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Abstract

We determine the worst case information rate for all secret sharing schemes based on trees.
It is the inverse of 2 − 1/c, where c is the size of the maximal core in the tree. A core is a
connected subset of the vertices so that every vertex in the core has a neighbor outside the
core. The upper bound comes from an application of the entropy method [2, 3], while the
lower bound is achieved by a construction using Stinson’s decomposition theorem [7].

It is shown that 2 − 1/c is also the fractional cover number of the tree where the edges
of the tree are covered by stars, and the vertex cover should be minimized, cf [5]. We also
give an O(n2) algorithm which finds an optimal cover on any tree, and thus a perfect secret
sharing scheme with optimal rate.

Keywords. Secret sharing scheme; information rate; graph; fractional packing and cover;
entropy method.

1 Introduction

Secret sharing schemes has been investigated in several papers, for an extended bibliography see
[8]. Such a scheme is a randomized distribution of a secret among participants so that the secret
can be recovered by any qualified subset of participants, while the total information an unqualified
subset receives is (statistically) independent of the secret itself. The scheme is based on the graph
G if the participants are the vertices, and a subset of vertices is qualified just in case it contains
an edge. Thus the minimal qualified subsets are the edges, the maximal unqualified subsets are
the independent vertex sets (i.e. subgraphs which span the empty graph).

The worst case efficiency of a scheme is measured by the amount of information the most
heavily loaded participant must remember for each bit in the secret. For a graph G the information
ratio of G, denoted as R(G), is the infimum of the efficiency of all schemes based on G. The
information rate, usually denoted as ρ(G), is just the inverse of this value.

The information rate has been investigated for graphs with at most six vertices in [4], where
the authors conclude:

An open research problem is to study secret sharing schemes for the 18 connected
graphs on six vertices for which the optimal worst-case information rate is yet unknown.

While we did not advance on these sporadic problems, we determine the optimal rate for an
important infinite family of graphs, namely that of the trees. To state our result we need the
notion of the core of a graph G.

Definition 1.1 Let X be a connected subset of vertices in G. X is a core if for each v ∈ X there
is a neighbor of v not in X such that from X it its connected to v only, and these neighbors form
an independent set.

When G is a tree we only need to require that all v ∈ X have a neighbor outside X. These
neighbors will automatically satisfy the remaining conditions of the definition.
∗Central European University
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Theorem 1.2 Let G be a (connected) tree, and let c = c(G) be the size of the maximal core in
G. The information ratio of G is R(G) = 2− 1/c, i.e. the information rate is ρ(G) = c/(2c− 1).
Let n be the number of vertices in G. The number c(G) can be determined in G in O(n2) steps.
Furthermore a perfect secret sharing scheme based on G can be constructed in O(n2) steps as well
which has optimal worst case ratio.

In section 2 we show that 2− 1/c ≤ R(G) using the entropy method, see [2, 3]. The method is
based on the observation that the shares and the secret are random variables, and the ratio can
be expressed as a function of the Shannon entropy of these variables.

The direction R(G) ≤ 2 − 1/c is dealt with in section 3 and uses two main tools. One is
Stinson’s decomposition theorem [7] which lets us compose simple schemes into a composite one.
The other tool is a new fractional packing result.

A star is packed into G if the star’s center goes to a node v of G, and the rays end at different
neighbors of v. Of course, not necessarily all neighbors of v are part of the star. Different packed
stars may share the same edge. In a fractional packing the packed stars have positive real weights.
The fractional vertex cover is the least upper bound on the weight of the vertices under the
condition that all edges have weight at least 1. For more about fractional packing and covering
see [6].

Theorem 1.3 Let G be a connected tree. The fractional vertex cover number of G, when the
edges of G are covered by stars, is 2 − 1/c where c = c(G). Moreover an optimal packing can be
found in time O(n2).

From the optimal fractional cover a perfect secret sharing scheme with the same ratio can be
constructed using the aforementioned Stinson’s decomposition method [7]. The complexity of this
construction is linear in the size of the cover.

2 Lower bound

In this section we show that the information ratio of an arbitrary graph is at least 2− 1/c where
c is the size of any core in G. This proves the 2 − 1/c ≤ R(G) part of Theorem 1.2. We remark
that while this bound is sharp for trees, in general it gives only a proper lower bound. The graph
depicted on figure 1 has ratio 3/2 = 2− 1/2, see [2], while it has only one-element core.
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Figure 1: Graph with ratio 3/2 and maximal core size 1

The proof uses the entropy method, see, e.g. [2, 3]. For the sake of the reader we sketch the
idea behind it. As shares are random variables, their size is measured by the Shannon entropy.
There are well-known inequalities this entropy satisfies, and they are used to get a lower bound on
the entropy – and thus on the size – of the share of some participant. Instead using the entropy
directly, it is customary to scale it down so that the secret has value one, and then the method
simply boils down to exhibit a participant who is assigned a value ≥ c.

