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Abstract. We investigate the interaction of one-dimensional asymmetric exclusion
processes of opposite speeds, the exchange mechanism is combined with a spin-flip
dynamics, and this asymmetric law is regularized by a nearest neighbor stirring of
large intensity. At an intuitive level we can say that particles with ±1 spins are
subject to an external magnetic field, and the additional spin-flip dynamics results
in a strong relaxation of total magnetization. Therefore this modification of the
model of Fritz and Tóth (2004) admits particle number as the only conservation law,
with hyperbolic scaling. By means of a two-step version of LSI based estimation
techniques we prove that compensated compactness and the Lax entropy inequality
imply the existence and uniqueness of the hydrodynamic limit even in a regime of
shocks.

1. Introduction and main result

Most results of the microscopic theory of hydrodynamics concern diffusive mod-
els, see the monograph by Kipnis and Landim (1999). The relative entropy method
of Yau (1991) is a general tool of scaling limits when the solution to the macroscopic
equation is smooth enough, and hence unique. This method works even in the case
of hyperbolic problems, see also Olla et al. (1993) and Tóth and Valkó (2003,
2005). Beyond shocks the specific structure of the microscopic system becomes
more important. The attractiveness of the one-component models of Rezakhan-
lou (1991) implies also the uniqueness of the hydrodynamic limit, the proofs are
based on powerful coupling techniques. The nice, more or less explicit calculations
of Seppäläinen (1999) adopt direct PDE methods as the Hopf - Lax formula for
solving the Burgers equation. Coupling methods can be extended to some wider
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classes of one-component sytems with a more general order preserving structure
Seppäläinen (2000); Rezakhanlou (2002), see also Bahadoran (2004) for a synthesis
and survey of such models with some further references.

In the last few years several efforts Fritz (2001, 2004); Fritz and Tóth (2004)
have been done to derive the hydrodynamic limit of microscopic systems with a
hyperbolic structure via compensated compactness. This fairly general method is
not restricted to one-component systems allowing coupling. The stochastic version
of compensated compactness yields existence of the limit along subsequences: all
limit distributions of the scaled process are concentrated on a set of weak solutions

to the macroscopic equations, the question of uniqueness of the limit is more prob-
lematic. To select the physically admissible element from the set of weak solutions,
an entropy condition like that of Oleinik (1957) or Kružkov (1970) is needed; the
latter can really be verified in the case of attractive and order preserving systems
Rezakhanlou (1991); Bahadoran (2004). The asymmetric Ginzburg-Landau model
of Fritz (2004) is attractive in the case of a convex potential only, the general prob-
lem has not been solved there. The two-component system of Fritz and Tóth (2004)
is certainly not attractive or order preserving, we do not see any effective way of
coupling in that case. Let us remark at this point that uniqueness of solutions
to systems of conservation laws is difficult even at the level of partial differential
equations, see the monograph of Bressan (2000) for a survey. These Oleinik type
conditions of uniqueness are not easy to verify in the case of microscopic models,
we have no results in this direction.

The situation is much better when we are facing with a single conservation law,
even the weak version (2.16) of the Lax entropy inequality is sufficient for unique-
ness of weak solutions to a single conservation law, see Kružkov’s classical result as
stated and proven in Bressan (2000): Theorem 6.2 and its Corollary 6.1. The result
of A. Vasseur (2001) is also applicable, he proves existence of a strong trace of weak
solutions on the t = 0 line under the weak entropy condition (2.16). Moreover, if
the flux of a single conservation law in one space dimension is strictly convex, then
the weak entropy condition for one strictly convex entropy is sufficient for weak
uniqueness, see Panov (1994); De Lellis et al. (2004). This nice result implies also
that the rate function Varadhan (2004) of large deviations for the totally asymmet-
ric exclusion process has a unique minimum: the entropy solution to the Burgers

equation. On the other hand, the initial condition of the DiPerna uniqueness the-
orem (DiPerna, 1985) for measure valued solutions has considerably been relaxed
by Gallouët and Herbin (1993), cf. Rezakhanlou (1991) and the discussion after
(2.12).

In this paper we prove existence and uniqueness of the hydrodynamic limit for
a non-attractive hyperbolic model having only one conservation law. There are
several models of this kind, for example asymmetric exclusion where a particle
jumps to the nearest vacant site. These dynamics do not allow coupling unless the
jump rate is a non-increasing function of the jump length, see Bahadoran (2004)
for a fairly general exposition and discussion. The treatment of this problem might
not require ideas that go far beyond Fritz (2001). Some other classes of lattice
models with one or more conservation laws have been introduced and investigated
by means of the relative entropy method in Tóth and Valkó (2003, 2005); the
system of interacting exclusions that we have studied in Fritz and Tóth (2004)
was proposed as a basic example in Tóth and Valkó (2003). Here we investigate
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this model with an additional relaxation mechanism. In the spirit of the theory of
shock waves, instead of the usual assumption of periodic boundary conditions, we
consider the system on the infinite line, results of Fritz and Tóth (2004) can also
be extended in this way.

