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Abstract. We prove consistency of four different approaches to formalizing the
idea of minimum average edge-length in a path linking some infinite subset of points
of a Poisson process. The approaches are (i) shortest path from origin through some
m distinct points; (i) shortest average edge-length in paths across the diagonal of
a large cube; (iii) shortest path through some specified proportion ¢ of points in
a large cube; (iv) translation-invariant measures on paths in R¢ which contain a
proportion ¢ of the Poisson points. We develop basic properties of a normalized
average length function ¢(§) and pose challenging open problems.

1. Introduction

Fix dimension d > 2 and let (&;) be a Poisson point process of rate 1 per unit
volume in R?. “Volume” means d-dimensional Lebesgue measure.

To start with an analogy, one can informally describe the critical value for con-
tinuum percolation as the smallest ¢ such that there exists some infinite sequence
5158, &js, - - - of distinct points such that max;>q £, — &;| < 2c. Here | - |
denotes Euclidean distance. What we study in this paper can analogously be
described informally as the smallest ¢ such that there exists some path through
an infinite sequence &;,,&;,,&),,... of distinct points whose average edge-length
limpyoon 1 30 &5 +1 —&:| < c. One could formalize this directly by e.g. replac-
ing lim by lim sup, requiring the property to hold almost surely and then taking
the inf of such c¢. But such a definition seems neither elegant nor convenient. Our
purpose in this paper is to study four indirect approaches to this formalization
question and show that they lead to the same constant, which we call ¢(0+). Along
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the way we introduce a function ¢(d§) which plays a role analogous to the percolation
function. Our results are collected in Theorem 2.1.

Conceptually, this topic seems intermediate between first passage percolation and
the random traveling salesman problem (TSP). Regarding the former, our ¢(0+)
differs (informally speaking) from a continuum analog of the time constant in first
passage percolation Howard (2004); Kesten (2003) because we use “distance along a
path” in place of “end-to-end Euclidean distance” (nonetheless we use “continuum
first passage percolation” as a descriptor of one of our approaches below). Regarding
the latter, take n random points in a d-dimensional cube of volume n. Let L,(1)
be the length of the shortest cycle through all n points, i.e. the length of the
solution of the TSP. Almost 50 years ago, Beardwood et al. (1959) proved there
exists a constant ¢(1) such that EL,(1) ~ ¢(1)n as n — oco. Subsequent work on
related problems is described in the monographs by Steele (1997) and Yukich (1998).
Another of our approaches modifies the TSP by considering cycles through some
specified proportion § of the Poisson points. Additional motivation for the current
paper comes from work on such problems in the “mean-field” setting, described in
section 2.2.

Challenging problems for future research are listed in section 2.1. One of our
techniques — subadditive analysis of optimal cost/reward ratios — seems potentially
applicable in other contexts, as briefly discussed in section 4.1.

2. The equivalence theorem

Approach 1. Continuum first passage percolation from the origin. For each m > 1
define a random variable T, as the minimum, over choices {j,,...,§;,.} of m
distinct points of the Poisson process on R?, of

|£j1| + Z |£ji —&ia |

=2

Comment. One certainly expects that T,,,/m should converge to a constant, but
we see no easy argument. In particular we don’t see how to apply subadditivity
arguments directly to study T,.

Approach 2. Continuum first passage percolation across a diagonal. For s > 0
define a random variable W, as the minimum, over all m > 1 and all choices
{&1,-- &1} C[0,5]% of m — 1 distinct points of the Poisson process, of

m~t Z |€]1 - ‘fji—ll (2.1)
i=1

where §;, = (0,...,0) and &;,, = (s,...,s).
Comment. Here we can attempt subadditivity analysis, based on splitting the cube
of side 2s into 2¢ subcubes of side s, though because of the “ratio” form of (2.1)
we are not in the usual format for the subadditive ergodic theorem.

Approach 3. TSP on sparse subsets of the cube. Let C, = [O,nl/d]d be the cube
of volume n in R?. Put n random (independent, uniformly distributed) points ((;)
into C,. Fix 0 < 6 < 1. Let L,(d) be the minimum, over all choices of cycles
(C1sCas -+ 3G Cmar = i) through m = [on] disjoint choices from the random
points, of the cycle length Y7 |¢iy, — ¢
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Comment. Here subadditivity can be applied in familiar ways. Note that, in
contrast to continuum percolation where definitions are in terms of the process on
infinite space R?, the approaches above all envisage taking limits over finite regions.
For the record we give a final approach which does work directly on infinite space,
as “the n = oo analog of Approach 3”, though we admit it does not seem very
useful.

Approach 4. Translation invariant distributions on infinite paths through Poisson
points. Consider a locally finite set (x;) of points in R¢, together with a set & of
edges whose endpoints are in (z;), where the edges form a collection of doubly-
infinite paths, each point of (x;) appearing either once or never in the paths. Write
S for the space of such points-and-paths configurations. The Euclidean translation
group acts naturally on S, so one can define a probability distribution g on S to be
invariant if it is invariant under the action of the Euclidean translation group. Let
M be the set of invariant distributions on S under which the distribution of the
points (&;) is the Poisson point process of rate 1. Informally, a u € M is just a way
of collecting some subsets of the Poisson points into paths using a rule which doesn’t
depend on the location of the origin. For u € M there is a constant d(u) € [0,1]
specified informally as “the proportion of points which are in some infinite path”
and defined formally via the formula: for every cube C C R?,

E,,(number of points & € C which are in some infinite path) = () volume(C).

