthened Merkle-
Damg̊ard transform. The plain Merkle-Damg̊ard transform preserves preimage awareness with an
additional condition of difficulty of inverting IV .

3.3 Construction of Hash Functions

We show that if a compression function H : Is×It → Is is collision resistant and adaptive preimage
resistant, then these properties are preserved by the Merkle-Damg̊ard transform:

Function MDH(p1, . . . , pl)

x0 ← IV
for i ← 1 to l do

xi ← H(pi, xi−1)
return xl

Here IV is a predetermined constant and |xi| = s and |pi| = t for all i.

Theorem 1. Let H : Is × It → Is be a compression function, and let MDH : I∗t → Is be the
Merkle-Damg̊ard transform based on the function H. Then it holds that

Advcoll
MDH (q) ≤ Advcoll

H (q) + Advapre
H (q, 1), (7)

Advapre
MDH (q, qc) ≤ Advcoll

H (q) + Advapre
H (q, qc). (8)

Proof. The proof of (7) is simple. Let A be a collision-finding adversary for MDH . If A inverts
IV with nonnegligible probability, then it can be transformed into an adaptive preimage-finding
adversary for H that makes a single commitment of IV . Otherwise, A can be transformed into a
collision-finding adversary for H.

In order to prove (8), suppose that A is an adaptive preimage-finding adversary for MDH such
that

ε = Advapre
MDH (q, qc) = Advapre

MDH (A).

Then A can be used for construction of an algorithm A∗ that with probability ε succeeds in either
finding a collision in H or finding a preimage of some committed point under H. The algorithm
A∗ runs A as a subroutine.

– When A makes a query to one of the underlying primitives, A∗ makes the same query to the
primitive, and relays the response to A. A∗ records a query history Q, and updates MapH(Q).
A∗ also grows a directed graph T on Is, where ((c1, p), c2) ∈ MapH(Q) if and only if −−→c1c2 ∈ T
with label p.

– When A chooses a commitment point c, A∗ finds an element θ(c) = c0(6= IV ) such that there
exists a path −−→c0c1,

−−→c1c2 . . . ,−−−→cl−1cl ∈ T and cl = c for l ≥ 0, but there exists no incoming edge
to c0. Informally, θ(c) is the start vertex of a path to the vertex c in T . If there exists two such
vertices, then it means that A∗ succeeded in finding a collision in the compression function
H. Otherwise, A∗ chooses the unique element c0 as a commitment point.



Now it is easy to show that if A finds a preimage of a committed element c under MDH without
finding a collision in H, then A∗ succeeds in finding a preimage of the corresponding commitment
θ(c) under H. This completes the proof of (8). ut

The following theorem states that the domain of a public random function can be extended
with any compression function that is collision resistant and adaptive preimage resistant.

Theorem 2. For V ⊂ I∗, let H : V → Is be a hash/compression function that uses at most
L calls to the underlying ideal primitives. If F : Is → It is a public random function, then the
composite function F ◦H is (q/L, ε)-indifferentiable from a public random function G : V → It,
where

ε = Advcoll
H (q) + Advapre

H (q, qc).

Proof (Sketch). For simplicity of notations, we assume that H = H[A] is a linearly-determined
permutation-based compression function defined by A ∈ MF2n (m, k, r), with oracle access to
public random permutations π1, . . . , πk.

In Figure 4, we present simulator SG that makes oracle queries to a public random function
G. In the description of SG, we define

InvH,w(Q) = {v ∈ Im
n : (v, w) ∈ MapH(Q)},

for w ∈ Ir
n. The simulator SG faithfully responds to the queries π±1

i (·), i = 1 . . . , k. On the query
F (w), SG checks if it has determined a preimage of w under H. If so, it chooses a preimage v
uniformly at random from the set InvH,w(Q) and replies with G(v). Otherwise, SG outputs a
random value. Note that if H is collision resistant, then there would be a unique preimage of w, if
any, except with negligible probability. In a complexity-theoretic framework, the simulator SG can
be slightly modified so that it runs in time O(qk−1). The modified simulator ŜG updates MapH(Q)
whenever it updates the query history Q. The update of MapH(Q) requires O(qk−1) steps. On a
query F (w), ŜG chooses an arbitrary element in InvH,w(Q) by searching the list MapH(Q). It does
not need to find every element of InvH,w(Q).

