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Abstract—In this paper we analyze different techniques to
blindly recover the parameters of turbo-code encoders with only
the knowledge of noisy eavesdropped binary stream. We compare
different strategies to reconstruct convolutional encoders, parti-
cularly when both are recursive systematic coders. We explain
the intrinsic indetermination due to these techniques but also how
to overcome such an issue in the case of turbo-code encoders.
Moreover, we generalize Burel and al.’s particular reconstruction
of the second (n, 1)-encoder for (n, k)-encoders.

I. INTRODUCTION

Turbo-codes were introduced in 1993 by C. Berrou,
A. Glavieux and P. Thitimajshima [1] and became quickly
a standard for error correction adapted to very noisy trans-
mission channels. The general scheme of turbo-coders is
composed of two parallel convolutional coders separated by
a block interleaver. This scheme is represented in figure 1.
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Fig. 1. Turbo-coder

In a non-cooperative context, a passive adversary eavesdrops
the signal transmission exchanged by two legal users who
keep secret all the parameters that they use to communicate.
The adversary has no a priori knowledge about these
parameters and has to recover them in order to have access
to the information shared by the legal users. In this paper, we
suppose that he has access to the bits stream. We also suppose
that this binary stream is the output of a turbo-code encoder.
The goal of the adversary is then to guess the convolutional
coders but also the interleaver. We mainly focus here on
the problem of recovering the parameters of convolutional
encoders. We extend the work initialized by J. Barbier [2],
[3], [4] who dealt with polynomial encoders and revisited by
R. Gautier and al. [5] for Recursive Systematic Coders (RSC)
in a perfect channel.

This paper is organized as follows. We first recall the
principles of the convolutional codes reconstruction. We also
discuss about the intrinsic indetermination of such techniques
and explain how to directly recover the original coder and
so resolve some of the indetermination. In section III, we
detail state-of-art techniques to reconstruct linear block codes
and describe the context in which they could be adapted
to reconstruct convolutional codes. We present a complexity
analysis of Gautier and al.’s adaptation and explain why this
method is much less efficient than the standard one. Finally, in
section IV we present Gautier and al.’s technique to recover
the second convolutional encoder when the encoder is a (n, 1)-
coder and when its output is partially punctured under the
hypothesis of a perfect channel. We propose a generalization
of this method to (n, k)-coders and noisy channels.

II. RECONSTRUCTION OF CONVOLUTIONAL CODES

The convolutional code reconstruction problem has been
settled and partially solved for (n, 1)-codes and noiseless
channels, by B. Rice [6] in 1995. Then É. Filiol designed a
technique to reconstruct general convolutional codes in noisy
channels [7], [8], [9]. His work was the starting point of J. Bar-
bier’s algorithm which drastically improves the reconstruction
complexity [10], [4] but also the probability of detection
by introducing the use of linear block code reconstruction
algorithms to solve linear systems with corrupted coefficients
[4], [11].

A. Principles of the convolutional codes reconstruction

Convolutional (n, k,K)-coders are error-correcting stream
coders which output n bits for every k input bits. Each bit of
the output is a linear combination of the k× (K−1) previous
input bits and the k current input bits. K is traditionally called
the constrain length. Such encoders can be implemented by
shift register circuits. If we map the input data stream to the
coefficients of k Laurent’s serials, mi(x) and the output coded
stream to the coefficients of n Laurent’s serials, cj(x), then
using the algebraic approach, we express cj(x) from mi(x)
by

m1(x)g1,1(x) + · · ·+ mk(x)g1,k(x) = c1(x),
...

...
m1(x)gn,1(x) + · · ·+ mk(x)gn,k(x) = cn(x),

(1)



where the gi,j(x) are rational fractions with binary
coefficients. These rational fractions entirely define the coder
by its generator matrix G(x) = [gi,j(x)]i,j . The interested
reader can find a good introduction of convolutional codes
through the scope of the algebraic approach in [12].

