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Abstract:

The correlation immunity is known as an important cryptographic measure of a

Boolean function with respect to its resist against the correlation attack. This

paper generalizes the concept of correlation immunity to be of a fractional value,

called fractional correlation immunity, which is a fraction between 0 and 1, and

correlation immune function is the extreme case when the fractional correlation

immunity is 1. However when a function is not correlation immune in the tra-

ditional sense, it may also has a nonzero fractional correlation immunity, which

also indicates the resistance of the function against correlation attack.

This paper first shows how this generalized concept of fractional correlation im-

munity is a reasonable measure on the resistance against the correlation attack,

then studies the fractional correlation immunity of a special class of Boolean

functions, i.e. majority functions, of which the subset of symmetric ones have

been proved to have highest algebraic immunity. This paper shows that all the

majority functions, including the symmetric ones and the non-symmetric ones,

are not correlation immune. However their fractional correlation immunity ap-

proaches to 1 when the number of variable grows. This means that this class of

functions also have good resistance against correlation attack, although they are

not correlation immune in the traditional sense.

Key words: Cryptography, Majority function, Correlation immunity, Walsh

transform.

1 Introduction

The development of cryptographic algorithms have experienced different attacks. As a

result of the attacks, different measurement about the resistance against the corresponding

attacks are proposed. When correlation attack [7] was treated as a threat, the concept of

∗This work was supported by the NSFC no.60673068 and National 973 project no.2007CB807902.
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correlation immunity is proposed [6] as a measurement about the resistance that a nonlinear

combination function has against the correlation attack. Recently a new attack known as

the algebraic attack is proved to be very effective to many stream ciphers as well as to

some block ciphers. As a measurement of the resistance of a nonlinear function against

the algebraic attack, another measurement known as algebraic immunity is proposed. The

idea of algebraic attack is to find an annihilator of the targeting combining function. By

doing so, the process of algebraic attack is to solve a system of nonlinear equations. When

the algebraic degree of the annihilator is low, the computational complexity to solve such a

system of nonlinear equations is also low. So the effectiveness of algebraic attack depends

on whether one can find such an annihilator with low algebraic degree. On the other hand,

when the combining function is of high algebraic immunity, the algebraic degree of any of

its annihilators cannot be very low. Hence, a significant job for the designers is to find

combining functions with highest possible algebraic immunity. It has been proved [5] that

the order of the algebraic immunity of a Boolean function in n variables cannot exceed dn
2 e.

If a Boolean function has algebraic immunity of order dn
2 e, then this function is said to have

the highest algebraic immunity.

In 2004, Dalai [3] studied the majority functions to be a class of Boolean functions with

highest algebraic immunity, and [4] further proves that the majority functions are the only

symmetric Boolean functions in odd number of variables with maximum algebraic immu-

nity. While algebraic immunity is an important cryptographic measurement, very often

the best performance with one cryptographic measurement will sacrifice the performance

with other cryptographic measurements. In this paper we study the correlation immunity

of the generalized majority functions, which include the majority functions in odd number

of variables and newly defined such functions in even number of variables.

2 The correlation immunity for nonlinear combining func-

tions

The concept of correlation immunity was proposed by Siegenthaler in 1984 [6]. It is a

security measure against the correlation attack (also known as divide-and-conquer attack)

of nonlinear combiners [7]. Therefore we first briefly describe the correlation attack of

nonlinear combiners, which gives the rationale of why correlation immunity is a reasonable

security measure against the correlation attack. This helps us to introduce the concept of

fractional correlation immunity in the next section.

2.1 Preliminaries about Boolean functions

Let GF (2) be a finite field of two elements 0 and 1, and GFn(2) be an n-dimensional vector

space over GF (2). A mapping from GFn(2) into GF (2) is called a Boolean function in n

variables, denoted by f(x), where x = (x1, x2, ..., xn) is the shorthand form of a vector in

GFn(2). Define the number of 1’s in the coordinates of vector x as the Hamming weight
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of this vector, and is denoted as WH(x). If WH(x) = n
2 , i.e., there are equal number of 0’s

and 1’s in the coordinates of x, then x is called balanced.

For a Boolean function f(x) in n variables, when x goes through all the possible values

(vectors) of GFn(2), then f(x) will have 2n corresponding outputs. The vector of all the

outputs of f(x) is called the truth table of f(x), which has dimension 2n. Of course x has

to follow a particular order when going through all the possible values of GFn(2). If we

treat a binary vector as the binary representation of an integer, then when the integer takes

all the values from 0 to 2n − 1, then the corresponding vector goes through all the elements

in GFn(2). Traditionally, we let the value of the binary representation of the integer to

go from 0 incrementally to 2n − 1. If we collect all the vectors where f(x) takes value 1,

then the collection is called the support of f(x), denoted as supp(f) = {x : f(x) = 1}.
The number of 1’s in the truth table of f(x) is called the Hamming weight of f(x) and is

denoted as WH(f). It is easy to see that WH(f) is the number of elements in supp(f).

2.2 The correlation attack of nonlinear combiners

Nonlinear combiner is a popular pseudo-random sequence generator for stream ciphers. The

basic structure of nonlinear combiner in stream ciphers is as shown in figure 1.
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Figure 1: A nonlinear combiner of stream ciphers

The correlation attack proposed by Siegenthaler [7] makes use of the correlation informa-

tion between the output sequence (zk) of the nonlinear combiner and each input sequence

(xi
k) of the combining function f(x), and to use the statistical analysis trying to recover the

initial state as well as the feedback function of each LFSRi individually. This approach is

also called divide and conquer attack, which significantly reduces the complexity than the

brute force attack.

In the security analysis, it is always assumed that the structure of the generator is

known, i.e. the lengths of each LFSR and the nonlinear combining function f(x). The

attack proposed in [7] does not assume the knowledge of the primitive feedback polynomial

of each LFSR which is only of certain limited amount to search for.

Assume that all the LFSR’s in the combiner of figure 1 are maximum length sequence
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generators, i.e. each LFSRi of order ri generates an m-sequence of period pi = 2ri − 1,

and there are Ri primitive polynomials of degree ri (which is the number of different m-

sequences of order ri such that they are not equivalent by cyclic shift). Then under the

brute force attack, the number of all the possible keys for the nonlinear combiner (different

initial states and different feedback function of each of the LFSR have been taken into

account) is

K =
n
∏

i=1

Ri(2
ri − 1).

With the correlation attack, information about each input sequence (xi
k) can be extracted

from the output sequence (zk), and hence the attack can concentrate each of the individual

LFSR sequences, and the number of trials in the worst case is reduced to approximately

K ′ =
n
∑

i=1

Ri2
ri .

The correlation attack is a probabilistic attack which assumes some statistical properties

of the combining function f(x). Assume in the ideal case that each of the LFSR’s in

figure 1 produces a pseudo-random sequence with uniform probability distribution, i.e.