Simulator SG

Initialize

π1, . . . , πk
$← Πn

Q ← ∅
Interface πi(x) (i = 1, . . . , k)

Q ← Q∪ {(i, x, πi(x))}
return πi(x)

Interface π−1
i (y) (i = 1, . . . , k)

Q ← Q∪ {(i, π−1
i (y), y)}

return π−1
i (y)

Interface F (w)

if F (w) = ⊥ then
if InvH,w(Q) = ∅ then

F (w)
$← In

else
v

$← InvH,w(Q)
F (w) ← G(v)

return F (w)

Fig. 4. Simulator SG

A distinguisher interacts with one of two systems: one consists of a set F = {π1, . . . , πk, F}
of ideal primitives and the compression function CF = F ◦ H[A] based on the primitives, while
the other consists of the simulator SG that has the same interfaces as the ideal primitives, and
the public random function G. Our main observation is that one can distinguish the two systems,
only by using one of the following two strategies.

– Find distinct v and v′ such that H[A](v) = H[A](v′), and check if F ◦H[A](v) = F ◦H[A](v′).



– Choose w whose preimage is not determined by Q and make a query F (w). Then find a
preimage v of w under H[A] and make a query F ◦H[A](v). Check if F (w) = F ◦H[A](v).

It can be shown that these strategies are successful in distinguishing the two systems at most with
probability ε. We give a detailed proof in Appendix A. ut

4 Concrete Security Bounds of H[A] for A ∈ MF2n(2, 3, 1)

In this section, we prove that a linearly-determined permutation-based compression function H[A]
achieves good adaptive preimage resistance if its matrix A ∈ MF2n (2, 3, 1) satisfies a certain
condition. For such a compression function, we also analyze preimage resistance and collision
resistance in a simpler way than the one given in [19]. First, we describe the condition.

4.1 Condition on the matrix A

For A ∈MF2n (2, 3, 1), the system of equations (2) is reduced to the following system of equations.

x1 = a11v1 + a12v2

x2 = a21v1 + a22v2 + a23y1

x3 = a31v1 + a32v2 + a33y1 + a34y2

w = a41v1 + a42v2 + a43y1 + a44y2 + a45y3. (9)

If we regard every variable in system (9) as constant except four variables v1, v2, x3 and y3, then
the system (9) is rewritten as the following system of equations in the four variables.




a11 a12 0 0
a21 a22 0 0
a31 a32 1 0
a41 a42 0 a45







v1

v2

x3

y3


 =




x1

x2 + a23y1

a33y1 + a34y2

a43y1 + a44y2 + w


 . (10)

If a11a22 + a12a21 6= 0 and a45 6= 0, then we can solve system (10) to obtain an equation of the
following form.

A1x1 + A2y1 + A3x2 + A4y2 + A5x3 + A6y3 = Cw, (11)

where Ai and C are 2 × 1 matrices over F2n . Let M∗
F2n

(2, 3, 1) be the set of matrices A ∈
MF2n (2, 3, 1) such that

1. a11a22 + a12a21 6= 0 and a45 6= 0,
2. [Ai1 , Ai2 ] are invertible for 1 ≤ i1 < i2 ≤ 6.

If A ∈M∗
F2n

(2, 3, 1), then we can rewrite equation (11) in the following ways.

x1 = Φ1(x2, y2, x3, y3, w) = α11x2 + α12y2 + α13x3 + α14y3 + α15w,

y1 = Ψ1(x2, y2, x3, y3, w) = β11x2 + β12y2 + β13x3 + β14y3 + β15w,

x2 = Φ2(x1, y1, x3, y3, w) = α21x1 + α22y1 + α23x3 + α24y3 + α25w,

y2 = Ψ2(x1, y1, x3, y3, w) = β21x1 + β22y1 + β23x3 + β24y3 + β25w,

x3 = Φ3(x1, y1, x2, y2, w) = α31x1 + α32y1 + α33x2 + α34y2 + α35w,

y3 = Ψ3(x1, y1, x2, y2, w) = β31x1 + β32y1 + β33x2 + β34y2 + β35w,

where αij ∈ F2n and βij ∈ F2n are nonzero coefficients determined by A. Note that matrices[
αij1 αij2

βij1 βij2

]
are invertible for i ∈ {1, 2, 3}, j1 ∈ {1, 2} and j2 ∈ {3, 4}.