Let F be GF (2), the Galois field of characteristic 2. In the
case of Non Recursive Coders (NRC), gi,j(x) are polynomials
of degree at most K. Since ci(x) and mi(x) belong to the
field of Laurent’s serials, there exists an infinity of couples
(m(x), G(x)) which satisfy equation 1. Now, we present how
to recover a particular generator matrix (canonical matrix) for
perfect channels. A canonical matrix is a polynomial generator
matrix for which the maximum degree of its minors is at small
as possible. We first consider the (n−k) (k+1, k)-sub-coder,
Gi(x) defined by the first k rows of G(x) plus the (k + i)th.
For each sub-coder, we build the matrix

Pi(x) =


g1,1(x) . . . g1,k(x) c1(x)

...
...

...
gk,1(x) . . . gk,k(c) ck(x)

gk+i,1(x) . . . gk+i,k(c) ck+i(x)

 . (2)

The determinant of Pi(x) equals 0, since cj(x) are linear
combinations of gi,j(x). Then, by developing it, we obtain∑

j=1...k,k+i

cj(x)∆j,i(x) = 0, (3)

where ∆j,i(x) is the minor associated with cj(x) in the matrix
Pi(x). Moreover, it is easy to see that the ∆i,j(x) which are
solutions of the equations 3 for i = 1 . . . (n−k) belong to the
same F [x]-module of dimension 1. Let D be the degree of the
convolutional code, which is also the highest degree of minors
of a canonical encoder, nN be the number of intercepted bits,
then we define

C(j)(N) =


cd

j . . . c0
j

cd+1
j . . . c1

j

...
...

cN
j . . . c

(N−d)
j

 , j = 1 . . . n

and

Ci(N) =
`

C(1)(N) . . . C(k)(N) C(k+i)(N)
´
, (4)

i = 1 . . . (n − k). To recover the minors, then we have to
solve the linear systems Ci(N)∆ = 0 for i = 1 . . . (n −
k). When the channel is perfect, we just have to compute
Ker(Ci(N)) and when the channel is noisy we adapt linear
block code reconstruction algorithms as proposed in [4], [11].
In [4], J. Barbier explains how to construct a generator of
the F [x]-module of solution and proves that this generator
is associated with a canonical generator matrix. Finally, to
recover the polynomials we solve the following systems as
previously. ∀i = 1 . . . (n− k), ∀j = 1 . . . k,∑

l=1...k,k+i

∆l,i(x)gl,j(x) = 0. (5)

Since k, n,D are unknown, we have to guess them iteratively.
When the tested values are not correct, with a high probability,
Ker(Ci(N)) = ∅, and when k, n are correct and D + 1 ≤ d,
we obtain a solution.

B. On the impossibility of finding the original coder
The technique presented in the last paragraph focus on

finding a canonical matrix G(x), but all the matrices which
are F [x]-equivalent may have generated the same output
(c1(x), . . . , cn(x)). This can also be well illustrated by the
equation 3. Indeed, the set of solutions is a F [x]-module
of length 1. So, with no a priori knowledge, there is no
way to guess if the coded sequence has been generated by a
canonical matrix or by an equivalent one.

Moreover, a canonical matrix is not unique [12]. To be
convinced of that, just mirror the left part of the system in
equation 1. The message (mk(x), . . . ,m1(x)) and the matrix
G
′
(x) = [g1,k−j(x)] also verifies the equation 1. This is also

true when applying any permutation of columns of the left
part of the system. Finally there exists at least (k!) different
couples (m(x), G(x)), where G(x) is canonical and which
verifies equation 1.

C. Reconstruction of a Recursive Systematic Coders
In [5], the authors use first block code reconstruc-

tion algorithm to recover one polynomial generator matrix
GNRNSC(x) = [gi,j(x)] of a convolutional code and then
compute

GRSC(x) = Q−1(x)GNRNSC(x) , (6)

where Q(x) = [gi,j(x)]i,j=1...k, in order to obtain a systematic
generator matrix. Two main drawbacks appear using this
method. First, the computational cost of inverting Q(x) with
coefficients in F (X) is basically O(kKk). Secondly, because
of the huge number of polynomial matrices which generate
the coded sequence, there is also a huge number of acceptable
GRSC(x) doing that way.