Prob(xi
k = 0) = Prob(xi

k = 1), and assume that Prob(zk = 0) = Prob(zk = 1). Let

Prob(zk = xi
k) = qi, (1)

and assume the plaintext comes from a memoryless binary source, which satisfies

Prob(yk = 0) = p0 (2)

Then it is easy to compute

Prob(ck ⊕ xj
k = 0) = Prob(zk = xj

k) · Prob(yk = 0)

+Prob(zk 6= xj
k) · Prob(yk = 1)

= 1 − (p0 + qj) + 2p0qj

= pe (3)

When j = 0, let x0
k be an hypothetical random variable which are independent of any

xi
k (i > 0) and with uniform probability distribution. Then compute the correlation of

sequences ck and xj
k as

α =
N
∑

k=1

(1 − 2(ck ⊕ xj
k)) = N − 2

N
∑

k=1

(ck ⊕ xj
k), j ∈ {0, 1, ..., n} (4)

By the central limit theorem, when N is sufficiently large, α approaches to a normal distri-

bution (or Gaussian distribution). In an attack, attackers use hypothetical LFSR of length

ri which produce sequence (x0
k) for the testing. By choosing a nonzero initial state and

an arbitrary primitive polynomial as the feedback polynomial, compute the correlation α0

between N bits of output of the hypothetical LFSR and N bits of the real ciphertext. Then

there are two hypotheses to consider:
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H1: There are N > ri coincidences between the output of the hypothetical LFSR and

LFSRi, referring to the above cases, this is the case when α0 is the correlation between

zk and xi
k, i ∈ {1, 2, ..., n}.

H0: There are N > ri disagreement between the output of the hypothetical LFSR and

LFSRi, referring to the above cases, this is the case when α0 is the correlation between

zk and x0
k.

In order to make a decision about the two hypotheses, a threshold value T is needed.

When α0 < T , then accept the hypothesis H0, and when α0 ≥ T , accept H1. Let the

probability density function of the probabilistic variable α be Pα|Hk
(x). If qi = 1

2 or p0 = 1
2 ,

then by Eqn. (3), we have pe = 1
2 , in this case no decision can be made, because in this case

the probability distribution of α under the two hypotheses is the same. Here the discussed

attack depends on the number of wrong decisions, i.e. the number of cases when α ≥ T .

So we define a false alarm probability Pf = Prob(α ≥ T |H0). In order to determine an

appropriate threshold T , we also need to consider the probability Pm = Prob(α < T |H1).

We have

Pf =

∫ ∞

T
Pα|H0

(x)dx (5)

Pm =

∫ T

−∞
Pα|H1

(x)dx (6)

With the help of the function

Q(x) =
1√
2π

∫ ∞

x
e−

y2

2 dy (7)

we can get the following expressions:

Pf = Q(| T√
N

|) (8)

Pm = Q(| N(2pe − 1) − T

2
√

N
√

pe(1 − pe)
|) (9)

Denote by

γ0 =
N(2pe − 1) − T

2
√

N
√

pe(1 − pe)
, (10)

then the expression of Pf and Pm can be written as

Pf = Q(|
√

N(2pe − 1) − 2γ0

√

pe(1 − pe)|), (11)

Pm = Q(|γ0|). (12)

In order to attack the stream cipher model as in figure 1, the following process is to be

taken: first to determine the probability qi by f(x), and to determine the probability p0

according to the coding method of the plaintext, then compute pe using Eqn. (3). For any

chosen probability Pm, by Eqn. (12) it is known that γ0 is a constant, and from Eqn. (11)

it is known that the false alarm probability P (α ≥ T |H0) is a function of N . In order to
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recover LFSRi, choose an arbitrary primitive polynomial as its feedback polynomial and an

arbitrary nonzero state as its initial state, and let it produce a sequence, then compute the

correlation between this sequence and the ciphertext sequence. For any event with α ≥ T ,

H0 is accepted, i.e., the LSFRi is supposed to have been recovered. However the probability

of event α ≥ T is Pf , and our decision may be wrong. So we need to test more ciphertexts

for all the events α ≥ T . If for all the 2ri −1 different states, the decision is always to reject

H1, then change another primitive polynomial and to repeat the test. In the worst case we

need to test for about Ri2
ri times. The false alarm probability depends on the length of

ciphertext N . Choose N1 such that

Pf =
1

Ri2ri
(13)

then by Eqn. (11) we have

1

Ri2ri
= Q(|

√

N1(2pe − 1) − 2γ0

√

pe(1 − pe)|) (14)

using the inequality

Q(x) <
1

2
2−

x2

2 , x > 0 (15)

we can get an upper bound of N1:

N1 <





1√
2

√

ln(Ri2ri−1) + γ0

√

pe(1 − pe)

pe − 1
2





2

. (16)

The above is a brief description of the correlation attack which is mainly from [7]. The

inclusion of the description is to help to understand how correlation immunity and conse-

quently the fractional correlation immunity serves as a counter-measure against the corre-

lation attack.

The upper bound in (16) gives the length of required ciphertext to enable the attack

on the model in figure 1. If the length of the ciphertext is no less than this upper bound,

then when performing such an attack, the number of tests can be minimized and when a

decision is made, the probability of false alarm is minimized. More detailed description of

the correlation attack can be found in [7].

In order to resist the correlation attack as described above, the combining function f(x)

needs to have some special properties. Siegenthaler [6] introduced the concept of correla-

tion immunity of Boolean functions, and we will see how such functions can have resistance

against the correlation attack. Then we will show how much resistance a fractionally cor-

relation immune function would have against the correlation attack.

2.3 Correlation immunity as a counter-measure against the correlation

attack

In order to resist the correlation attack as described above, Siegenthalar [6] proposed the

concept of correlation functions.
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Definition 1 Let f(x) be a Boolean function in n variables. Treat (x1, x2, ..., xn) as n

random variables over GF (2) that are independent and have uniform probability distribution,

i.e. each xi is equally likely to be 0 or 1. If for any 1 ≤ i1 < i2 < · · · < ik ≤ n, the value

of f(x) is statistically independent of (xi1 , xi2 , ..., xik ), i.e., for any (a1, a2, ..., ak) ∈ GF k(2)

and any c ∈ GF (2), we always have Prob(f(x) = c|(xi1 , xi2 , ..., xik ) = (a1, a2, ..., ak)) =

Prob(f(x) = c), then f(x) is said to be correlation immune of order k, or briefly k-

order correlation immune. The maximum number of k such that f(x) is k-order correlation

immune is called the correlation immunity of f(x), and is denoted as CI(f) = k.

There are many different but equivalent definitions of correlation immunity. One of

such alternatives is that, when a Boolean function f(x) is correlation immune of order k,

then its support supp(f) has the property that, the vector formed from any (i1, i2, · · · , ik)

coordinates of supp(f) will equally likely to be any vectors in GF k(2) when x goes through

all the values in supp(f). In particular, when k = 1, then the support of a correlation

immune function has the property that, any coordinate of the vectors in supp(f) has equal

chances to be 0 or 1. It is trivial to verify that, if a Boolean function is correlation immune

of order k, then for any m < k, this function is also correlation immune of order m.