Example 1. Let n = 128 and let F2128 = F[ζ]/(ζ128 + ζ7 + ζ2 + ζ + 1) be a finite field, where
f(ζ) = ζ128 + ζ7 + ζ2 + ζ + 1 is an irreducible polynomial over F2. For simplicity of computation,
assume that a23 = 0, a45 = 1, and [

a11 a12

a21 a22

]
=

[
1 0
0 1

]
.

Then we have

[A1, A2, A3, A4, A5, A6] =
[
a31 a33 a32 a34 1 0
a41 a43 a42 a44 0 1

]
.

If we set a31 = a33 = a34 = a41 = a42 = 1, a32 = a43 = ζ and a44 = ζ2, then

A =




1 0 0 0 0
0 1 0 0 0
1 ζ 1 1 0
1 1 ζ ζ2 1




is contained in M∗
F2n

(2, 3, 1).

Remark 1. Our condition that consists of 16 inequalities seems to be equivalent to the “inde-
pendence criterion” described in [19]. (Note that [A5, A6] is always the identity matrix.) Either
condition would be achieved by most choices of the matrix A.

4.2 Security Bounds of H[A]

In this section, we analyze adaptive preimage resistance, collision resistance and preimage resis-
tance of a compression function H[A] for A ∈ M∗

F2n
(2, 3, 1). We begin with the following three

lemmas.

Lemma 1. Suppose that an adversary A makes q (≤ 2n−1) adaptive queries to a random permu-
tation π and its inverse π−1, and updates a query history Q. Let

U = U(α1, α2) = {α1x + α2y : (x, y) ∈ Q}

be a multiset defined for nonzero elements α1, α2 ∈ F2n . Then, for l > 0,

prob1(l) = Pr[A sets multU (c) ≥ l for some c ∈ F2n ] ≤ 2n

(
q

l

)(
1

2n−1

)l

.

Proof. Fix c∗ ∈ F2n . When A makes the j-th query π(x), the probability that α1x + α2π(x) = c∗,
or π(x) = α−1

2 (c∗ + α1x), is not greater than 1/ (2n − (j − 1)). Similarly, when A makes the j-th
query π−1(y), the probability that α1π

−1(y)+α2y = c∗, or π−1(y) = α−1
1 (c∗ + α2y), is not greater

than 1/ (2n − (j − 1)).
Note that the event “multU (c∗) ≥ l” occurs when there are at least l queries among the total

q queries such that α1x + α2π(x) = c∗ or α1π
−1(y) + α2y = c∗. Since

1
2n − (j − 1)

≤ 1
2n − q

≤ 1
2n−1

,

and
Pr [A sets multU (c) ≥ l for some c ∈ F2n ] ≤

∑

c∗∈F2n

Pr [multU (c∗) ≥ l] ,

it follows that

prob1(l) ≤ 2n

(
q

l

)(
1

2n−1

)l

.

ut



Lemma 2. Suppose that an adversary A makes q (≤ 2n−1) adaptive queries to random permuta-
tions πi and their inverses π−1

i , i = 1, 2, and updates a query history Q. Let

U = U(α11, α12, α21, α22)
= {α11x1 + α12y1 + α21x2 + α22y2 : (1, x1, y1), (2, x2, y2) ∈ Q}

be a multiset defined for nonzero elements α11, α12, α21, α22 ∈ F2n . Then, for L > 0 and l > 1,

prob2(L) = Pr [A sets multU (c) ≥ L for some c ∈ F2n ]

≤ 2n+1

(
q

l

)(
1

2n−1

)l

+ 2n

(
q

dL/(l − 1)e
) ( q

2n−1

)dL/(l−1)e
.

Proof. First, we define multisets

U1 = {α11x + α12y : (x, y) ∈ Q} and U2 = {α21x + α22y : (x, y) ∈ Q}.

These multisets are associated with events

E1 ⇔ A sets multU1(c) ≥ l for some c ∈ F2n ,

E2 ⇔ A sets multU2(c) ≥ l for some c ∈ F2n .

Let E3 = E1 ∪ E2, and let

E ⇔ A sets multU (c) ≥ L for some c ∈ F2n .