Similarly there is a constant £(u) interpreted as “mean edge-length over all edges

in the paths of 4” and formally via the formula: for every cube C C R?,
E, (length of ENC) = 6(pu)€(p) volume(C)
(here we regard &£ as a subset of R?). Finally define
2(0) :=inf{l(u) : pe M, &6(u) =6}

Theorem 2.1. (a) For 0 < & < 1 there exists a constant c(0) such that
Lg—g) — ¢(d) in L? as n — oo.
(b) The function c¢(d) is non-decreasing and continuous on (0,1], the function
0c(9) is convex, and the limit ¢(0+) := limgg ¢(8) is strictly positive.
(c) Ws = ¢(0+) a.s5. as s = 0.
(d) ¢(6) =c(d), 0<d<1.
() m~'T,, — c(0+) in probability.

(From (a) we see ¢(1) is the constant in the Beardwood et al. (1959) theorem.
Monte Carlo simulations Jacobsen et al. (2004) give (for d = 2) ¢(1) ~ 0.7119 but
no close rigorous bounds are known.

2.1. Discussion. The function ¢(d), 0 < § < 1 seems worthy of study as a analog of
the classical percolation function from lattice percolation theory Grimmett (1999):

f(p) := P(origin is in some infinite component)

in bond percolation with edge-probability p. In particular one can ask whether
there exists a scaling exponent 0 < a < 00, that is whether

c(6) —e(0+) x 6% as 6 | 0. (2.2)
For the record we state the (probably very hard)
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Open Problem 1. Prove (2.2) holds for some a. Or give bounds on the possible
values of a.

The next question may be easier. The facts that ¢(d) is nondecreasing and that
de(d) is convex imply: either
(i) ¢(9) is strictly increasing on 0 < § < 1; or
(ii) ¢(0) is constant on 0 < § < dp, for some 0 < dp < 1.
But the latter seems implausible.

Open Problem 2. Prove that ¢(d) is strictly increasing on 0 < § < 1.

Getting reasonable bounds on the numerical value of ¢(0+) seems difficult. Stan-
dard methods (comparison with branching random walk: section 3.3) give an ex-
plicit lower bound (3.6), which in d = 2 is 1/(2me) =~ 0.0585. But we don’t see any
simple way to get an interesting upper bound. Even Monte Carlo methods seem
difficult to code convincingly; for the record we write

Open Problem 3. In d = 2 study the numerical value ¢(0+) and the presumed
scaling exponent a via Monte Carlo methods.

The variation in which (in d = 2) we restrict to “upward oriented” paths, that
is edges (z;,yi) = (®it1,yi+1) are required to have y; 1 > y;, is easier to study via
simulation; our small-scale simulations suggest the analog of ¢(0+) in this variation
is & 0.62, which would be an a priori upper bound for our original ¢(0+).

Another question concerns variances. Take d = 2 here. For the basic traveling
salesman problem, that is for L, (1), it is known that var(L,,(1)) is order n; precisely,

liminf n~*var(L,(1)) > 0, limsupn 'var(L,(1)) < oo.

The upper bound is explicit in Steele (1981) and the lower bound follows from a
corresponding large deviation lower bound in Rhee (1991). On the other hand, for
first-passage percolation it has long been conjectured Durrett (1999) that variance
grows as the % power of expectation, though little has been proved rigorously
Benjamini et al. (2003).

Open Problem 4. Prove var(T,,) < m*/3. Or just prove var(T,,) = o(m).

We will not even venture a conjecture for the asymptotic behavior of var(Ly(9)).

As a small rewriting of the definition of L,(d), let L(n,m) be the minimum,
over all choices of cycles ((j,,---5Cjm>Cjmsr = i) through some chosen m of the
random points, of the cycle length >, [{j., — (j;|- Theorem 2.1 implies that,
if my/n — 0 sufficiently slowly, then L(n,m,)/m, — ¢(0+). However it seems
plausible this also holds for smaller values of m.,.

Open Problem 5. Prove that L(n,m,)/m, — c(0+) in probability whenever
myp/n — 0 and 22— — oo Ya < 0.

log*n

In other words, for fixed ¢ < ¢(0+) consider Poisson points in a cube of volume n;
is it true that any cycle with average edge-length < ¢ can have at most poly-log(n)
edges? This would be an analog of the fact that subcritical percolation cluster size
distribution has a geometrically-decreasing tail Grimmett (1999).
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2.2. The mean-field model. Instead of the Fuclidean model in this paper, one can
consider a “mean-field” model on n points for which the (}) inter-point links are
assumed to have independent random lengths with Exponential (mean n) distribu-
tion. Within this model one can define the function é(d) analogous to ¢(d). Mézard
and Parisi (1986) used the non-rigorous replica method of statistical physics to ar-
gue n"1EL,(1) — &), where &(1) ~ 2.04 is derived from numerical solution of a
certain fixed point equation. Using probabilistic reformulations of these statistical
physics ideas, Aldous and Bandyopadhyay (2005) gave a (still non-rigorous) analy-
sis of the whole function ¢&(§), exhibited in Figure 1 of Aldous and Bandyopadhyay
(2005), which suggests &(8) — é(0+) < 6'/3 as § | 0. So one might conjecture that
the scaling exponent % also holds in the Euclidean case.

Note that the subadditivity arguments we use in the Euclidean case to prove
Theorem 2.1 rest upon the “boundary effects are negligible” property of R?. In the
mean-field model, the limit analog of the Poisson process is a certain infinite random
tree, for which boundary effects are not negligible and subadditivity arguments
cannot be used. Indeed, Approach 4 was developed in the mean-field setting as a
substitute for subadditivity.

3. Proofs

We start with Approach 3 and prove part (a) of Theorem 2.1 in 3.1; then we prove
part (b) of Theorem 2.1 in 3.2 and give a lower bound on ¢(0+) in 3.3. Sections
3.4, 3.5, 3.6 contain the proofs of the remaining parts (c), (d), (e) of Theorem 2.1.
Part (e) seems hardest, for reasons explained at the start of section 3.6.