Consider a simple case, assume that the combining function in the nonlinear combiner is

correlation of order 1, i.e., for any xi, the probability that f(x) takes any value is not affected

by a pre-fixed value of xi. By Eqn. (3) we have that pe = 1
2 . Taking it into Eqn. (16), we

get an infinity upper bound of N1, which means that the number of ciphertext to conduct

such an attack may be infinity and hence not possible.

While a Boolean function of correlation immunity of order 1 being the combining function

seems to resist the correlation attack, it is only to the case when consider the individual

LFSR’s. When a linear combination of a few of the LFSR’s is considered, higher order

correlation immunity is correspondingly required to resist the correlation attack.

3 The fractional correlation immunity as a counter-measure

against the correlation attack

It is noted that the correlation immunity is a cryptographic measure about the resistance

against correlation attack, there can be cases where although a combining function is not

correlation immune, however the correlation attack still consumes large amount of compu-

tation due to the function being “almost” correlation immune. We hereby define a measure

about how close a function is to being correlation immune. This only makes sense for the

functions that are not correlation immune. Motivated by Eqn. (3) and Eqn. (4), let us first

consider a simple case, i.e., the balancedness of the i-th coordinate of all the vectors in

supp(f). If it has a good balance, then f(x) has small correlation with xi. If it is balanced,

then f(x) has no correlation with xi. If for all i ∈ {1, 2, ..., n}, f(x) has no correlation with

xi, then f(x) is correlation immune (of order at least 1). Not expecting the correlation im-

munity of f(x), we define the relative correlation of f(x) with xi as the difference between
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the number of 0’s and that of 1’s in the i-th coordinates of vectors x in supp(f), i.e.,

ε(i)(f) = |
∑

x∈supp(f)

(−1)xi | = |WH(f) − 2
∑

x∈supp(f)

xi|.

By this definition, it is easy to see that the idea of correlation immunity is to find the

maximum value of these relative correlations. If the maximum value is 0, then f(x) must

be correlation immune (of order 1 or higher), otherwise f(x) is not correlation immune.

However, in the case f(x) is not correlation immune, the value of ε(i)(f) varies which

indicates the different degrees that f(x) has correlation with xi. The correlation of f(x)

with any variable is hence defined as

ε(f) = max
i∈{1,2,...,n}

ε(i)(f).

For this consideration, we define the fractional correlation immunity of f(x) as

FCI(f) = 1 − ε(f)

WH(f)
= 1 − 1

WH(f)
max

i∈{1,2,...,n}
|WH(f) − 2

∑

x∈supp(f)

xi| (17)

It is seen from Eqn. (17) that 0 ≤ FCI(f) ≤ 1. When FCI(f) = 1, it means that f(x)

is correlation immune (of order 1). Another extreme case is when FCI(f) = 0, this means

that there exists i such that xi = 0 (or xi = 1) always holds for all x ∈ supp(f), which

means that the correlation between f(x) and this xi is high (the highest possible case). In

general, the fractional correlation immunity FCI(f) is a fractional value between 0 and 1,

instead of integral value as the traditional definition of correlation immunity.

Now we take a look at what the fractional correlation immunity has to do with the

correlation attacks proposed by Siegenthaler. Let i be such an index satisfying that

FCI(f) = 1 − 1

WH(f)
(|WH(f) − 2

∑

x∈supp(f)

xi|) ∆
= ε.

Then we have

Prob(xi = 1|f(x) = 1) =

∑

x∈supp(f)
xi

|supp(f)| =

∑

x∈supp(f)
xi

WH(f)

and

Prob(xi = 0|f(x) = 0) =

|supp(f)| − ∑

x∈supp(f)

xi

|supp(f)|

=

2n − WH(f) − (
∑

x∈GF n(2)
xi −

∑

x∈supp(f)
xi)

2n − WH(f)

=

2n−1 − WH(f) +
∑

x∈supp(f)
xi

2n − WH(f)
.

Hence by Eqn. (1) we have

qi = Prob(f(x) = xi)
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= Prob(f(x) = 1)Prob(xi = 1|f(x) = 1) + Prob(f(x) = 0)Prob(xi = 0|f(x) = 0)

=
WH(f)

2n
·

∑

x∈supp(f)
xi

WH(f)
+

2n − WH(f)

2n
·
2n−1 − WH(f) +

∑

x∈supp(f)
xi

2n − WH(f)

=
1

2n
(2n−1 − WH(f) − 2

∑

x∈supp(f)

xi)

=
1

2
− WH(f)

2n
(1 − ε) (18)

If ε is very close to 0, then qi is very different from 1
2 . Particularly when f(x) is balanced

which is often practically required, then qi is very close to 1 or 0, in which case, we have

high confidence to have either f(x) = xi or f(x) = xi ⊕ 1. Consequently by Eqn. (3), we

get that pe ≈ p0 or pe ≈ 1 − p0. It is assumed that p0 6= 1
2 , otherwise we would always

have pe = 1
2 and hence the correlation attack does not work. It is also easy to verify that

these are cases when |pe − 1
2 | reaches the maximum value, and by (16) we know that the

minimum amount of data is needed to perform a correlation attack.

If ε is very close to 1, then qi is very close to 1
2 , and by Eqn. (3), pe is also very close to

1
2 , and consequently large amount of ciphertext is required to perform a correlation attack.

Although such an attack is possible, however, when ε is so close to 1 that results in the

bound of (16) to be too large to reach in practice, then the correlation attack becomes

practically impossible.

To be more precise, taking Eqn. (18) into Eqn. (3) we have

pe = 1 − (p0 + qi) − 2p0qi =
1

2
+

WH(f)

2n
(1 − ε)(

1

2
− p0)

It is obvious that when ε is very close to 1, then pe is also very close to 1
2 , and hence

Eqn. (16) gives a very large upper bound.

Perhaps an upper bound of the size of text needed to conduct an attack is less convincing,

because the actual number of text needed can be much smaller than the upper bound. To

be more convincing, here we introduce a lower bound given in [8].

It is easy to prove that for the function Q(x) defined in Eqn. (7), we have

Q(x) >
1

4
e−x2

, x > 0

Taking into Eqn. (14) we have

N1 >

(

√

ln(Ri2ri) − 2 ln 2 + 2γ0

√

pe(1 − pe)

2pe − 1

)2

>
ln(Ri2

ri) − 2 ln 2

[WH(f)(1
2 − p0)(1 − ε)]2

(19)

This means that as long as the fractional correlation immunity of f(x) is sufficiently close

to 1, then pe can be sufficiently close to 1
2 and hence N1 is sufficiently large, too large to be

practically possible.
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The concept of higher order fractional correlation immunity has similar motivation to

that of higher order correlation immunity, i.e., it is to measure the probability of event

(f(x) = xi1 ⊕ xi2 ⊕ · · · ⊕ xik) and a corresponding modified correlation attack, for any

possible 1 ≤ i1 < i2 < · · · < ik ≤ n.

4 On the Walsh characterization of correlation immunity and

fractional correlation immunity

Walsh transform has been a very useful tool in analyzing cryptographic properties of Boolean

functions. Here we use Walsh transform to study the correlation immunity of majority

functions.