Then it follows that
prob2(L) = Pr [E ] ≤ Pr

[E ∩ E3

]
+ Pr [E3] . (12)

By Lemma 1, we have

Pr [E3] ≤ 2n+1

(
q

l

)(
1

2n−1

)l

. (13)

Now we estimate the probability Pr
[E ∩ E3

]
. For a fixed c∗ ∈ F2n , each query increases

multU (c∗) at most by l − 1 without the occurrence of E3. Therefore, there should be at least
d = dL/(l− 1)e queries that increase multU (c∗) at least by one. Since, for each query, the number
of responses that increase multU (c∗) is at most q, we obtain

Pr
[E ∩ E3

] ≤ 2n

(
q

dL/(l − 1)e
) ( q

2n−1

)dL/(l−1)e
. (14)

This completes the proof together with (12) and (13). ut

The following lemma is used only for the proof of collision resistance.

Lemma 3. Suppose that an adversary A makes q (≤ 2n−2) adaptive queries to random permuta-
tions πi and their inverses π−1

i , i = 1, 2, and updates a query history Q. Let

U = U(A) = {[A1, A2]
[
x1

y1

]
+ [A3, A4]

[
x2

y2

]
: (1, x1, y1), (2, x2, y2) ∈ Q}

be a multiset, where A = [A1, A2, A3, A4] is a 2×4 matrix over F2n such that submatrices [A1, A3],
[A1, A4], [A2, A3] and [A2, A4] are invertible. Then, for L > 1, it holds that

prob3 = Pr [A sets multU (c) ≥ 2 for some c ∈ F2n ] ≤ q2L

2n−1
+ 4prob2(L).



Proof. For a collision

[A1, A2]
[
x1

y1

]
+ [A3, A4]

[
x2

y2

]
= [A1, A2]

[
x′1
y′1

]
+ [A3, A4]

[
x′2
y′2

]
, (15)

it should be the case that (x1, y1) 6= (x′1, y
′
1) and (x2, y2) 6= (x′2, y

′
2). Suppose that A makes a query

π1(x∗)(= y). With (x1, y1) replaced by (x∗, y), the equality (15) is rewritten as

A1x
′
1 + A2y

′
1 + A3x

′
2 + A4y

′
2 + A3x2 + A4y2 = A1x

∗ + A2y. (16)

Any response y satisfying (16) corresponds to a triple ((1, x′1, y
′
1), (2, x′2, y

′
2), (2, x2, y2)) ∈ Q3 such

that
(BA1x

′
1 + BA2y

′
1 + BA3x

′
2 + BA4y

′
2) + (BA3x2 + BA4y2) = BA1x

∗. (17)

Here B is a 1 × 2 matrix such that BA2 = 0. For each (2, x2, y2) ∈ Q, the number of pairs
((1, x′1, y

′
1), (2, x′2, y

′
2)) satisfying (17) is smaller than L except with probability prob2(L). It means

that the number of triples satisfying (16) is smaller than qL except with probability prob2(L).
Taking into account symmetry, we conclude that the probability that the j-th query makes a

collision in U is not greater than qL/(2n − j) ≤ qL/2n−1, with some exceptions that occur with
probability at most 4prob2(L). It completes the proof. ut

We are now ready to prove the following theorem.

Theorem 3. Let H[A] be a compression function for A ∈ M∗
F2n

(2, 3, 1), with oracle access to
random permutations πi, i = 1, 2, 3. Suppose that an adversary A makes q (≤ 2n−2) adaptive
queries to πi and π−1

i , i = 1, 2, 3, and qc commitments, and updates a query history Q and a
commitment list L. Then, for L > 0 and l > 1, it holds that

Advapre
H (q, qc) ≤ qqcL

2n−1
+ 6ε, (18)

as well as,

Advpre
H (q) ≤ qL

2n−1
+ 6ε, Advcoll

H (q) ≤ q2(L2 + 3L)
2n−1

+ 18ε, (19)

where

ε = 2n+1

(
q

l

)(
1

2n−1

)l

+ 2n

(
q

dL/(l − 1)e
) ( q

2n−1

)dL/(l−1)e
. (20)

Proof. Let Φi and Ψi, 1 ≤ i ≤ 3, be the functions defined in Section 4.1. For x∗, y∗, w∗ ∈ F2n ,
define