Thus we are given a function f which assigns real numbers to the subsets of participants – the
relative entropy of that subset. Values assigned to the vertices correspond to the relative size of
the assigned share. f satisfies the following inequalities derived from the corresponding properties
of the entropy function:

(a) f(A) ≥ 0, f(∅) = 0

(b) f(A) ≥ f(B) when A ⊇ B (monotonicity)

(c) f(A) + f(B) ≥ f(AB) + f(A ∩B) (submodularity)
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(d) f(A) ≥ f(B) + 1 when A ⊇ B, A is qualified while B is not (strict monotonicity)

(e) f(A) + f(B) ≥ f(AB) + f(A ∩ B) + 1 when A, B are qualified while A ∩ B is not (strict
submodularity)

Here, as usual, we write AB instead A ∪ B. Then we have to prove that given any f satisfying
(a)–(e), there is always a vertex v with f(v) ≥ c.

Theorem 2.1 Let X ⊆ G be a core in the graph G, and let f be a real valued function defined on
the subsets of the vertices of G satisfying properties (a)–(e). Then∑

v∈X

f(v) ≥ 2|X| − 1,

i.e. for some vertex v in X we have f(v) ≥ 2− 1/|X|.

Proof First we show that if X is connected, then∑
v∈X

f(v) ≥ f(X) + |X| − 2. (1)

If the elements of X are v1, . . ., vk, then the assumptions imply the existence of vertices w1, . . .,
wk such that {w1, . . . , wk} is independent, and wi is connected to vi only in X. Thus

f(X) ≥ |X|+ 1

by the lemma in [1, 3] dubbed as the “independent sequence lemma.” Thus we need to prove
only (1). Observe that the elements of X can be enumerated so that all initial segments are also
connected. Thus we can use induction on the number of the vertices in X.

If X has at most two elements, then (1) simplifies to

f(a) + f(b) ≥ f(ab)

which holds by the submodularity property of f .
Now suppose X is connected, has at least two vertices, a is a vertex not in X connected to

b ∈ X (maybe among others). Let Y = X − {b}, then none of ab and X = Y b are independent,
thus property (e) gives

f(ab) + f(Y b) ≥ f(Y ab) + f(b) + 1.

Also, f(a) + f(b) ≥ f(ab), which yields

f(X) + f(a) ≥ f(Xa) + 1.

This with the induction hypothesis proves (1). �

3 Upper bound

Theorem 3.1 Let G be a tree, and suppose each core of G has size at most c. Then we can pack
stars into G so that (i) all edges are covered exactly c times, and (ii) all vertices are covered at
most 2c− 1 times.

Proof We start with assigning positive integers – weights – to each vertex. The weight of a subset
is the sum of the weights of the vertices in that subset. We consider a weighting in which each
vertex has the largest possible weight with the restriction that every core has weight ≤ c. Such a
weighting exists: as each vertex is an element of a core, its weight cannot be larger than c. On
the other hand if all vertices have weight 1, then by the assumption all cores have weight ≤ c. As
we have finitely many possibilities, we can pick a maximal one.
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Replace each edge of G by c directed lines. A covering star will have center at some vertex
and its rays will be among the outgoing lines Considering all of these stars, each edge of G will
be covered by exactly c of them. The number of stars with center at v is the maximal number of
outgoing lines along the edges starting at v; furthermore v is at the end of a ray of a covering star
for each incoming line along the edges at v. Thus the cover number for v is the total number of
all incoming lines, plus the maximal number of outgoing lines along an edge. As there are exactly
c lines along each edge, this cover number is c plus the total number of incoming lines except the
smallest number of incoming lines along any edge.

Thus it suffices to show that we can direct the lines so that this latter sum is at most c− 1.
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Figure 2: A tree with weights and maximal core size c = 7

Now let v1v2 be an edge. If either v1 of v2 is a leaf, then direct all lines between them toward
the leaf. (If both v1 and v2 are leaves, then G is a single edge, and there is nothing to prove.)

If neither v1 nor v2 is a leaf, then removing the edge v1v2 splits the tree into two disjoint
subtrees, G1 and G2 where Gi contains vi. Let Ci be a core of maximal weight in Gi which
contains vi; let this maximal weight be ci. As C1 ∪ C2 is a core of weight c1 + c2, consequently
c1 + c2 ≤ c. Among the c lines between v1 and v2 direct c1 from v1 towards v2, and c2 from v2
towards v1. If c1 + c2 < c then direct the rest of the lines arbitrarily.