3.1. TSP on sparse subsets. We rely on subadditivity arguments as in Steele (1997);
Yukich (1998). These monographs develop general results for sub- or superadditive
Euclidean functions satisfying regularity properties. Unfortunately functionals like
L,(d) lack the monotonicity property (Steele (1997) equation (3.5)) and it is not
clear whether the smoothness property (Yukich (1998) section 3.3) is both valid and
exploitable. We will use the inequality in (b) below as a substitute for monotonicity.

Write A;, As, ... for constants depending only on dimension d > 2. We start
with a purely deterministic lemma (note that by scaling the case of general s is
equivalent to the case s = 1).

Lemma 3.1. Let {z1,...,2,} be arbitrary points in the cube [0, s]¢ and let L(m)
be the length of the shortest cycle through some m < n of these points.

(a) [Uniform boundedness]
L(n) < Aysntd=—1/d, (3.1)
(b) For1<my <ms <nmn,
L(m,) < L(ms) N sdl/Z.
mi T My mi

(c) [Geometric subadditivity] Let k > 2 and let (¢, 1 < j < k%) be the
natural partition of [0,ks]? into k? subcubes of side s. Suppose that, for
each j, there exists a cycle of length l; through some subset S; C {z;} N .
Then there exists a cycle through U;S; of length at most Zj lj + Assk?.
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Proof. Parts (a) and (c) are standard (Steele (1997) sections 2.2 and 2.3). For (b),
let 1,92, Ymas>Ymat1 = Y1 be a minimum-length cycle attaining L(ms). Then
there exists k such that (interpreting k + i modulo ms)

1 & L(ms)
- = | T2
my ;:1: |yk+z+1 yk+z| = Ty

because the right side equals the average of the left side as k varies. To make a

cycle on {yka s 5yk+m1—1} replace edge (yk"l‘ml—l’ yk+m1) by edge (yk+m1—la yk)a
whose length is at most the diameter sd'/? of the cube [0, s]%.

O

Remark 3.2. Lemma 3.1(a) implies that the worst-case cycle length is the same
order of magnitude as the average-case lengths we will be studying. This has the
pleasant consequence that events of probability tending to zero will make asymptoti-
cally negligible contributions to expectation of length, and so can be ignored: we use
this uniform boundedness property several times later.

We start analysis of the probability model by making definitions to which sub-
additivity arguments can easily be applied. Recall (&;) denotes a Poisson point
process of rate 1 per unit volume in R?. Let N(s) be the number of points of (&;)
in [0, 5]¢. Define L(s,d) as the length of the minimum-length cycle through at least
some [N (s)] of the points of (£;) N [0,s]?. By the triangle inequality, replacing
“at least [0N(s)]” by “exactly [6N(s)] points” changes nothing. We will start by
using the next lemma as a definition of ¢(§), and later show this agrees with the
limit in Theorem 2.1(a).

Lemma 3.3. For fized 0 < 0 <1 there exists a constant c(0) such that
L(s,0)
dsd

Proof. First note s = EL(s,d) is continuous, from the representation

— ¢(8) in L? as s — oo.

R Snd .
EL(s,8) = Z gl san(0),

n=0

where a,(d) is the expected length of the shortest cycle through some [dn] of n
uniform random points in the unit cube [0, 1]¢. Next, given s > 0, we can write any
x>0 as z = ks + t with integer k and t € [0, s). Geometric subadditivity (Lemma
3.1(c)) then implies

EL(z,6) < k*EL(s + t/k,8) + As(s + t/k)k%.
Dividing the left hand side by z? and the right hand side by (ks)¢ gives us (since
we always have x > ks)

Ex L(x,8) < s *EL(s +t/k,0) + Ays* 4.
Taking z — oo while keeping s fixed

limsupz ?EL(x,0) < inf sup s ?EL(s+7,0) + Ass'~2

T—00 e>0 T€[0,e]
So by the continuity property
lim s~¢EL(s,0) = ir>1% s~ EL(s,d) = 0¢(d), say (3.2)
s

8§—00
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with 0 < ¢(d) < oo.
Once again by geometric subadditivity, temporarily abbreviating L(s,d) to Ls,

EL?, < k'EL? + k%(k? — 1)(EL,)* + Aysk®* 'EL, + (Azsk?)%.
By the uniform boundedness property (3.1)

2(d—1

)
EL; < AJs°EPJ < Ajs’ - Ags?(d=1)

where P (;4) has Poisson(s?) distribution and where the second inequality holds for
some Aj for all s > 1. Combining the two displayed inequalities and (3.2) gives

limsup z~2¢EL% = (6¢(0))?,

and finally
s7%L(s,8) = d¢(8) in L2,

O

Remark 3.4. More sophisticated modern proofs (Steele (1997) sec. 2.4; Yukich
(1998) sec. 4.1) of the TSP case (6 = 1) use concentration inequalities to obtain
almost sure convergence; we have not investigated concentration inequalities or a.s.
convergence for L(s,§).

Now we proceed with the proof of Theorem 2.1(a) with ¢(d) defined by Lemma
3.3.

Proof of Theorem 2.1(a) Recall the definition of L, (). Let C, = [0,n/4]?
be the cube of volume n in R¢. Put n random (independent, uniformly distributed)
points ((;) into C,. Fix 0 < § < 1. Let L,(d) be the minimum, over all choices of
cycles (Cjys Cos - - -3 Cims Gmar = Cjy) through any chosen m = [én] of the random
points, of the cycle length 37" | [(j;., — (j;|- Again by the triangle inequality, this
is the same as saying “any m > [dn] of the random points”.

Fix small € > 0 and consider, in C,, a Poisson process of rate 1 — € per unit
volume. By standard properties of the Poisson process, for each n we can couple this
to the process of n i.i.d. uniform points in C, in such a way that, with probability
— 1 as n — 00, each point of the Poisson process is a point of the uniform process.
Call this the inclusion coupling. There is a similar inclusion coupling between the
uniform process on C,, and the Poisson process of rate 1 + ¢.