ΓΦ1(x
∗, w∗) = {((x2, y2), (x3, y3)) ∈ Q2 : x∗ = Φ1(x2, y2, x3, y3, w

∗)},
and

ΓΨ1(y
∗, w∗) = {((x2, y2), (x3, y3)) ∈ Q2 : y∗ = Ψ1(x2, y2, x3, y3, w

∗)}.
ΓΦi(x

∗, w∗) and ΓΨi(y
∗, w∗) are similarly defined for i = 2, 3. Then, for each i = 1, 2, 3, the

probability that
∃ x∗, w∗ ∈ F2n , |ΓΦi(x

∗, w∗)| ≥ L (21)

is not greater than ε. For example, suppose that |ΓΦ1(x
∗, w∗)| ≥ L for some x∗, w∗ ∈ F2n . It means

that multU (x∗ + α15w
∗) ≥ L, where

U = {α11x2 + α12y2 + α13x3 + α14y3 : (x2, y2), (x3, y3) ∈ Q}.
We see that such an event occurs with probability at most ε by Lemma 2. Similarly, for each
i = 1, 2, 3, the probability that

∃ y∗, w∗ ∈ F2n , |ΓΨi(y
∗, w∗)| ≥ L (22)

is not greater than ε. Let E1i and E2i, respectively, denote the event (21) and (22) for i = 1, 2, 3,
and let E = E11 ∪ E12 ∪ E13 ∪ E21 ∪ E22 ∪ E23. Then it follows that Pr [E ] ≤ 6ε.



Adaptive Preimage Resistance. For the proof of (18), it is sufficient to show that

Pr
[
Expapre

A = 1 ∩ E] ≤ qqcL

2n−1
, (23)

for any adaptive preimage-finding adversary A. Fix w∗ ∈ L, and suppose that A makes a query,
say, π1(x∗) for some x∗ ∈ F2n . In order for the pair (x∗, π1(x∗)) to determine (v, w∗) ∈ MapH(Q)
for some v, it should be the case that π1(x∗) = Ψ1(x2, y2, x3, y3) for ((2, x2, y2), (3, x3, y3)) ∈
ΓΦ1(x

∗, w∗). At the j-th query, such an event occurs with probability at most L/ (2n − (j − 1)) ≤
L/2n−1, since |ΓΦ1(x

∗, w∗)| ≤ L without the occurrence of E . Now the inequality (23) is proved
since |Q| ≤ q and |L| ≤ qc.

Preimage Resistance. The proof is straightforward from (6) and (18).

Collision Resistance. First, we estimate the probability P1 that two distinct queries make a colli-
sion. Fix w∗ ∈ F2n and let 1 ≤ j1 < j2 ≤ q. For any collision-finding adversary A, the probability
that the j1-th query and the j2-th query, respectively, determine evaluations (v, w∗) and (v′, w∗) in
MapH(Q) for some v and v′ without the occurrence of E is not greater than

(
L/2n−1

)2. Therefore,
we have

P1 ≤ 2n

(
q

2

)(
L

2n−1

)2

+ Pr[E ] ≤ q2L2

2n−1
+ 6ε, (24)

Next, we estimate the probability P2 that a single query, say π1(x∗), makes a collision. This
case implies the occurrence of a collision

[
Φ1(x2, y2, x3, y3, w

∗)
Ψ1(x2, y2, x3, y3, w

∗)

]
=

[
Φ1(x′2, y

′
2, x

′
3, y

′
3, w

∗)
Ψ1(x′2, y

′
2, x

′
3, y

′
3, w

∗)

] (
=

[
x∗

π1(x∗)

])
, (25)

for some w∗. Considering queries for π2 and π3, we have

P2 ≤ 3prob3 ≤
3q2L

2n−1
+ 12ε, (26)

by Lemma 3. From (24) and (26), we have

Pr
[
Expcoll

A = 1
]
≤ P1 + P2 ≤ q2(L2 + 3L)

2n−1
+ 18ε. (27)

ut
Corollary 1. Let Hn = H[An] be a compression function for An ∈M∗

F2n
(2, 3, 1). If q = f(n)2

2n
3

and limn→∞ f(n) = 0, then limn→∞Advpre
Hn

(q) = 0.