Definition 2 Let f(x) be a Boolean function in n variables. The following function defined

on the field of real numbers

Sf (w) =
2n−1
∑

x=0

f(x)(−1)w·x (20)

is called the Walsh transform of f(x), and the truthtable of Sf (w) is called the Walsh

spectrum of f(x), where w · x = w1x1 ⊕ w2x2 ⊕ · · · ⊕ wnxn is the inner product of vectors

w and x. For any w ∈ GFn(2), the value of Sf (w) is called the Walsh spectrum of f(x) on

w.

In the implementation of electronic circuits, it would be more convenient to use {−1, 1}
to represent the domain of binary functions than to use {0, 1}, and hence the following

transform is used to map {0, 1} to {−1, 1}:

F (x) = (−1)f(x).

By this transform, the Boolean function f(x) is then mapped to function F (x) on the

domain {−1, 1}. The Walsh transform can also apply to F (x) as:

SF (w) =
2n−1
∑

x=0

F (x)(−1)w·x (21)

Note that when the Boolean function f(x) is also treated as a binary real valued-function,

the Walsh transform remains the same. By this treatment, the two functions can be con-

verted to each other:

F (x) = 1 − 2f(x)

Then, the Walsh transform of F (x) can be converted from the Walsh transform of f(x), i.e.

SF (w) =
2n−1
∑

x=0

(1 − 2f(x))(−1)w·x

=
2n−1
∑

x=0

(−1)w·x − 2
2n−1
∑

x=0

f(x)(−1)w·x

=

{

2n − 2Sf (w) if w = 0

−2Sf (w) if w 6= 0
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On the other hand, the Walsh transform of f(x) can be converted from the Walsh transform

of F (x):

Sf (w) =

{

2n−1 − 1
2SF (w) if w = 0

−1
2SF (w) if w 6= 0

Note that the Walsh transform on F (x) is also known as the type II Walsh transform of

f(x), and is denoted as

S(f)(w) =
2n−1
∑

x=0

(−1)f(x)+w·x.

And hence Sf (w) is called the type I Walsh transform of f(x). The following study will

mainly use type II Walsh transform, and without confusion, we will simply call it Walsh

transform, and its type can be distinguished by the notation.

There is a very good Walsh spectrum description about the correlation immunity of

Boolean functions.

Lemma 1 (Xiao-Massey[9]) A sufficient and necessary condition for f(x) ∈ Fn to be

correlation immune of order k is that for any w ∈ GFn(2) with 1 ≤ WH(w) ≤ k, we have

S(f)(w) = 0.

Although we used the type II Walsh spectrum to describe the correlation immunity in

the above lemma, it is obvious that to use any type of Walsh spectrum will be the same,

because for any nonzero w, we always have that Sf (w) = 0 if and only if S(f)(w) = 0.

In order to compute the fractional correlation immunity of a Boolean function, motivated

by lemma 1, we will seek a Walsh spectrum description. It is easy to deduce that the Walsh

spectrum of f(x) on ei (where ei is such a vector in GFn(2) that its i-th coordinate is 1

and 0 elsewhere) is

S(f)(ei) =
∑

x∈GF n(2)

(−1)f(x)+w·x

= −2
∑

x∈supp(f)

(−1)ei·x

= −2
∑

x∈supp(f)

(−1)xi

= −2
∑

x∈supp(f)

(1 − 2xi)

= 4
∑

x∈supp(f)

xi − 2WH(f)

Therefore by Eqn. (17) we have

FCI(f) = 1 − 1

2WH(f)
max

i
|S(f)(ei)| (22)

Now we can compute the fractional correlation immunity of the majority functions using

Eqn. (22).
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The above defined fractional correlation immunity corresponds to the traditional corre-

lation immunity of order 1, i.e., the correlation of the output of the function with only one

of the inputs is considered. Similar to the correlation immunity of order higher than 1, it

is easy to extend the concept of fractional correlation immunity to the case when consider

the correlation of the output of the function with a linear combination of its input vari-

ables. Note that the basic correlation attack considers qi = Prob(f(x) = xi), in general

case, we may consider a non-zero linear combination of the LFSR sequences, and the linear

combination can be written as w.x, where w ∈ GFn(2) is the coefficient vector. Now the

probability

qw = Prob(f(x) = w · x)

needs to be considered. When w = ei, we have w ·x = xi which is the special case. However

even in the general case, one cannot afford to count all the possible linear combinations in

a practical attack. So we can restrict that there are at most k LFSR sequences involved

in a linear combination, where k is a security parameter. So we need to consider all the

linear combinations w ·x with 1 ≤ WH(w) ≤ k. Similar to the analysis of how the fractional

correlation immunity is related to the basic correlation attack, we can define the k-order

fractional correlation immunity of f(x) in n Variables as follows: First we define

ε(w)(f) = |
∑

x∈supp(f)

(−1)w·x|

to be the correlation between the output of f(x) and the linear combination of its inputs

with w as the coefficient vector of the linear combination, and define

εk(f) = max
w: 1≤WH(w)≤k

ε(w)(f)

Then the k-order fractional correlation immunity of f(x) is defined as

FCIk(f) = 1 − εk(f)

WH(f)

In order to compute the fractional correlation immunity of a Boolean function, motivated

by lemma 1, we will seek a Walsh spectrum description. It is easy to deduce that the Walsh

spectrum of f(x) on ei (as defined before, ei is such a vector in GFn(2) that its i-th

coordinate is 1 and 0 elsewhere) is

Sf (ei) =
∑

x∈GF n(2)

f(x)(−1)ei·x

=
∑

x∈supp(f)

(−1)ei·x

=
∑

x∈supp(f)

(−1)xi

=
∑

x∈supp(f)

(1 − 2xi)

= WH(f) − 2
∑

x∈supp(f)

xi

12



Therefore we have

FCI(f) = 1 − 1

WH(f)
max

i
|Sf (ei)| (23)

Given the relationship of the two types of Walsh spectrums, we have Sf (ei) = −1
2S(f)(ei),

and hence the fractional correlation immunity can be represented as

FCI(f) = 1 − 1

2WH(f)
max

i
|S(f)(ei)| (24)

We will use the concept of fractional correlation immunity to study the majority functions

in the next section, and will see that although the majority functions are not correlation

immune in the traditional sense, but their fractional correlation immunity tends to approach

to 1 with the increase of n, which means that they also have a good resistance against the

correlation attack.

For the case of k-order fractional correlation immunity, with similar analysis as above,

it is easy to deduce the following:

FCIk(f) = 1 −
max

w: 1≤WH(w)≤k
|Sf (w)|

WH(f)
. (25)

When k = 1, it becomes the factional correlation immunity as defined above, i.e., the

specification of “1-order” is often omitted in the description.