Now write Ly(s,d) to mean the quantity L(s,d) applied to a Poisson process of
rate \; and write N, (s) for the number of points of that Poisson process in [0, s]¢.
When the inclusion couplings hold and when

0

" N 1/d < < N _ 1/d
T3 g () S on < g5 N (n7)
then we have
Lipe(n'/?, 252) < Ln(8) < Lo (n'/4, 12). (3:3)

This holds because, in informal language, for each < we have more points to choose
from, and a weaker constraint on minimum number of points in the cycle. Now by
scaling

Ll_g(nl/d; é ) — (1 —6)_1/dL((1 _ E)_l/dnl/d, é )’

1—2¢ 1-2¢
and similarly

LHE(nl/d7 uﬁs—zs) =1+ 6)71/dL((1 + 8)71/dn1/d’ 1-525)'
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Taking limits in (3.3), using Lemma 3.3 and the uniform boundedness property, we
get

limnsupn_lELn((S) <(1- 6)_1_1/d1_‘52sc( )

and similarly

A+ Vi e(150) < limninfn_lELn(é).

Letting € | 0 and using continuity of ¢(d) (which we prove independently in the
next subsection) we see that for 0 < § < 1
Ln(d)
on

The case § = 1 is similar, but of course is already part of the usual proof Steele
(1997) of the Beardwood-Halton-Hammersley theorem, so we omit it.

— ¢(6) in L.

3.2. Properties of ¢(§). Next we prove part (b) of Theorem 2.1.
Proposition 3.5. ¢(d) is non-decreasing on 0 < § < 1.
Proof. Fix 0 < §; < d; < 1. By Lemma 3.1(b)

L(s,81) < L(s,d2) sd'/?
[61N(s)] = [62N(s)] = [01N(s)]

and so
L(8761) < RSL(3762) Sd1/2
(518d - (528d (518d
where
R — [61N(s)]/01
* 82N (s)1/02
Since R, is uniformly bounded and R; — 1 as s — o0, using Lemma 3.3 we deduce
C((Sl) S 0(62). O

Proposition 3.6. dc(d) is conver on 0 < d < 1.

Proof. Fix 0< 6, <d <land 0 < A< 1. Let (CJ, 1 < j < k%) be the partition
of [0, 5]¢ into k? equal subcubes. Let N; be the number of points of (¢;) in the j-th
subcube and let £;(s) (resp. £;(s)) be the length of the shortest cycle through some
[61N;] (vesp. [d2N,]) points in C7.
Take any 6 < Ad; + (1 — X)d2. The event
[k ke

Z[&leH > [6N;]1 > [6N(s)]

F=[Akd1+1
has probability — 1 as s — oo, and on this event we have by Lemma 3.1(c)
[Ak? k4

1
L(s,8) < > Li(s)+ Y Li(s) + Apsk®".

J=[xk4T+1

Taking expectations, letting s — oo and using Lemma 3.3 we obtain

[AkT] k4 — Ak
Ld Ld

de(d) < d1c(d1) + d2¢(02),
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and letting k — oo

50(5) < )\510((51) + (1 — )\)(520((52) (34)
If § = A1 + (1 — X)d2 then (3.4) holds for all A < X' and hence for A = X, proving
convexity. O

Proposition 3.7. ¢(d) is continuous on (0,1].

Proof. Convexity of dc(d) implies continuity of dc(d), and hence continuity of ¢(d),
on the open interval 0 < § < 1. Continuity at § = 1 requires a separate argument.

Take § < 1. The cycle attaining L, (6) passes through [nd] points in [0,n!/%]?.
By Lemma 3.1(a) there exists a cycle through the remaining ¢ = n — [nd] points
with length at most

Apnt/dgld=D/d < A (1 - §)ld-D/d,
By joining the two cycles we find
Ln(1) < Ly (8) + Ayn(1 — §)@-1/d 1 opl/dgl/2,
Letting n — o0
(1) < 8¢(d) + Ay (1 — §)d-1/d

and this implies continuity as § 1 1. |

3.3. A lower bound on ¢(0+). We start by noting a one-sided bound relating the
T} in Approach 1 to ¢(0+). In the context of Theorem 2.1(a), the cycle attaining
length L, (d) can be converted into a path from the origin by replacing some edge
(¢,¢") by the edge from the origin to ¢'. It follows that

lim Pk 'Ty <c(8) +e)=1V¥e >0

and thus

lilgn P(k™'Ty < c(0+) +€) =1 Ve > 0. (3.5)
We can now use a standard argument. Consider branching random walk on RY,
starting with one individual at the origin in generation 0, and where each individual
in each generation (at position x, say) has children at positions (z + |§;|, j > 1)

where (¢;) forms a Poisson point process of rate 1 in R%. Write 6(-) for the mean
measure for the positions of the generation-k individuals (Y ;,7 > 1):

04() = > P(Vii €).

This is exactly the same measure as the mean measure for lengths of k-step paths
from the origin through the Poisson points:

k
k() = Z P <|§]1| + Z‘éji _fji—1| € )
=2

(J15--27%)
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where the sum is over ordered distinct k-tuples. So for T} as defined in Approach
1, and for ¢ > 0,A >0

P(T, <ck) < 6g[0,ck] (Markov’s inequality)

o
< etk / e 0, (dx) (large deviation inequality)
0

[ekc /0 e ep, (dw)]

by the structure of branching random walk. Comparing with (3.5) we see

0+) > cinf e [ eMdy <15,
e +)_sup{c inf e /Rde y <

k

Writing vg for the volume of the unit ball in R¢,

_ I'(d+1)
Myl gy = 229 1)
‘/Rde Y Ad-1

The infyso( - ) is now attained at A = (d — 1)/c and we finally find

1

c(0+) > e H(d = 1) (vgT(d + 1))~ a1 (3.6)
and of course vy = 7%?/T'(1 + d/2). In particular, for d = 2 we find ¢(0+) >
(2me) L.