Proof. Set L = 2 ·2n
3 and l = 3, and use Theorem 3. The detailed proof is given in Appendix 1. ut

Corollary 2. Let Hn = H[An] be a compression function for An ∈ M∗
F2n

(2, 3, 1). If q = 2
n
2 /n,

then limn→∞Advapre
Hn

(q) = limn→∞Advcoll
Hn

(q) = 0.

Proof. Set L = n/ log2 n and l = 2, and use Theorem 3. The proof is similar to that of Corollary 1.
ut

5 Permutation-based Hash Functions

Our results allow us to construct a secure hash function in the indifferentiability framework using
only a small number of public random permutations as follows.

1. Based on a small number of public random permutations, construct a compression function
H that is collision resistant and adaptive preimage resistant.



2. Apply the plain Merkle-Damg̊ard transform to the compression function H.
3. Construct a public random function F based on a small number of public random permuta-

tions.
4. Define the composite F ◦MDH as the resulting hash function.

In the third step, we might use F = σ⊕σ−1 for a public random permutation σ. This function
is known to be indifferentiable from a noncompressive public random function up to the birthday
bound [8]. Combined with LP231, the resulting hash function is purely permutation-based with
rate 1/3. The indifferentiability from a random oracle is guaranteed up to the birthday bound. On
contrast, the Sponge construction and the MD6 compression function with rate 1/3 achieve the
indifferentiability only up to O

(
2n/3

)
queries.

If the filtering function F is given as a public random permutation, then the resulting hash
function is not guaranteed to be a pseudorandom oracle. A distinguisher might exploit the interface
F−1 in order to tell apart (F ◦H,F) and (G,SG). However, it seems that such a construction still
gives a public-use pseudorandom oracle introduced and studied in [10]. Finally, we notice that the
single-permutation-based variant of LP231 was also proved to be adaptive preimage resistant up
to the birthday bound [14].

Acknowledgements

The authors are grateful to Martijn Stam and John Steinberger for their valuable comments.

References

1. P. S. L. M. Barreto and V. Rijmen. The Whirlpool hashing function. Primitve submitted to NESSIE,
September 2000, revised on May 2003.

2. M. Bellare, P. Rogaway. Optimal asymmetric encryption-how to encrypt with RSA. Eurocrypt 1994,
LNCS 950, pp. 92–111, Springer-Verlag, 1994.

3. M. Bellare, P. Rogaway. The exact security of digital signatures-how to sign with RSA and Rabin.
Eurocrypt 1996, LNCS 1070, pp. 399–416, Springer-Verlag, 1996.

4. G. Bertoni, J. Daemen, M. Peeters and G. Van Assche. On the indifferentiability of the Sponge con-
struction. Eurocrypt 2008, LNCS 4965, pp. 181–197, Springer-Verlag, 2008.

5. J. Black, M. Cochran and T. Shrimpton. On the impossibility of highly-efficient blockcipher-based hash
functions. Eurocrypt 2005, LNCS 3494, pp. 526–541, Springer-Verlag, 2005.

6. J. Black, P. Rogaway and T. Shrimpton. Black-box analysis of the block-cipher-based hash-function
construction from PGV. Crypto 2002, LNCS 2442, pp. 320–325, Springer-Verlag, 2002.

7. J. Coron, Y. Dodis, C. Malinaud and P. Puniya. Merkle-Damg̊ard revisited: How to construct a hash
function. Crypto 2005, LNCS 3621, pp. 430–448, Springer-Verlag, 2005.

8. Y. Dodis, K. Pietrzak and P. Puniya. A new mode of operation for block ciphers and length-preserving
MACs. Eurocrypt 2008, LNCS 4965, pp. 198–219, Springer-Verlag, 2008.

9. Y. Dodis, L. Reyzin, R. L. Rivest and E. Shen. Indifferentiability of permutation-based compression
functions and tree-based modes of operation, with application to MD6. Preproceedings of FSE 2009,
pp. 106–122, 2009.

10. Y. Dodis, T. Ristenpart and T. Shrimpton. Salvaging Merkle-Damg̊ard for practical applications.
Eurocrypt 2009, To appear. Available at http://www.cs.nyu/ dodis.