Now, we suppose that the coded sequence c(x) has been
generated by a systematic coder and so G(X) can be written

G(x) =


Ik

pk+1,1(x)
qk+1,1(x) . . .

pk+1,k(x)
qk+1,k(x)

...
...

pn,1(x)
qn,1(x) . . .

pn,k(x)
qn,k(x)

 . (7)

Since G(x) is systematic, this is the only systematic gen-
erator matrix which generates c(x). Then q(x)G(x) =
GCM(qi,j(x))G(x) is the only canonical generator matrix
which generates c(x) such that the upper part can be written
as p(x)Ik. Finally, using Filiol and Barbier’s algorithm, we
obtain the set of possible canonical matrices which generates
c(x). Among all, q(x)G(x) is the only one with the upper
part of the form p(x)Ik. Using this algorithm, we are able to
determine the right systematic coder without any additional
computational cost.



III. ADAPTATION OF LINEAR BLOCK CODES
RECONSTRUCTION

Two main approaches have been introduced first by G. Plan-
quette [13] to recover linear block codes. The first one consists
in assuming properties on parity checks and then validating
them using statistical tests. The second approach is based on
the study of the rank of a matrix, the interception matrix, built
with the intercepted bits stream. It has been rediscovered later
by G. Burel and R. Gautier [14]. When the bits stream is
noisy, two strategies have been proposed to adapt the rank
criterion. First, A. Valembois [15], [16] proposed to look for
small Hamming weight codewords of the code generated by
the columns of the interception matrix. Then, M. Cluzeau [17],
[18], [19] improved the detection of such codewords by adapt-
ing the Canteaut-Chabaud algorithm [20] and introducing error
correction during the reconstruction process for LDPC. The
second strategy, introduced by G. Sicot and S. Houcke [21],
[22], [23], [24] is a randomization of the Gauss algorithm.
J. Barbier gave an algebraic analysis of this algorithm [4],
[11]. Such algorithms are also dedicated to solve linear binary
systems with erroneous coefficients.

A. Principles of the block codes reconstruction

In the context of block code reconstruction, the intercepted
codewords (c̃i)i can be written as c̃i = Gmi + ei = ci + ei

where G = [gi,j ]i,j of size n×k and such that gi,j ∈ F , is the
generator matrix of the code, mi are the information words
and ei are vectors of length n such that the coefficients which
equal one represent the noisy bits of c̃i. To reconstruct the
code associated with G, we preferentially reconstruct its dual
code H, that is to find a basis (hj)j of H, i.e. vectors such
that for all i and j, < ci, hj >=< hj , ci >= 0. To achieve
this, we build the interception matrix C̃(ne, de), by filling it
from top left to bottom right using the intercepted bits. As the
adversary has non a priori knowledge, the first intercepted bit
is not necessary the first bit of a codeword. We denote by d,
the desynchronization parameter which represents the index
of the first intercepted bit in the first intercepted codeword.
C̃(ne, de) has ne columns and de is an estimation of d. In
order that the first coefficient of the intercepted matrix be also
the first bit of an intercepted codeword, the adversary skips the
first (ne − de) intercepted bits. That is the case when de = d.
First, let us write

C̃(ne, de) = C(ne, de) + E(ne, de) , (8)

where C(ne, de) and E(ne, de) are filled in the same way as
C̃(ne, de) using respectively the bits of (ci)i and (ei)i. We
recall that Ker(C(n, d)) = H, with a probability close to
one [4], [11]; then the block code reconstruction problem is
equivalent to compute Ker(C(n, d)) observing C̃(ne, de) and
guessing n and d. Under the realistic hypothesis that C(ne, de)
behaves like a random binary matrix when ne 6= αn, α ∈ N∗,
G. Sicot, S. Houcke and J. Barbier [4], [11] proved that with
a probability close to 1,

k

n
=

rk(C(n, d))

n
≤ rk(C(n, de))

n
≤ rk(C(ne, de))

ne
= 1, (9)

∀ de, ne 6= n. Their analysis leads to the already known rank
criterion,

(n, d) = Argmin
ne,de

(
rk (C(ne, de))

ne

)
. (10)

The estimation of rk(C(ne,de))
ne

and H using C̃(ne, de) can be
achieved by looking for small Hamming weight codewords in
the code generated by the columns of the interception matrix
as proposed by G. Planquette [13], A. Valembois [15], [16]
and M. Cluzeau [17], [18], [19] or by an adaptation of the
Gauss algorithm proposed by G. Sicot and S. Houcke [21],
[22], [23], [24].