Recall that if function f(x) is correlation immune of order k, then it must be correlation

immune of any order m < k as well. In other words, if we write CIk(f) to be the k-

order correlation immunity of f(x), i.e., CIk(f) = 1 means that function f(x) is k-order

correlation immune (note that here k may not be the largest correlation immunity of f(x)),

and CIk(f) = 0 means that f(x) is not k-order correlation immune. Then CIk(f) = 1

implies that CIm(f) = 1 holds for any m < k. Alternatively we can write this as

CIk(f) ≤ CIm(f), m < k

where CIi(f) only takes integral value 0 or 1.

Note from Eqn. (25) that the introduction of fractional correlation immunity also holds

a similar inequality

FCIk(f) ≤ FCIm(f), m < k (26)

which generalizes the above inequality on correlation immunity to the fractional case. This

can be understood as: if f(x) is correlation immune of order k (k can be 0), then it must

be correlation of order k − 1. However perhaps it may not be correlation immune of order

k + 1, but its (k + 1)-order correlation immunity is a fractional value, which can be very

close to 1, where in the sense of traditional correlation immunity, this fractional value is

interpreted as 0.
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5 Majority functions and their Walsh spectrum characteri-

zation

Symmetric Boolean functions have many interesting properties [2], and those in odd number

of variables have maximum algebraic immunity [4]. A special subset of symmetric Boolean

functions are the majority functions, who seem to be the only symmetric functions that

reach the maximum algebraic immunity for small number of variables [1].

In this paper, we will extend the concept of majority functions by introducing set major-

ity functions. The concept of set majority function is not very new, but the term is never

specifically named before. It should be noted that a large number of set majority functions

in even number of variables are not symmtric. It is also noted that the study on majority

functions so far has mainly been restricted to those symmetric ones, except [3] where the

nonlinearity of balanced set majority functions in even number of variables are considered.

5.1 Definitions

Definition 3 Let n be an odd number. The following defined Boolean function f(x) in n

variables is called a majority function:

f(x) =

{

0, if WH(x) ≤ n−1
2 ;

1, if WH(x) ≥ n+1
2 .

(27)

The natural meaning of the above defined majority function is that, when the majority

of the n-bit input has value 1, then the function outputs 1 which means a TRUE value, and

when the majority of the input has value 0, the function outputs 0 which means FALSE.

The definition of majority function is very natural for the case when the input has odd

number of coordinates, i.e. the number of inputs n of the function is an odd number. When

n is even, there is no natural way of defining majority functions, as there are cases where the

input has equal number of 0 values and 1 values. For this case, we generalize the concept

of majority function as follows:

Definition 4 Let n be an even number. Define S = {x ∈ GFn(2) : WH(x) = n
2 } and

A ⊆ S. Then

fA(x) =

{

0, if WH(x) < n
2 or x ∈ A;

1, if WH(x) > n
2 or x ∈ (S \ A).

(28)

is called a set majority function.

Definition 4 generalizes the concept of majority function in odd number of variables to

the case in even number of variables, and hence without confusion, the set majority function

may simply be called the majority function and is simply denoted as f(x) (without the sub-

index ‘A’). The definition can be treated as universal (i.e. applies to odd and even number

of variables) since when n is odd, the set S is an empty set and so is A.

14



There are two extreme cases of the set majority functions, that is when A = S and when

A = φ which is an empty set. When A = S, Eqn. (28) becomes

f1(x) =

{

0, if WH(x) ≤ n
2 ;

1, if WH(x) > n
2 .

(29)

which is called a strict majority function. When A = φ, Eqn. (28) becomes

f0(x) =

{

0, if WH(x) < n
2 ;

1, if WH(x) ≥ n
2 .

(30)

which is called a loose majority function. The meaning of the above two extreme cases

can be interpreted as follows: The strict majority function takes value 1 only when there are

absolutely more 1 values than 0 values in the input, otherwise it takes value 0, including the

case when the input has equal number of 0’s and 1’s; The loose majority function takes value

1 as long as the number of 1 value inputs is no less than that of 0 value inputs, including

the case when their numbers are equal, and it takes 0 only when there are absolutely less

1’s than 0’s in the input. In general case, the set majority function takes value 1 when there

are absolutely more 1’s than 0’s in the input, and it takes value 0 when there are absolutely

less 1’s than 0’s in the input, and in the case when the input has equal number of 0’s and

1’s, it has to check if the input is from set A or S \ A. For the former case the function

takes value 0 and otherwise it takes value 1.

For any given even number n, the strict majority function and the loose majority function

are uniquely determined, just as the case of majority function defined for odd n. However,

in general, the set majority function is not uniquely determined yet, as it depends on the

set A.

It is noted that, except the strict majority function and the loose majority function, all

the set majority functions in general are not symmetric.

Theorem 1 When n is odd, the majority functions in n variables are all balanced; when

n is even, the (set) majority functions in n variables are balanced if and only if |A| = |S|
2 ,

where |A| is the cardinality of set A.

Proof: When n is odd, by the definition 3, the Hamming weight of the majority function

f(x) is WH(f) =
( n

n+1
2

)

+
( n

n+1
2

+1

)

+ · · · +
(n
n

)

. Note that

2n =

(

n

0

)

+

(

n

1

)

+ · · · +
(

n
n−1

2

)

+

(

n
n+1

2

)

+

(

n
n+1

2 + 1

)

+ · · · +
(

n

n

)

=

(

n

n

)

+

(

n

n − 1

)

+ · · · +
(

n
n+1

2

)

+

(

n
n+1

2

)

+

(

n
n+1

2 + 1

)

+ · · · +
(

n

n

)

= 2WH(f)

Hence we have WH(f) = 2n−1 which means that f(x) is balanced.
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When n is even, the Hamming weight of majority function fA(x) is WH(fA) =
( n

n
2
+1

)

+
( n

n
2
+2

)

+ · · · +
(n
n

)

+ |S \ A|. For convenience of writing, let ∆ =
( n

n
2
+1

)

+
( n

n
2
+2

)

+ · · · +
(n
n

)

and A′ = S \ A. Then ∆ can also be expressed as:

∆ =

(

n

0

)

+

(

n

1

)

+ · · · +
(

n
n
2 − 1

)

.

Hence we have

2n =

(

n

0

)

+

(

n

1

)

+ · · · +
(

n
n
2 − 1

)

+

(

n
n
2

)

+

(

n
n
2 + 1

)

+ · · · +
(

n

n

)

= ∆ +

(

n
n
2

)

+ ∆

Note that |A| + |A′| = |S| =
(n

n
2

)

, from the above we have

2n = 2∆ + |A| + |A′|.

So, fA(x) is balanced ⇐⇒ WH(fA) = ∆ + |A′| = 2n−1 ⇐⇒ ∆ + |A| = 2n−1 ⇐⇒ |A| = |A′|
⇐⇒ |A| = |S|

2 . 2

It is seen from the above theorem that there is a strict restriction on the size of A when

the majority function is required to be balanced. What is the number of such balanced

functions for a given even n? Since A is any subset of S that has half of the elements in S,

there can be
( |S|
|S|/2

)

choices of A. To distinguish this special case with the general case, we

call this case as balanced majority functions, because this class of functions are all balanced.