11. S. Hirose. Provably secure double-block-length hash functions in a black-box model. ICISC 2004,
LNCS 3506, pp. 330–342, Springer-Verlag, 2005.

12. S. Hirose. Some plausible construction of double-block-length hash functions. FSE 2006, LNCS 4047,
pp. 210–225, Springer-Verlag, 2006.

13. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. CRYPTO
2005. LNCS 3621, pp. 546–566. Springer-Verlag, 2005. Full version available at
http://eprint.iacr.org/2005/176.

14. J. Lee and D. Kwon. Security of single-permutation-based compression functions. Available at
http://eprint.iacr.org/2009/145.

15. S. Matyas, S. Meyer and J. Oseas. Generating strong one-way functions with cryptographic algorithm.
IBM Technical Disclosure Bulletin 27, 10a, pp. 5658–5659, 1985.



16. U. Maurer, R. Renner and R. Holenstein. Indifferentiability, impossibility results on reductions, and
apllications to the random oracle methodology. TCC 2004, LNCS 2951, pp. 21–39, Springer-Verlag, 2008.

17. B. Preneel, R. Govaerts and J. Vandewalle. Hash functions based on block ciphers: A synthetic ap-
proach. Crypto 1993, LNCS 773, pp. 368–378, Springer-Verlag, 1994.

18. T. Ristenpart and T. Shrimpton. How to build a hash function from any collision-resistant function.
Asiacrypt 2007, LNCS 4833, pp. 147–163, Springer-Verlag, 2007.

19. P. Rogaway and J. Steinberger. Constructing cryptographic hash functions from fixed-key blockciphers.
Crypto 2008, LNCS 5157, pp. 433–450, Springer-Verlag, 2008.

20. P. Rogaway and J. Steinberger. Security/efficiency tradeoffs for permuation-based hashing. Euro-
crypt 2008, LNCS 4965, pp. 220–236, Springer-Verlag, 2008.

21. T. Shrimpton and M. Stam. Building a collision-resistant function from non-compressing primitives.
ICALP 2008, LNCS 5126, pp. 643–654, Springer-Verlag, 2008.

22. M. Stam. Beyond uniformity: Better security/efficiency tradeoffs for compression functions.
Crypto 2008, LNCS 5157, pp. 397–412, Springer-Verlag, 2008.

23. J. Steinberger. Private communications.
24. J. Steinberger. The collision intractability of MDC-2 in the ideal-cipher model. Eurocrypt 2007,

LNCS 4515, pp. 34–51, Springer-Verlag, 2008.
25. R. Winternitz. A secure one-way hash function built from DES. IEEE Symposium on Information

Security and Privacy, pp. 88–90, IEEE Press, 1984.

A Proof of Theorem 2

The proof is based on the standard game-hopping technique. Let G and H be the games defined
in Figure 5. Without loss of generality, we can make the following assumptions for the games and
a distinguisher D that interacts with the games.

1. Before D makes a query G(v), D computes H[A](v). It means that D has made queries to
π1, . . . , πk, that are required to compute H[A](v).

2. Each game records a query history Q for π1, . . . , πk. Any interface of the games do not make
a private query to the permutations due to the first assumption. Therefore we can regard the
query history as public to the distinguisher D.

We observe that the subroutine Sample-G is called only within the subroutine Sample-F in
game G. Therefore, Sample-G can be merged into Sample-F , yielding game H. In this way, games
G and H are equivalent, where H implements (F ◦H[A],F). Now we prove the following claim.

Claim. Game G faithfully simulates (G,SG), as long as none of the flags bad1 and bad2 is set to
true.

proof of claim When G(v) is asked, game G computes w = H[v]. If the previous queries have
not made a collision for H, then InvH,w(Q) = {v}. Assuming F (w) = ⊥, the subroutine Sample-
F returns Sample-G(v). On the contrary, suppose that F (w) is already defined, say at the j-th
query. Then, it should be the case InvH,w(Q) = {v} at the point where the subroutine Sample-
F (w) is called for the first time; if InvH,w(Q) = ∅, then G(v)(or any previous query) deter-
mines w = H(v) at some point after F (w) is defined, setting bad2 to true. If InvH,w(Q) con-
tains v′ which is not v, then the query G(v)(or any previous query) would result in a collision
such that H(v) = H(v′) = w. Therefore at the j-th query, the subroutine Sample-F returns
Sample-G(v). Now the claim is followed since the other interfaces are faithfully implemented.