B. Adaptation to reconstruct convolutional codes

To analyze the adaptation proposed in [5], one should
notice that the different bits streams (ci(x))i=1...n are not
separated and grouped to build sub-encoders, so the system
must contains all the sub-systems which verify equations
3. We conclude that for all ne < n(D + 1), C(ne, de) is
full rank with a probability close to 1. The same arguments
as those detailed in [4], [11] lead us to conclude that for
ne 6= αn + n(D + 1), α ∈ N, C(ne, de) is full rank with a
probability close to one.

Now, we suppose that ne = αn + n(D + 1). For α = 0,
all the equations 3 are verified in the same time. Resolving
the system, we obtain (n − k) independent solutions which
define the generator of the F [x]-module of solutions. Then, for
each additional n columns of the interception, another (n−k)
independent solutions are obtained. We can deduced them by
multiplying by x the solutions obtained without these new n
columns. They correspond to solutions of higher degree in the
F [x]-module. So we can conclude that

rank(C(ne, de)) = αk + n(D + 1)− (n− k) = (α− 1)k + nD,
(11)

with a probability close to 1, for all ne = n(D+1)+αn, α ∈ N
and rank(C(ne, de)) = ne otherwise. This expression puts
right the formula of the rank proposed in [5]. When we observe
two consecutive values n1

e and n2
e such that the interception

matrix is not full rank, we deduce n = |n2
e − n1

e|. Moreover
the slope s of the rank for ne = n(D +1)+αn is exactly the
rate of the code; then we obtain k = ns. Finally, for α = 1
and a rank R measured, we conclude D = R/n.
One should also notice that the convolutional encoders are
stream encoders, so each sub-stream of length n(D+1) may be
used to build the interception matrix. For that kind of coders,
we need not to find any synchronization parameter d.

C. Complexity analysis

First, we deal with a perfect channel. In order to observe
the first rank deficiency, we need to compute the rank of the
interception matrix for ne from 1 to n(D+1). The complexity
of this adaptation is then

O

n(D+1)∑
ne=2

n3
e

 = O(n4D4). (12)



Now, if we use Filiol and Barbier’s algorithm [4], when
ne 6= n, an average of one Gauss iteration is need (with a
probability close to one the interception matrices behave like
random matrices). Each triplet (ne, ke, De) is tested. Then, the
complexity of Filiol and Barbier’s algorithm [2], [4] is

O(n5D4). (13)

At the first sight, Gautier and al.’s strategy seems to be a
little bit more efficient for perfect channels. Nevertheless,
the systems to be solved in Filiol and Barbier’s algorithm
are composed of Hankel sub-systems, that is no more the
case in the proposed technique. This particular form of the
sub-systems drives us to foresee a great improvement of the
complexity by replacing the Gauss algorithm with algorithms
dedicated to solve Toeplitz systems. For instance, the use of
a Fast Fourier Transform [25] reaches O(n log n).

Now, we suppose that the channel is noisy. In that case,
Gautier and al.’s strategy consists in using Sicot and Houcke’s
algorithm [21], [22], [23], [24] to dealt with corrupted coef-
ficients in the systems that they solve. The main idea of this
algorithm is to randomize the Gauss algorithm by randomly
mixing the rows of the interception matrix. Then, for each
mixed interception matrix they test the vectors of the new
basis output by the Gauss algorithm. J. Barbier proved [4]
that

lim
N→∞

Pr
(
v ∈ H|w(C̃(n, d)v) ≤ γN

)
= 1, (14)

where w(.) is the Hamming weight, γ a threshold close to 0
and N the number of rows of the interception matrix. So, if
we find a vector v such that w(C̃(n, d)v) ≤ γN , then with
a high probability, v is a solution of the considered system.
Now, with 2n(D + 1) intercepted bits, we generate (D + 2)
rows for the systems in Filiol and Barbier’s algorithm opposed
to only 2 when applying the technique proposed in [5]. One
main issue is to find vector of small weight. Let us denote