3.4. The limit for W,. We now turn to Approach 2. Here we consider the rate-1
Poisson process (&;) on R?. Let Iy, be the set of paths 7 across the diagonal of
Cs; that is, of paths

(0,,0) = £j0:£j17---7§jm—1a§jm = (37---73)
where {&;,,...,&j,._, } are distinct points of {£} N [0, s]%. Write

Um) =16 —&uls mm) =m
=1

for the length and number of edges in the path 7 and

w(m) = £(w)/m(m)
for the average edge-length of .

By considering diagonally-adjacent unit cubes and picking (where possible) one
point from each, we see there exists a path myeeq, € Ilg s such that

M (Tgreeay) — 1 has Binomial (|s],1— e~ ') distribution;

U(Tgreeay) < Aals]

for some constant A4. Recall the definition

(3.7)

Wy := min Z(ﬂ-).
n€llo,s m(m)

Applying to mgeeay and using (3.7) we see
limsup W, < A4/(1 —e™ 1) as. (3.8)
s
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Similarly one can check that s/m(mgreedy) is uniformly integrable as s — oo and so
(W,,0 < s < 00) is uniformly integrable. (3.9)

While subadditivity is not applicable directly to W;, the proof below is an easy
indirect application.

Proposition 3.8. W, — 3 a.s. and in L' as s — oo, for some constant 0 < 3 <
00.

Proof. For ¢ > 0 define
X\ = min (£(r) — em(r) + o).

’ w€llo,s

We shall prove the Proposition for
B :=sup{c: EX{) > 0Vs > 0}.

For s < t write I, for the set of paths across the diagonal of [s,#]? and define

X s(fg analogously to Xéfz . Given a path m; € Il and a path my € Il,,, their
concatenation gives a path m € Il ¢, for which

L) < L(m) + £(m2); m(w) =m(m) +m(ma) — 1. (3.10)

In such a concatenation, the last edge of m; and the first edge of m, are replaced
by a single edge and the inequality for £(7) arises only from the triangle inequality
for this replacement.

Consider first a value ¢ such that EXéC) < 0 for some s. For this s let = be

,8
the random path in Il ; such that E(4(7) — em(m) +¢) = EXO(,Cg < 0. So by the
concatenation property (3.10) and the strong law of large numbers we can construct
random paths mj, in Il ;s such that

£(me) Ef(m)

lim sup < c a.s.
booo m(mk)—1 = Em(n) —1

and it easily follows that
limsup Wy < ¢ a.s.

8§—00

(From choice of ¢ and definition of 8 we deduce

limsup W, < 3 a.s.

§—00

On the other hand consider a value of ¢ such that EX(g’cz > 0 for all s > 0. The

process (X gft)) is subadditive by (3.10). A routine application of the subadditive
ergodic theorem shows that there exists a constant v(c) > 0 such that

im s~ 1x© —
Sliglos Xo. =(c) as. (3.11)
Now W, = £(ms) /m(ms) for some random = in II,, and
Xéfz < AU(ms) — em(ws) +c,
implying
Xéfz —c

—c> .
Ws—c> m(m)

(3.12)
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Combining (3.11) with (3.12) gives

s
. _a> T
hmslnf (Ws —c¢) > v(c) hmslnf oy

>0 a.s.

and consequently

liminf W, > c a.s.
(From choice of ¢ and definition of 8 we deduce

liminf W, > (8 a.s.
§—00

completing the proof of a.s. convergence in Proposition 3.8. Finally, note 8 < oo
by (3.8), and note that L' convergence follows from (3.9). O

We use concatenation constructions based on (3.10) several times later, and here
is a rather technical formulation of the results of such constructions, designed to
replace the use of the expectations Ef(ws) and Em(w,) by using truncation. By
“adjacent cubes” we mean disjoint cubes in which we can choose diagonals to form
a connected path (e.g. as in Figure 1 below).

Lemma 3.9 (Concatenation argument). Let w5 be a random path across the diag-
onal of the cube [0,5]?, and let wy € (0,5). Then there exist paths ws, through the
Poisson points in n adjacent cubes of side s each, such that

. wo + sd' /2 P(w(ms) > wo)
| n) <
1mnsup1U(7T ) <wg + (307 Jwo — 1) P(w(rs) < wo)

a.s. (3.13)

and

lim @ > (sd"? Jwo — 1) P(w(nmy) < wo)  a.s.

n

Proof. Given a random path 7, across the diagonal of the cube [0,5]¢, consider
the modified path

= _]m on the event w(m,) < wo,
71 /s otherwise,

where ;s is a shortcut path consisting of a single edge from
(0,...,0) to (s,...,8).

By concatenating n independent copies of 75 we get a path m,s such that, using
(3.10),

zn: o) wo zn: m (V) + sd'/2k
w(ﬂ-ns) S _ i=1. S n‘i:l .
; m#Y) = (n — 1) ; m(#?) = (n — 1)

IN
g
S

+

(3.14)
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where k = #{i : w(n{’) > wo} . By definition of 7, either m(#,) > sd'/2 jwq, or
m(7s) = 1, so that
m(men) =Y m(ED) = (n—1) > (n—k)(sd"/?/wo) + k- (n—1)
i=1

> (n—k)(sd"/?Jwy — 1). (3.15)

Since k/n — P(w(ms) > wp) a.s. as n — 0o, combining (3.14) with (3.15) gives
(3.10) and the second inequality of the lemma follows from (3.15).

O
Proposition 3.10. 8 = ¢(0+).