Denote by C(n) the number of balanced majority functions. Then C(n) =
(0
0

)

= 1 for

any odd value n. When n is even, it is easy to prove that

C(n) =

( ( n
n/2

)

( n
n/2

)

/2

)

.

From table 1 it can be seen that the size of C(n) increases very fast with the increase of n.

For the general case, by Stirling formula: n! ≈
√

2πnn+ 1
2 e−n+ 1

12n , we can get an approx-

imation:
(

n

n/2

)

≈ 2n+1

√

2nπe
1
4n

≈ 2n+1

√
2nπ

and hence

C(n) =

( ( n
n/2

)

( n
n/2

)

/2

)

≈ 2
2n+1
√

2nπ
−n

2
+ 1

4 n
1
4 π− 1

4 e
1
8n

which increases supper exponentially with the increase of n. In this sense, the generalized

majority functions in even number of variables are more applicable in practice for their

large number of supplies.
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n C(n)

2 2

4 20

6 184756

8 112186277816662845432

10 3.63 ×1074

12 3.72 ×10276

14 1.85 ×101031

16 1.26 ×103872

18 4.33 ×1014633

20 2.32 ×1055614

Table 1: The number of balanced majority functions in even number of variables

5.2 The Walsh spectrum characterization

Since the definition of majority functions differs much for the cases when n is odd and when

n is even, our discussion will treat each of the cases respectively. Note that, when we write

the XOR of two vectors such as x ⊕ s, it means the bit-wise XOR of vectors x and s. In

particular, x ⊕ 1 means the complement of x, i.e., all the coordinates of x is taken the

complement by XORing with 1.

5.2.1 When n is odd:

First we notice the following property of this class of functions:

Theorem 2 When n is odd, a Boolean function f(x) defined in definition 3 satisfies:

f(x ⊕ 1) = f(x) ⊕ 1.

Proof: By definition 3, f(x) = 0 ⇐⇒ WH(x) ≤ (n − 1)/2 ⇐⇒ WH(x ⊕ 1) ≥ (n + 1)/2

⇐⇒ f(x ⊕ 1) = 1. Similarly, f(x) = 1 ⇐⇒ f(x ⊕ 1) = 0. 2

Theorem 3 Let f(x) be a majority function in n variables, where n is an odd number,

then the Walsh transform of f(x) satisfies:

S(f)(w) =











0, if WH(w) is even;

2
∑

WH(x)≤n−1
2

(−1)w·x, if WH(w) is odd. (31)

Proof: Since f(x) is a majority function in odd number of variables, we have

S(f)(w) =
∑

x∈GF n(2)

(−1)f(x)+w·x
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=
∑

WH(x)≤n−1
2

(−1)w·x −
∑

WH(x)≥n+1
2

(−1)w·x

=
∑

WH(x)≤n−1
2

(−1)w·x −
∑

WH(x)≤n−1
2

(−1)w·(1⊕x)

=
∑

WH(x)≤n−1
2

(−1)w·x −
∑

WH(x)≤n−1
2

(−1)w·1+w·x

=
∑

WH(x)≤n−1
2

(−1)w·x −
∑

WH(x)≤n−1
2

(−1)WH(w)+w·x

=











0, if WH(w) is even;

2
∑

WH(x)≤n−1
2

(−1)w·x, if WH(w) is odd.

2

It is noted that when n is even, all the majority functions are symmetric, and in this

case, a more convenient Walsh characterization is to treat input with different Hamming

weight, and such a characterization can be found in [3].

5.2.2 When n is even:

Since the loose majority functions and the strict majority functions are both symmetric,

their Walsh spectrum characterization can be done by treating the difference of the Ham-

ming weight of the input, and such characterization can be found in [3] as well.

However in the general case, since set majority functions are not symmetric, Walsh

spectrum characterization in terms of different Hamming weight of the inputs makes no

sense, so we treat individual inputs. From definition 4 it is known that the majority function

in even number of variables is not uniquely determined, it depends on the set A. Denote

by A′ = S \ A = {x : x ∈ S and x 6∈ A} to be the complement set of A with respect to S,

and define

A1 = {x : x ∈ GFn(2) and WH(x) <
n

2
}

A2 = {x : x ∈ GFn(2) and WH(x) >
n

2
}

A3 = {x : x ∈ A \ (A ∩ Ā)}
A4 = {x : x ∈ A′ \ (A′ ∩ Ā′)}
A5 = {x : x ∈ A ∩ Ā}
A6 = {x : x ∈ A′ ∩ Ā′}

where Ā = {x ⊕ 1 : x ∈ A}. Then it is easy to prove the following:

Lemma 2 The above defined sets satisfy the following:

1. |A1| = |A2|, |A3| = |A4|, Furthermore, if |A| = |S|
2 , then we also have |A5| = |A6|.
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2. f(x)|A1 = 0, f(x)|A2 = 1, f(x)|A3 = 0, f(x)|A4 = 1, f(x)|A5 = 0, f(x)|A6 = 1, where

f(x)|A represents the constraint function of f(x) whose variable x can only take values

from A.

3. Define a map φ(x) = x⊕ 1. It maps every coordinate of x to its complement, and for

a set B ⊂ GFn(2), we denote φ(B) = {y = φ(x) : x ∈ B}. Then we have φ2(x) = x,

φ2(B) = B, and φ(A1) = A2, φ(A3) = A4, φ(A5) = A5, φ(A6) = A6.

Based on lemma 2, we can formulate the Walsh transform of the majority functions in

even number of variables. First we give

Lemma 3 Let V ⊂ GFn(2) be a self-complement set, i.e. V̄ = {x⊕ 1 : x ∈ V } = V , then

for any odd Hamming weight vector w ∈ GFn(2), we have
∑

x∈V
(−1)w·x = 0.

Proof: Denote U =
∑

x∈V
(−1)w·x, then

U =
∑

x∈V
(−1)w.(x⊕1)

=
∑

x∈V
(−1)w·x+WH(w)

= (−1)WH(w) ∑

x∈V
(−1)w·x (Since WH(w) is odd)

= −U.