P (v) =
(

1 + (1− 2ε)w(v)

2

)ne

, (15)

where ε is Bit Error Rate (BER). Then, the analysis of
Sicot and Houcke’s algorithm points out that the probability
Pdet(v,N) to find such a vector v is bounded by [4]

P (v)ne ≥ lim
N→∞

Pdet(v,N) ≥ P (v)ne

(
1−

(
1− P (v)

γ

)2
)

,

(16)
when ne = n(D+1)+αn. That implies that the probability of
detection of a solution exponentially tends towards 0 when the
size of the system increases. As systems in Filiol and Barbier’s
algorithm are r = n/(k + 1) times smaller than those used
in block code reconstruction, we can conclude that Filiol and
Barbier’s algorithm is at least P (v)−r times more efficient
than applying Gautier and al.’s technique (for a fixed BER, N
and a given solution v).

IV. GENERALIZATION OF GAUTIER AND al.’S TECHNIQUE

To reconstruct the second (k, n,D)-convolutional code, we
reconstruct (n − k) (k, k + 1)-sub-encoders as explained in
section II. The convolutional coder C1 (see figure 1) can be
reconstructed directly using Filiol and Barbier’s algorithm as
detailed in paragraph II-C. Then, at that point, k is known
and we make the hypothesis that C2 is an RSC and that the
systematic part m′(x) is punctured. Let us denote le the length
of the interleaver Π.

A. Reconstruction of the second (k, n,D)-convolutional codes

1) le = k(D+1): The interleaver Π can be entirely defined
by a permutation σ : [0, le − 1] → [0, le − 1]. We define
ρ = σ−1. The permutations σ and ρ can be extended in the
same manner to N as follows. ∀α ∈ N and ∀i ∈ [0, le − 1],

σ(αle + i) = αle + σ(i). (17)

First, we express m = m0m1m2 · · · =
m0

1m
0
2 . . .m0

km1
1 . . .m1

k . . . . The interleaved message
m

′
can also be written this way. Then, we rewrite equations

4 with ∀i ∈ [1, k], ci(x) = m
′

i(x) and solve the systems
∀i = 1 . . . (n− k), Ci(N)X =(

C(1)(N)| . . . |C(k)(N)|C(k+i)(N)
)

X = 0, (18)

where N is the number of rows of the matrices. Without loss
of generality, N is considered as constant for better readability.
Using the definition, we can expressed C(i)(N) with m and
ρ. ∀i = 1 . . . k, C(i)(N) =

0BBBBBBBBBBB@

mρ(Dk+i−1) . . . mρ(k+i−1) mρ(i−1)

mle+ρ(i−1) mρ(Dk+i−1) . . . mρ(k+i−1)

.

.

.

.

.

.

.

.

.

mle+ρ(Dk+i−1) . . . mle+ρ(k+i−1) mle+ρ(i−1)

.

.

.

.

.

. . . .

.

.

.

1CCCCCCCCCCCA
.

Since the adversary has no knowledge about ρ, he is not
able to build such matrices but one should notice that each
row of (C(1)(N)| . . . |C(k)(N)) contains exactly le consec-
utive bits of m. Taking advantage of this, we solve the
system C

′

i(N)X =
(
M(N)|C ′(k+i)(N)

)
X = 0, where

M is built with the rows of indexes (βD + 1), β ∈ N in(
C(1)(N)| . . . |C(k)(N)

)
and then applying σ to its columns.

C
′(k+i)(N) is filled with the rows of indexes (βD+1), β ∈ N

in C(k+i)(N). Finally, the (n− k) binary systems we have to
solve are ∀i = 1 . . . (n− k), mle−1 . . . m0 cD

k+i . . . c0
k+i

m2le−1 . . . mle c2D+1
k+i . . . cD+1

k+i

...
...