Any distinguisher D that interacts with G can be regarded as a collision-finding adversary A
for H[A] such that Pr

(DG sets bad1

) ≤ Advcoll
H (A). Also, D can be transformed into an adaptive

preimage-finding adversary B such that Pr
(DG sets bad2

) ≤ Advapre
H (B). Such an adversary B

runs D as a subroutine and, when D makes a query F (w) such that InvH,w(Q) = ∅, chooses the
element w as a commitment. Therefore we conclude that∣∣∣Pr

[
DF◦H[A],F = 1

]
− Pr

[
DG,SG

= 1
]∣∣∣ ≤ Pr

(DG sets bad1

)
+ Pr

(DG sets bad2

)

≤ Advcoll
H (q) + Advapre

H (q, qc), (28)

for any distinguisher D that makes at most q/L queries.



Games G

Initialize

π1, . . . , πk
$← Πn

Interface πi(x) (i = 1, . . . , k)

if πi(x) makes a collision for H then
bad1 ← true

else if πi(x) determines w = H(v) s.t. F (w) 6= ⊥ then
bad2 ← true

return πi(x)

Interface π−1
i (y) (i = 1, . . . , k)

if π−1
i (y) makes a collision for H then
bad1 ← true

else if π−1
i (y) determines w = H(v) s.t. F (w) 6= ⊥ then

bad2 ← true

return π−1
i (y)

Interface F (w)

return Sample-F (w)

Interface G(v)

for i ← 1 to k do
xi ←

∑m
j=1 aijvj +

∑i−1
j=1 ai(m+j)yj

yi ← πi(xi)

for i ← 1 to r do
wi ←

∑m
j=1 a(k+i)jvj +

∑k
j=1 a(k+i)(m+j)yj

return Sample-F (w)

Subroutine Sample-F (w)

if F (w) = ⊥ then
if InvH,w(Q) = ∅ then

F (w)
$← In

else
v

$← InvH,w(Q)
F (w) ← Sample-G(v)

return F (w)

Subroutine Sample-G(v)

if G(v) = ⊥ then

G(v)
$← In

return G(v)

Game H

Initialize

π1, . . . , πk
$← Πn

Interface πi(x) (i = 1, . . . , k)

return πi(x)

Interface π−1
i (y) (i = 1, . . . , k)

return π−1
i (y)

Interface F (w)

return Sample-F (w)

Interface G(v)

for i ← 1 to k do
xi ←

∑m
j=1 aijvj +

∑i−1
j=1 ai(m+j)yj

yi ← πi(xi)

for i ← 1 to r do
wi ←

∑m
j=1 a(k+i)jvj +

∑k
j=1 a(k+i)(m+j)yj

return Sample-F (w)

Subroutine Sample-F (w)

if F (w) = ⊥ then

F (w)
$← In

return F (w)

Fig. 5. Games G and H



B Proof of Corollary 1

Set L = 2 · 2n
3 and l = 3, and use the inequality

Advpre
H (q) ≤ qL

2n−1
+ 6ε. (29)

For the first term on the right-hand side of the bound (29), we have

lim
n→∞

qL

2n−1
= lim

n→∞
(4f(n)) = 0. (30)

Since

log2

(
2n+1

(
q

l

)(
1

2n−1

)l
)
≤ log2

(
2n+1

(qe

l

)l
(

1
2n−1

)l
)

≤ n + 1 + 3
(

2n

3
+ log2 f(n)− n + C

)

= 3 log2 f(n) + 3C + 1 −→ −∞, (31)

as n −→ 0, where C = log2 (2e/3), and

log2

(
2n

(
q

d

) ( q

2n−1

)d
)
≤ log2

(
2n

(qe

d

)d ( q

2n−1

)d
)

≤ n + 2
n
3

(
2

(
2n

3
+ log2 f(n)

)
− 4n

3
+ C ′

)

= n + 2
n
3 (2 log2 f(n) + C ′) −→ −∞, (32)

as n −→ 0, where d = dL/(l − 1)e = 2
n
3 and C ′ = log2 (2e), it follows that

lim
n→∞

ε(n) = 0. (33)

Now (29), (30) and (33) complete the proof.