Hence U = 0. 2

Theorem 4 Let fA(x) be a majority function in n variables. Then the Walsh transform

of fA(x) is:

S(fA)(w) =















∑

x∈A5

(−1)w·x − ∑

x∈A6

(−1)w·x, if WH(w) is even;

2
∑

x∈A3 or WH(x)< n
2

(−1)w·x, if WH(w) is odd.
(32)

Proof: By the definition of fA(x) with respect to the sets A and S, and note that

S = A ∪ A′ = A3 ∪ A5 ∪ A4 ∪ A6 and GFn(2) = S ∪ A1 ∪ A2 =
⋃6

i=1 Ai, by lemma 2 and

lemma 3 we have

S(fA)(w) =
∑

x∈GF n(2)

(−1)fA(x)+w·x

=
∑

x∈A1

(−1)w·x −
∑

x∈A2

(−1)w·x +
∑

x∈A3

(−1)w·x −
∑

x∈A4

(−1)w·x

+
∑

x∈A5

(−1)w·x −
∑

x∈A6

(−1)w·x

=
∑

x∈A1

(−1)w·x −
∑

x∈A1

(−1)w·(x⊕1) +
∑

x∈A3

(−1)w·x −
∑

x∈A3

(−1)w·(x⊕1)
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+
∑

x∈A5

(−1)w·x −
∑

x∈A6

(−1)w·x

=
∑

x∈A1

(−1)w·x − (−1)WH(w)
∑

x∈A1

(−1)w·x

+
∑

x∈A3

(−1)w·x − (−1)WH(w)
∑

x∈A3

(−1)w·x

+
∑

x∈A5

(−1)w·x −
∑

x∈A6

(−1)w·x

=











∑

x∈A5

(−1)w·x − ∑

x∈A6

(−1)w·x, if WH(w) is even;

2
∑

x∈A1∪A3

(−1)w·x, if WH(w) is odd

=















∑

x∈A5

(−1)w·x − ∑

x∈A6

(−1)w·x, if WH(w) is even;

2
∑

x∈A3orWH(x)< n
2

(−1)w·x, if WH(w) is odd

2

6 On the non-correlation immunity of majority functions

In order to check if the majority functions are correlation immune of any order at all,

we might first look at whether they are correlation immune of order 1, for this purpose,

by Lemma 1, we only need to verify their Walsh spectrum on a vector w with Hamming

weight 1. Without loss of generality, let the vector ei, as defined before, be such whose i-th

coordinate is 1 and 0 elsewhere.

Regarding the correlation immunity of majority functions, we have the following conclu-

sion.

Theorem 5 No of the majority functions defined in definition 3 and definition 4 is corre-

lation immune.

Proof: Item 3 of Lemma 4 in [3] and Lemma 1 has shown that all symmetric majority

functions are not correlation immune of order 1, this includes all the majority functions in

odd number of variables, and the loose majority and the strict majority function in even

number of variables. So we only need to show that the set majority functions in even

number of variables in the general case are also not correlation immune of order 1.

When n is even, by theorem 4 we have

S(fA)(ei) = 2
∑

x∈A1∪A3

(−1)ei·x = 2[
∑

WH(x)< n
2

(−1)xi +
∑

x∈A3

(−1)xi ]

Among all the n-dimensional vectors x with WH(x) < n
2 , the number of such vectors

that also satisfy that the i-th coordinate is 1 (and the other n − 1 coordinates can have

0 ∼ n
2 − 1 of 1’s) is

(

n − 1

0

)

+

(

n − 1

1

)

+

(

n − 1

2

)

+ · · · +
(

n − 1
n
2 − 1

)

,
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and the number of such vectors whose i-th coordinate is 0 (and the other n− 1 coordinates

can have 0 ∼ n−1
2 of 1’s) is

(

n − 1

0

)

+

(

n − 1

1

)

+

(

n − 1

2

)

+ · · · +
(

n − 1
n
2

)

.

Therefore

∑

WH(x)< n
2

(−1)xi = (

(

n − 1

0

)

+

(

n − 1

1

)

+

(

n − 1

2

)

+ · · · +
(

n − 1
n
2

)

)

−(

(

n − 1

0

)

+

(

n − 1

1

)

+

(

n − 1

2

)

+ · · · +
(

n − 1
n
2 − 1

)

)

=

(

n − 1
n
2

)

therefore we have

S(fA)(ei) = 2[

(

n − 1
n
2 − 1

)

+
∑

x∈A3

(−1)xi ].

We show that the above is not always zero, i.e., if the above is zero for some i, then

there must exist j such that S(fA)(wj) 6= 0. Denote by Ai1
3 = {x ∈ A3 : xi = 1} and

Ai0
3 = {x ∈ A3 : xi = 0}, then A3 = Ai0

3 ∪ Ai1
3 .

Assume for some i, S(fA)(ei) = 0, then
∑

x∈A3

(−1)xi = 1−
(n−1

n
2
−1

)

. This means that |Ai1
3 | −

|Ai0
3 | =

(n−1
n
2
−1

)

− 1. Note that when the i-th coordinate is fixed to be 1, the number of such

vectors in S is
(n−1

n
2
−1

)

(the other n − 1 coordinates has n
2 − 1 of 1’s). Since |Ai1

3 | cannot

be larger than
(n−1

n
2
−1

)

, then there are only two cases: (1) |Ai1
3 | =

(n−1
n
2
−1

)

and |Ai0
3 | = 1; or

(2) |Ai1
3 | =

(n−1
n
2
−1

)

− 1. We show that in both of the cases, there must exist a j such that

S(fA)(wj) 6= 0 and hence induces the conclusion of the theorem.

If case (1) is true, then the other n − 1 coordinates (except i) of the vectors in A3 have

all the possible vectors of Hamming weight n
2 −1. So for any j 6= i, there are

(n−2
n
2
−1

)

elements

in Ai1
3 whose j-th coordinate is 0 (let the other n − 2 coordinates take n

2 − 1 of 1’s), and

there are
(n−2

n
2
−2

)

elements in Ai1
3 whose j-th coordinate is 1 (let the other n − 2 coordinates

take n
2 − 2 of 1’s). Since the j-th coordinate of the element in Ai0

3 may be 0 or 1, we have

∑

x∈A3

(−1)xj =

(

n − 2
n
2 − 1

)

−
(

n − 2
n
2 − 2

)

− c =
(n − 2)!

n
2 !(n

2 − 1)!
− c,

where c ∈ {0, 1}, which is larger than or equals to 0 when n > 2, and hence S(fA)(wj) > 0.

If case (2) is true, then similarly other n−1 coordinates (except i) have all but one of the

possible vectors of Hamming weight n
2 − 1. So for any j 6= i, there are

(n−2
n
2
−1

)

− c1 elements

in Ai1
3 whose j-th coordinate is 0 (let the other n − 2 coordinates take n

2 − 1 of 1’s, taking

away one such vector), and there are
(n−2

n
2
−2

)

− c2 elements in Ai1
3 whose j-th coordinate is 1

(let the other n − 2 coordinates take n
2 − 2 of 1’s, taking away one such vector). Hence we

have
∑

x∈A3

(−1)xj =

(

n − 2
n
2 − 1

)

− c1 − [

(

n − 2
n
2 − 2

)

− c2] =
(n − 2)!

n
2 !(n

2 − 1)!
+ c2 − c1,
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where c1, c2 ∈ {0, 1}. As in case (1), when n > 2, it results in S(fA)(wj) > 0. When n = 2,

all the possible majority functions in 2 variables are: f1(x) = x1, f2(x) = x2, f3(x) = x1x2

and f4(x) = x1 ⊕ x2 ⊕ x1x2. It is easy to verify that no of these functions is correlation

immune, and hence the conclusion of the theorem is true. 2

7 On the fractional correlation immunity of majority func-

tions

Given the Walsh characterization of the fractional correlation immunity and the Walsh

spectrum characterization of majority functions, it is easy to link the two together to give

an explicit description on the fractional correlation immunity of majority functions. Let

f(x) be the majority function in n variables being considered.