Proof. Given a cycle through m points in [0,5]?, one can make a path from
(0,...,0) to (s,...,s) through these m points using extra length at most 2sd'/2.
So for any & > 0 we have, setting s = n'/? and m = [én],

L, (8) + 2n'/dd'/?
[on] +1

Letting n — oo and using Proposition 3.8 and Theorem 2.1(a), we see 8 < ¢(d). So
B < c(0+).

For the converse, consider the cube [0, K s]? for even K, partitioned into K¢ equal
subcubes. In each subcube choose a diagonal path ﬁgi) attaining the minimum Wy,
so that concatenating these paths forms a cycle through the large cube (see Figure

1).

Woira <

FI1GURE 1. A cycle built from subcube diagonals in the 6x6 cube

Fix € > 0. By Proposition 3.8, for s = s(g) large enough the random paths mgi)

satisfy
Pw(r) > B +e) <e.
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Then by Lemma 3.9 applied with wg = 8+¢ we can construct cycles mga in [0, Ks]¢
such that

B+ e+ sd'/?e
(1 —e)(sd'/2/(B +e
By taking s sufficiently large this simplifies to
P(w(nga) > B+ 2 +2Be) - 0 as K — oc. (3.17)
Also from Lemma, 3.9 there exists §;, > 0 such that

P(™rxd) > 5y 1 as K — oo.

sdKd

On this event we have, for § < 4,

L(Ks,d) < w(mga)m(mga).

P(w(erd)>B+6+ )_1)+5)—>0asK—>oo. (3.16)

So as K — o0
P(L(Ks,0) < (B8 + 2¢ + 28¢)s'K%,) — 1
and then by Lemma 3.3
dc(6) < (B + 2e + 2f¢)ds.
Letting 6 1 s then implies
c(0+) < B+ 2¢ + 2f¢,
so that letting € | 0 gives the desired inequality
c(0+) <.
O

Propositions 3.8 and 3.10 establish part (c) of Theorem 2.1. For later use we
record a small variation.

Lemma 3.11 (linear diagonal percolation). For n > 0 let

Ws(") = min £(m)
w€llp,s:m(m)<ns m(7r)

be the minimum average edge-length over paths across the diagonal of [0,s]? through
at most s points. Then there exists a function 8(n) such that

lim W = B(n) a.s.,
§—00

B(n) 4 c(0+) as n 1 oco.

Proof. The subadditivity argument used in Proposition 3.8 applies unchanged to
wim, giving the first limit. The function n — ((n) is a priori non-increasing, and

WILH;O B(n) > B =c(0+)

by Proposition 3.10.
Given s < 00 let
s be a path attaining W

! be a path attaining W{" for n = 259! .
Given € > 0 we can choose s = s(¢) < oo sufficiently large that

P(rl #75) <e



Percolating paths through random points 103

(because ns = 25? will likely exceed the Poisson(s?) number of points in [0, s]?) and
P(w(ms) > c(0+) +¢e) <e

by Propositions 3.8 and 3.10. So
P(w(rl) > ¢(0+) +€) < 2e.

Applying Lemma 3.9 to 7, and wy = ¢(0+) + € gives the upper bound in

c(04) + & + sd'/?2¢

(e — DA —20)°

B(2s% 1) < limsupw(nl,) < ¢(04) + ¢ +
k

Taking € — 0, so that s = s(¢) = oo,
lim B(n) < c¢(0+).
n—0
O

3.5. Translation invariant distributions in the infinite model. Here we prove part
(d) of Theorem 2.1 by relating Approach 4 to Approach 3. Fix 0 < § < 1 and recall
(&) denotes a Poisson point process of rate 1 per unit volume in R?. Recall from
section 3.1 the definition of L(s,d). Write £(s,d) and V(s,d) for the edge-set and
the vertex-set of a cycle attaining length L(s,d). For a cube C, vertex-set V and
edge-set £, write |V NC| for the number of vertices of V in C, and write len(€ NC)
for the total length of edges of £ restricted to C.

Write U, for a uniform random position in [0, s]?, and write égs) =& — U, for
the positions of the Poisson points relative to the “random origin” Uy; then write

E(s,d) for the corresponding set of relative positions of edges of the tour attaining
L(s,9):

E(5,0) = {(€”,8") : (&,&) € £(s,0)}.
Now the pair ((5@), E(s, 5)) takes values in the space S* of point-sets and paths

K3
defined as the space S in section 2, except that for S* we allow cycles in addition
to doubly-infinite paths.
There is a natural metric topology on S* obtained by regarding it as a space of
marked point processes. For each s the point process (fz(s)) is exactly a Poisson
process. By letting s — oo through some subsequence we can define a limit

(€),85,8)) 5 ((&),£(5)) on 8"

where £(0) is an edge set on some subset V(9) of vertices of the Poisson point process
(&)- It is easy to check that the edge-set forms doubly-infinite paths (rather than
finite cycles) and so the right side has some distribution g on S. From the uniform
distribution for Us it is easy to check that y is translation invariant. We will show
(in the notation of section 2)

6(u) =6 L(p) < ¢(9)
which immediately implies ¢(d) < ¢
£(1) = ¢(d), but this doesn’t help.
(From the fact that V(s, d) contains exactly [0N(s)] of the N(s) Poisson points
in [0, s]4, it is clear that for fixed r > 0

lim E[V(s,6) N (Us + )| = or"

(6). With a little extra effort we could prove
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and therefore

EYV(©O)NC|=ort,
the interchange of limits being justified by the fact that the total number of Poisson
points in Us + C, has fixed distribution. This tells us that d(u) = §. Now fix b < oo
and let £°(8) and £°(s, §) be the subsets of £(§) and £(s, §) obtained by taking only
edges of length < b. By translation invariance

Elen(E%(6) N C,) = §G(b)r?
for some G(b), and then
o) =5 / G b)),
By weak convergence, letting s — oo thrgugh a subsequence,
Elen(&(6)NC) = lim Elen(&%(s,8) N (U, + Cy))

= lims ?Elen(£’(s,0)).