...
...

X = 0. (19)

Now, by construction, it is easy to see that if S =
(s0, . . . , sle+D)T is a solution of the equation 18 then S

′
=

(sσ(0), . . . , sσ(le−1), sle , . . . , sle+D)T is solution of the equa-
tion 19. If the upper part of the canonical generator ma-
trix associated with the systematic coder C2 is p(x)Ik then
(sle , . . . , sle+D) are the coefficients of xipk(x), i ≥ 0.



2) le = αk(D + 1): It is easy to deduce valid systems
from equation 19 by concatenating rows by α. In that case,
the (n− k) systems we have to solve are ∀i = 1 . . . (n− k), mle−1 . . . m0 c

α(D+1)−1
k+i . . . c0

k+i

m2le−1 . . . mle c
2α(D+1−1)
k+i . . . c

α(D+1)
k+i

...
...

...
...

X = 0.

(20)
In the case le 6= αk(D + 1), then we reduce it to the case
where le = αk(D + 1) by considering the interleaver of size
l
′

e = GCM(le, k(D+1)). Such an interleaver can be modeled
by the concatenation of l

′

e/le interleavers Π. In that case, α =
l
′

e/(k(D + 1)). Applying this technique, we are then able to
reconstruct the second convolutional code whatever le, k + 1
and n are. The systems that we point out extend the case where
k = 1 and le = D + 1 which was the only one solved in [5].
In order to deal with noisy channels, we apply the Sicot and
Houcke’s algorithm to solve the systems that we define.

B. Complexity analysis
In order to build the (n− k) systems 20, we have to guess

α, D and n, since k is obtained when recovering C1. First,
we fix α, then we try to guess n > k and finally we try
different values of D. For each triplet (α, n, D) we solve an
average of one system 20 excepted for correct estimations. In
that case, (n− k) systems have to be solved. The dimension
of each system 20 is (α(k + 1)(D + 1)) variables. Then, the
computational complexity is

O

 
αX

αe=1

nX
ne=k+1

DX
De=2

(αe(k + 1)(De + 1))3
!

= O
`
nk3(αD)4

´
,

(21)
where α = GCM(le, k(D + 1))/(k(D + 1)).

V. CONCLUSION

We recalled algorithms to reconstruct convolutional codes
when the intercepted bits stream is corrupted by the channel.
We detailed a technique to build a RSC from the output
of the reconstruction algorithm proposed by É. Filiol and
J. Barbier which is more efficient than the one proposed
in [5]. Then, we described algorithms to reconstruct linear
block codes and discussed about the way and the context to
adapt them for convolutional codes reconstruction purposes.
We also gave a complexity analysis which points out that it
is much more efficient to directly apply standard algorithms
than the adaptation proposed in [5] for recovering turbo-
codes parameters. Finally, we generalized R. Gautier and al.’s
technique for general (n, k)-encoders and for noisy channels.
If we want to reconstruct the entire turbo-code by applying the
presented techniques, we also need to be able to determine the
encoder type and then to recover the interleaver. An algorithm
has been already designed to reconstruct the interleaver [4],
[3], [2] for particular turbo-code schemes. One direction could
be to adapt such an algorithm. The type of the encoder is
directly determined by the output of É. Filiol and J. Barbier’s
algorithm. One open problem is to find an algorithm to recover
the entire interleaver for this generic turbo-code scheme. This
is one part of our current work.
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non-coopératif. Application aux codes correcteurs d’erreurs et à la
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Polytechnique, Palaiseau, France, 2003.

[11] J. Barbier, G. Sicot, and S. Houcke, “Algebraic approach for the
reconstruction of linear and convolutional error correcting codes,” In-
ternational Journal of Applied Mathematics and Computer Sciences,
vol. 2, no. 3, pp. 113 – 118, 2006.

[12] R. McEliece, Handbook of coding theory. Elsevier Science, 1998, vol. 2,
ch. 12, The algebraic theory of convolutional codes, pp. 1065–1138.

[13] G. Planquette, “Identification de trains binaires codés.” Ph.D. disserta-
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