7.1 When n is odd

By definition 3 it is known that, f(x) = 1 if and only if WH(x) ≥ n+1
2 . Similar to the

discussion above, among the vectors with Hamming weight being larger than or equals to
n+1

2 , the number of such vectors where the i-th coordinate is 0 (and the rest n−1 coordinates

can have n+1
2 ∼ n− 1 of 1’s) is

(n−1
n−1

)

+
(n−1
n−2

)

+ · · ·+
(n−1

n+1
2

)

, and the number of such vectors

where the i-th coordinate is 1 (and the rest n− 1 coordinates can have n−1
2 ∼ n− 1 of 1’s)

is
(n−1
n−1

)

+
(n−1
n−2

)

+ · · · +
(n−1

n−1
2

)

. Therefore

S(f)(ei) = −2
∑

x∈supp(f)

(−1)xi

= 2[

(

n − 1

n − 1

)

+

(

n − 1

n − 2

)

+ · · · +
(

n − 1
n−1

2

)

]

−2[

(

n − 1

n − 1

)

+

(

n − 1

n − 2

)

+ · · · +
(

n − 1
n+1

2

)

]

= 2

(

n − 1
n−1

2

)

Note that here the value of S(f)(ei) is independent of i, hence by Eqn. (22) we have

FCI(f) = 1 − 1

2WH(f)
max

i
|S(f)(ei)|

= 1 − 1

WH(f)
.

(

n − 1
n−1

2

)

(33)

By definition 3 we know that, when n is odd, the majority functions are balanced, i.e.,

WH(f) = 2n−1, and hence the above becomes

FCI(f) = 1 − 1

2n−1

(

n − 1
n−1

2

)

.
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By Stirling formula: n! ≈
√

2πnn+ 1
2 e−n+ 1

12n , we further have

(

n
n
2

)

=
n!

(n
2 )2

≈
√

2πnn+ 1
2 e−n+ 1

12n

2π(n
2 )n+1e−n+ 1

3n

=
2n+1e−

1
4n√

2nπ

Then
(

n − 1
n−1

2

)

≈ 2n

√

2π(n − 1)
e
− 1

4(n−1)

So

1 − 1

2n−1

(

n − 1
n−1

2

)

≈ 1 −
√

2

π(n − 1)
e
− 1

4(n−1) ≈ 1 −
√

2

π(n − 1)
.

Summarize the discussion above, we have

Theorem 6 When n is odd, the fractional correlation immunity of the majority functions

is

FCI(f) = 1 − 1

2n−1

(

n − 1
n−1

2

)

≈ 1 −
√

2

π(n − 1)
. (34)

7.2 When n is even

By theorem 4 we have

S(fA)(ei) = 2
∑

x∈A3orWH(x)< n
2

(−1)ei·x = 2[
∑

x∈A3

(−1)xi +
∑

WH(x)< n
2

(−1)xi ].

It is easy to verify that, among the n-dimensional vectors of Hamming weight less than n
2 ,

the number of such vectors where the i-th coordinate is 0 (and the rest n − 1 coordinates

can have 0 ∼ (n
2 − 1) of 1’s) is

(n−1
0

)

+
(n−1

1

)

+ · · · +
(n−1

n
2
−1

)

, and the number of such vectors

where the i-th coordinate is 1 (and the rest n − 1 coordinates can have 0 ∼ n
2 − 2 of 1’s) is

(n−1
0

)

+
(n−1

1

)

+ · · · +
(n−1

n
2
−2

)

. Therefore

∑

WH(x)< n
2

(−1)xi = [

(

n − 1

0

)

+

(

n − 1

1

)

+ · · · +
(

n − 1
n
2 − 1

)

]

−[

(

n − 1

0

)

+

(

n − 1

1

)

+ · · · +
(

n − 1
n
2 − 2

)

]

=

(

n − 1
n
2 − 1

)

.

Note from the definition that |S| =
(n

n
2

)

and A3 cannot have more than half of the elements

in S (otherwise A3 would have at least a pair of complement vectors which contradicts with

its definition), i.e. |A3| ≤ |S|
2 =

(n
n
2

)

/2. Since

−|A3| ≤
∑

x∈A3

(−1)ei·x ≤ |A3|,
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so we get a lower bound of S(fA)(ei):

S(fA)(ei) ≥ 2[−|A3| −
(

n − 1
n
2 − 1

)

]

≥ 2[−
(

n
n
2

)

/2 −
(

n − 1
n
2 − 1

)

]

= −2

(

n
n
2

)

and an upper bound

S(fA)(ei) = 2[|A3| −
(

n − 1
n
2 − 1

)

]

≤ 2[

(

n
n
2

)

/2 −
(

n − 1
n
2 − 1

)

]

= 0.

By definition 4, we have

WH(fA) =

(

n
n
2 + 1

)

+

(

n
n
2 + 2

)

+ · · · +
(

n

n

)

+ |A3|

≥
(

n
n
2 + 1

)

+

(

n
n
2 + 2

)

+ · · · +
(

n

n

)

= 2n−1 −
(

n
n
2

)

/2.

Therefore, by Eqn. (22) we have

FCI(fA) = 1 − 1

2WH(fA)
max

i
|S(fA)(ei)|

≥ 1 − 2

2n −
(n

n
2

) .

(

n
n
2

)

≈ 1 − 4√
2nπ − 2

.

Summarize the discussion above we have

Theorem 7 When n is even, then the fractional correlation immunity of any majority

function fA(x) in n variables satisfies

FCI(fA) ≥ 1 − 2

2n −
(n

n
2

)

(

n
n
2

)

≈ 1 − 4√
2nπ − 2

. (35)

Noticing that when n is odd, by theorem 6 we have

lim
n→∞

FCI(f) = 1,

and when n is even, by theorem 7 we have

lim
n→∞

FCI(fA) = 1,

this yields the following conclusion.
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Theorem 8 The fractional correlation immunity of the majority functions defined in defi-

nition 3 and definition 4 approaches to 1 with the increase of the number of variables.

Theorem 8 means that the majority functions are almost correlation immune, and they

are more close to being correlation immune with the increase of n. This asymptotic property

is called approaching correlation immunity.

8 Concluding remarks

This paper proposed a new security measure of cryptographic Boolean functions called

fractional correlation immunity. When the fractional correlation immunity reaches value

1, it is the correlation immunity in the traditional sense. How the new measure is related

to the resistance against correlation attack when such a function is used as the combining

function in a nonlinear combiner is studied.

This paper also studies the fractional correlation immunity of majority functions. It

is shown that for the correlation immunity in the traditional sense, no majority function

is correlation immune. However the fractional correlation immunity of majority functions

approaches to 1 with the number of variables grows. This means that the majority logic

functions also have good resistance against correlation attack.

It is noted that the results in this paper can be generalized to the case of k-order fractional

correlation immunity, where the analysis is unavoidably more complicated. It should be

pointed out that the concept of fractional correlation immunity can also be used to study

other classes of Boolean functions.
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