Since dc(d) = lim, s~ ?Elen(E(s,d)), we can let b — oo and use Fatou’s lemma to
conclude £(p) < ¢(6).

For the converse, let p be a translation invariant distribution attaining ¢(d).
That is, p specifies an edge-set £ on a vertex-subset V C (§;) such that
(i) ElvNnC,| =drt Vr > 0;
(ii) Elen(é NC,) = de(d)r? Vr > 0.
Now consider large s and small n > 0. The intersection of £ and C; consists of a
set of paths, each of which enters C,; at some point on some face, and exits at some
point on some face. Consider the subset of paths which intersect [ns, (1 —7)s]¢, and
write £%" for the edges in this subset, truncating an edge which crosses a face at
the crossing point. We extend this edge-set into a cycle in Cy as follows. Suppose
the number of crossing points on each face is some even number (otherwise add
superfluous edges, making no asymptotic difference); let D be the total number
of crossing points. On each face create a tour (in the face) of the crossing points;
by Lemma 3.1(a) this has length at most A;sD(4~2/(¢=1) Within each such tour
replace alternate edges by double edges. The collection of these within-face edges,
and the paths through the interior of C;, form a connected graph where each vertex
has even degree, so we can find a Eulerian cycle; write F*" for the edges in this
cycle. So

Elen(F*") < 62(5)s? + (4d) Ay s (ED)@=2/(d=1) (3.18)

Because each crossing point is associated with some path-segment of length > 7s
from the face of Cs to the face of [ns, (1 — n)s]?, we have

Dns < len(ENGCy)

and so by (ii)
ED < (ns)~16c(8)se.
Substituting into (3.18) gives
lim sup s ¢E len(F*") < §&(6). (3.19)

Now the cycle F*" goes through all the vertices V N [ns, (1 — n)s]?. By (i)
E |V Nns, (1 — n)s]d| =46(1 - Zn)dsd
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and by comparison with the total number of Poisson points in C; we get a crude
bound

var [V N [ns, (1 —n)s]?| < s%(s? +1) < 25* (s > 1).
Now consider k¥ > 2. Using geometric subadditivity (Lemma 3.1(c)) and indepen-

dent copies of F*" on each of the k% subcubes, we can construct a cycle GF*7 in
[0, ks]? such that (3.19) extends to

lim sup(ks)~?Elen(GF*7) < §¢(6). (3.20)

Chebyshev’s inequality implies

P( number of vertices in GF*" < §(ks)?((1 — 2n)? — 1)
2kds2d
< 2B _952p2p—d,
= Gowtstgp 20 TR

Taking k = k(s) — oo sufficiently slowly, (3.20) remains true, so by definition of
¢(+) and the uniform boundedness property

3((1 —2m)? = 2n) ¢(6((1 — 2n)? — 2n)) < 5¢(9).
Letting n — 0 and using continuity of ¢(-) shows ¢(d) < &(4).

3.6. The limit for T,,. Recall the definition (Approach 1) of T;,,. If we could prove a
sublinear growth property, that the optimal path stays within a ball of radius o(m),
then part (e) of Theorem 2.1 would follow easily from the other parts. Because
we cannot prove this property we use a more circuitous method which eventually
(Lemma 3.16) compares a general path from the origin with either a cycle through
the origin (Lemma 3.14) or a path between diagonals of a cube (Lemma 3.13).

Recall Lemma 3.11 on linear diagonal percolation. We need a stronger result.
Given a realization of the Poisson point process in [0,s]?, first remove some us
points, then look for the optimal diagonal path through at most s of the remaining
points. We show that the same constant 3(7) appears in the limit.

Lemma 3.12. Given the points of the Poisson process in [0,5s]%, for any n > 0,
©>0 let
l
W™ .= max min (m)
A mrnNA=0 m(7r)
where the maximum is taken over all subsets A of points with size at most us and

the minimum over all paths © € Iy, through at most ns points that exclude A.
Then

lim W™ = B(n) a.s.

§—00

Proof. We consider the two-dimensional case. The same proof works for dimension
d > 3 without significant changes.

Consider the square [0, k?s]?, partitioned into subsquares of side s. Consider the
2k +1 subsquares (S;, 1 <14 < 2k+ 1) whose lower left corners are (k,0), (k, 1), (k—
1,1),(k—1,2),...,(1,k), (0, k). For each i consider the “staircase” consisting of k% —
k diagonally-adjacent subsquares starting with S;. Note that all these subsquares
are distinct. See Figure 2. (

(]

For each such staircase consider a joint path wk), obtained by concatenation of

k2 — k paths each attaining W." in its own subcube.
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FIGURE 2. 2k + 1 diagonal pahts in a large square

Given 1 > 0 and € > 0, using Lemma 3.9 and Lemma 3.11 we can choose large
s so that '
limsupw(r\”) < B(n) +&,
k

thus with probability — 1 as £k — oo we can choose at least 3k/2 staircases i
satisfying
m(r') <nk?s,  w(E?) < Bn) + 2. (3.21)
For any subset of points A of size at most uk2s there are at least k staircases
containing no more than pks points of A each. Thus with probability 1, for all
sufficiently large k and all such A we can find some 7T§:) satisfying (3.21) and

W,(ci) contains < pks points of A.
i From such a path 7r,(:) we create a path 7, € I 2, by first deleting the points in
A and then adding two edges from the path-ends to the corners to [0, k?s]?. These
changes have asymptotically negligible effect on average edge-length, so we have
shown

lim sup W,g;’;“) < B(n) + 2 as.

k—oo
and the result follows easily. O

Next we will use Lemma 3.12 to show that when one weakens conditions on
wim by allowing paths through points outside the cube [0, s]¢, this doesn’t affect
the limit 8(n).