The tree depicted on figure 2 has maximal core size c = 7, and the numbers show a maximal
weighting. Each edge is replaced by seven directed ones, and the numbers the above procedure
gives are

A→ B A← B B → C B ← C C → D C ← D
3 4 6 1 1 2

D → E D ← E E → F E ← F F → G F ← G
2 5 4 3 6 1

For example, when the edge CD is deleted, D is contained in a core which consists of itself only,
thus it has weight 2. This gives the value 2 to C ← D.

We claim that construction satisfies the above requirement. Indeed, if w is a leaf, then it has
exactly c incoming lines and no outgoing line. Otherwise let w be a non-leaf vertex, and C be a
core of maximal weight containing w. By the maximality of weighting, C has weight c (otherwise
the weight of w could be increased). Let v1, v2, . . ., vs be all neighbors of w in C, and let Ci be
the connected part of C containing vi and not containing w. Then

c = weight(C) = weight(w) + weight(C1) + . . .+ weight(Cs).

Both Ci and C −Ci are cores. Thus, by the construction, among the c lines between vi and w at
least weight(Ci) goes from vi to w, and at least weight(C − Ci) = c− weight(Ci) goes from w to
vi. As their sum is exactly c, these are the exact values. Thus the total number of incoming lines
into w from vertices in C is

weight(C1) + . . .+ weight(Cs) = k − weight(w) ≤ c− 1.

We have two cases: either w has a leaf neighbor, or it has none. In the first case all non-leaf
neighbors of w are in C, as C was chosen to be maximal. There are no incoming lines from leaves,
thus in this case we are done.
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In the other case no neighbor of w is a leaf. Then all but one of them must be in C, let v∗ be
the exceptional neighbor. Now C−Ci is a core in the graph G−{wv∗} which contains w but does
not contain v∗, thus at least weight(C − Ci) = k − weight(Ci) lines are directed from w toward
v∗. It means that that the number of incoming lines from v∗ cannot be more than weight(Ci), i.e.
the number of incoming lines from vi. It shows that the smallest number of incoming lines comes
from v∗, and the total number of incoming lines from the other neighbors is at most c− 1, which
was to be shown. �

4 Main results

We turn to the proof of theorems announced in section 1. Let G be a connected tree. The size
of the maximal core in G can be found as follows. For each node v in G let C(v) be the size
of the maximal core containing v. We will determine all C(v), and then take the maximum of
these values. Let v1, . . ., vs be all neighbors of v. Delete v and all edges vvi from the graph, and
determine for each vi the size of the maximal core containing vi in the component of vi. If v has
a leaf neighbor, then C(v) is one more than the sum of the values C ′(vi) for non-leaf neighbors of
v. If v has no leaf neighbor, then from the values C ′(vi) discard the minimal one, add up all the
others and add one to get C(v).

For each node this algorithm uses O(n) steps, thus determining C(G) requires O(n2) steps,
proving the statement in Theorem 1.2.

The construction in the proof of Theorem 3.1 needs a maximal weighting of the vertices of G.
We claim that this weighting can also be found in O(n2) steps. Indeed, enumerate all vertices of
G as v1, . . ., vn, and assign weight 1 to each vertex initially. At the i-th step only the weight of
vi may increase. Following the procedure outlined before and using the present vertex weights,
determine the maximal weight core containing vi. If this weight is c then do nothing; if the weight
is smaller than c, increase the weight of vi so that it becomes c. By this step no core weight can
exceed c, and the weight of vi will be maximal. Handling each vertex requires O(n) steps, thus
O(n2) steps are enough to find a maximal weighting.

From a maximal weighting covering stars can be generated by going through each edge and
finding a maximal weight core on both sides of the edge. As G is a tree, it has n − 1 edges, and
for each edge the values can be found in O(n) steps, which totals to O(n2) steps again.

In the packing guaranteed by Theorem 3.1 we weight each star by 1/c. This fractional packing
will cover each edge, and the weight of each node is at most (2c − 1)/c which proves the second
part of Theorem 1.3.

On the other hand, finding the fraction cover number r of a graph G when the edges are
covered by stars is an LP problem, thus it has an optimal solution where all weights are rational
numbers. Multiplying everything by the lcm of the denominators of these rationals, we see that,
for some integer p, stars can be packed into G so that each edge is covered at least p times, and
every vertex is covered at most r · p times. As each star admits a perfect secret sharing scheme
with rate (and ratio) 1, Using Stinson’s decomposition method from [7], we can create a perfect
secret sharing scheme on G which hides p bits of secret, and assigns at most r · p bits of share to
each node. In other words, there is a perfect secret sharing scheme on G with ratio r · p/p = r.

Theorem 2.1 shows that r is at least 2−1/c when G has a core of size c, thus the cover number
for a tree is at least 2− 1/c with c = c(G). This proves Theorem 1.3, and the construction yields
Theorem 1.2 as well.
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