Lemma 3.13 (unbounded linear percolation). Let Ws(") be the minimal average
step length over all paths from (0,...0) to (s,...s) through some points of a rate 1
Poisson point process in R?, with at most ns steps. Then

lim W™ = B(n) in probability.

Proof. Fix 5 and consider the possibility that, for some ' < B(n)
lim sup P(W(™ < ') > 0. (3.22)
S



Percolating paths through random points 107

It is enough to show this cannot happen.

Let 7, be the optimal path for W s("). There exists a constant p such that =y is
contained inside [—ps, s+ ps]? a.s. for large s. In the cubes [—ps,0]¢ and [s, s+ ps]¢
take two diagonal paths 71, 72 with no more than np steps each, that attain minimal
step length while avoiding the points of 7;. By Lemma 3.12 the average edge-length
in 7! and in 72 is asymptotically 8(n). Then the concatenated path {rl,ms, 72}
satisfies the constraints in Lemma 3.11 for a diagonal path across and within the
large cube [—ps, (p + 1)s] with at most (1 + 2p)s points. On the event in (3.22)
this path has average step length less than some 8" < B(n). So (3.22) contradicts

the conclusion of Lemma, 3.11.
O

Lemma 3.14 (free cycle). Let L,,(0) be the minimum length over all cycles on m
points of the Poisson process that pass through the origin. Then

lim L, (0)/m > c(0+) in probability.
m—ro0

Remark 3.15. Such a cycle contains two edges from the origin to points of the
Poisson process. Our results ultimately imply the inequality is really an equality,
but we won’t need to prove that now.

Proof. Assume, to get a contradiction, that for some ¢ < ¢(0+)

lim sup P(L,,(0)/m < ¢) > 0. (3.23)

m—0o0

Let p > 0 be a constant such that the cycle 7, attaining length L,,(0) is contained
inside a box [—pm, pm]? a.s. for large m.

Fix > 0. By Lemma 3.12 it’s possible to choose two paths 7% and 72, across
the diagonals of [—pm, 0]¢ and [0, pm]? respectively in such a way that 7% , 72, have
no common points with 7, except the origin, and

my <mpm, b= p(n)ny +o(m)

na2 <npm,  lo = B(n)n2 +o(m)
where ny, ny and Iy, I denote the number of edges and the length of 7}, and 72,.
One can adjust a few edges around the origin to get a concatenated path

{Wimﬂ'ma an}
with length L' <I; + s + L,,(0) and with n’ = ny + na + m — 2 steps, across the
diagonal of the whole cube [—pm, pm]. Observe
ny+ng +m 1
— < —. .24
oo 113, (3.24)
On the event {L,,(0)/m < ¢} in (3.23) we have
i+l + L (0) B < o(m) + Lm(0) — B(m)m
ny+ng+m - ny +nz +m
o(m) + (¢ — B(n))m

<

- ny+ne+m
- —¢(0

< MH(DSMM(D
14 2np 14 2np
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the final two inequalities because ¢ — () < ¢ — ¢(0+) < 0. Because of (3.24) we
can apply Lemma 3.11 and deduce

1 c(0+) — ¢
1)< B A Ay
Bn+5;) < Bn) o 1
But this implies lim,_,o, 8(n) = —oo, which is impossible.

We can finally prove part (e) of Theorem 2.1.

Lemma 3.16 (free path). Let T, be the minimal length over all paths through m
points of the Poisson process starting at the origin. Then

limT,,/m = ¢(0+) in probability.
m

Proof. The upper bound
lim P(k™'Ty < c(0+)+¢e) =1Ve >0

was given at (3.5). For the lower bound suppose, for some ¢ < ¢(0+)

lim sup P(T},,/m < ¢) > 0. (3.25)

Let m,, be a path attaining length T, and let z,,, be the position of its end-point.
Consider

r« = supq{r : limsup P(|y,| > rm, T, < cm) > 0}.
m

Clearly r, < oo. Suppose first 7, = 0. Then we can construct a free cycle from
Ty by adding an edge from z,, to the origin, and such cycles have average length
< ¢+ o(1), contradicting Lemma 3.14.

Alternatively suppose r, > 0. Then using rotational invariance of the Poisson
process, for arbitrary € > 0

limsup P(z,, € [(rs —&)m, (r« +&)m]? and T,,, < cm) > 0.

Adding an edge from z,, to ((r« + &)m,...,(r« + €)m) gives a path between the
diagonal corners of [0, (r. + &)m]? through m points with average edge length at
most ¢ + 2ed'/2, which contradicts Lemma 3.13 for = 1/r. when ¢ is small. So
(3.25) is false and we have proved T}, /m — ¢(0+) in probability.

|

4. Final Remarks

4.1. Subadditivity and cost-reward problems. The technique in section 3.4 seems
applicable in many contexts where subadditivity is used. For instance, to modify
the context of first-passage percolation on the lattice, suppose that for each edge e
there is a “cost” ¢(e) and a “reward” r(e), so that for each path 7 = (e;j.ea,...,€y)
there is a cost and a reward (c(w),7(7)) = (3_, c(ei), >, r(e;)). Then one can study
by the same technique

A, = m;n e(m) [r(m)
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minimized over paths across the diagonal of [0,n]¢. Developing a general theorem
which establishes limits A,, — a¢ a.s. in such settings would be a natural research
project.

4.2. Smooth curves. A recent paper Arias-Castro et al. (2005) studies the following,
somewhat related question. Take n random points in [0,1]%. For a class of curves
satisfying some (quantitative) smoothness condition, what is the maximum number
of points that some curve in the class can pass through? The paper obtains the
correct order of magnitude for a variety of smoothness classes.
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