1.1. The model. The configuration space of the system is defined as Ω:={−1, 0, +1}Z,
it is equipped with the usual product topology and the associated Borel structure.
For example, Fn denotes the σ-field generated by the variables {ωk : |k| ≤ n} . In
view of the physical interpretation, ωk = 0 means a vacant site k ∈ Z , otherwise
we have a ±1 spin there. Due to the external field, particles of spin +1 jump to the
right, −1 particles jump to the left, both at a unite rate with full exclusion. When
particles of opposite spins meet, they are exchanged at rate 2, thus the generator,
Lo of this component of the evolution is acting on cylinder functions ϕ as

Loϕ(ω) :=
∑

b∈Z∗

cb(ω)
(

ϕ(ωb) − ϕ(ω)
)

, (1.1)

where Z∗ is the set of bonds b = (k, k + 1) of Z ,

cb(ω) :=
1

2
(ω2

k + ω2
k+1 − ω2

kω
2
k+1 − ωkωk+1 + ωk − ωk+1) ,

and ωb is obtained from ω ∈ Ω by exchanging ωk and ωk+1 ; the rest of the config-
uration is not altered. Notice that the actual value of cb is irrelevant if ωk = ωk+1 ;
cb of (1.1) can be replaced with

c̃b(ω) :=
1

2
(ω2

k + ω2
k+1 + ωk − ωk+1) .

Lo is the main, asymmetric component of the evolution law investigated in Fritz and
Tóth (2004), it preserves both particle number N ∼

∑

ω2
k and total magnetization

M ∼ ∑

ωk . Due to the suitable choice of jump rates, all translation invariant
product measures on Ω are stationary states for Lo .

The Glauberian, spin-flip component of the evolution sends ωk = 1 → −ωk = −1
at rate 1 − κ, and the rate of a transition ωk = −1 → −ωk = +1 is 1 + κ , where
κ ∈ R is a fixed parameter, |κ| < 1 . The associated generator reads as

Gκϕ(ω) :=
∑

k∈Z

ck(ω)
(

ϕ(ωk) − ϕ(ω)
)

, (1.2)

ck(ω) :=
1 − κ

2
(ω2

k + ωk) +
1 + κ

2
(ω2

k − ωk) = ω2
k − κωk ,

and ωk is obtained from ω by changing the sign of ωk ; other spins remain as before
the flip. Conservation of total magnetization is violated by Gκ , but the number
of particles is preserved, thus we get a one-parameter family λρ , 0 < ρ < 1 of
stationary product measures specified by λρ[ω

2
k = 1] = ρ and (1 − κ)λρ[ωk = 1] =

(1 + κ)λρ[ωk = −1] , i.e. the equilibrium expectation of ωk is just λρ(ωk) = κρ .
The full generator of the process is now defined as L = Lo + αGκ + σ S , where α
and σ are nonnegative parameters to be specified later,

Sϕ(ω) :=
∑

b∈Z∗

(

ϕ(ωb) − ϕ(ω)
)

. (1.3)

From a technical point of view, it is very important that σ, the intensity of stirring
goes to +∞ during the scaling procedure. An elliptic perturbation like σS is widely
employed in the theory and practice of hyperbolic systems of conservation laws
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DiPerna (1983, 1985); Bressan (2000); Dafermos (2000); Serre (2000) to regular-
ize approximate solutions; the method of vanishing viscosity is perhaps the most
transparent analogy. Of course, the stirring modifies the microscopic evolution in
a radical way, but it does not affect the macroscopic behavior of the system, see
Fritz (2001, 2004); Fritz and Tóth (2004); Tóth and Valkó (2005). Unfortunately,
we only have sufficient conditions on the strength σ of this artificial viscosity. The
speed α of spin flips is almost arbitrary, we only need that it does not go to zero
too fast. Another version of this model preserving total spin is mentioned at the
end of the paper.

1.2. Discussion. Although coupling techniques are not applicable to the process
generated by L , it is very convenient to have product measures as its stationary
states. More precisely, calculations of the next section imply that every transla-
tion invariant stationary measure is a superposition of product measures of type
λρ defined above. Since ”conserved quantity” is a loose term, this is the precise
meaning of the statement that we have only one conservation law, namely that of

particle number. Indeed, according to the theory of Gibbs random fields, see Kipnis
and Landim (1999) also for the basic notions of the theory of hydrodynamic limits,
the measures λρ are associated with the number of particles. Nevertheless, the
description of stationary states does not play an explicit role in the forthcoming
calculations, but it is really helpful in understanding what is going on.

Let ηk := ω2
k denote our distinguished variable, and consider the microscopic

current jk of particle number along a bond b = (k, k + 1) , i.e. Lηk = jk−1 − jk .
Since Gκ ω

2
k = 0 , jk = jok + σjsk ,

jok(ω) := cb(ω)(ηk−ηk+1) = 1
2 (ωk+ωk+1−ωkηk+1−ηkωk+1+ηk−ηk+1) , (1.4)

and jsk(ω) := ηk −ηk+1 . In view of the principle of local equilibrium, see e.g. Kipnis
and Landim (1999), as λρ(ωk) = κρ and λρ is a product measure, a Burgers equation

∂tρ+ κ ∂x(ρ− ρ2) = 0 (1.5)

is expected for the hydrodynamic limit of particle density ρ(t, x) . To understand
the claim from a point of view of dynamics, let jωk denote the flux of magnetization
ω across a bond (k, k + 1) ,

jωk =
1

2
(ηk + ηk+1 − 2ωkωk+1 + ωkηk+1 − ηkωk+1 + (2σ + 1)(ωk − ωk+1)) .

Since Gκωk = 2κηk − 2ωk , wk := κηk − ωk satisfies

Lwk + κ (jk − jk−1) − (jωk − jωk−1) = −2αwk , (1.6)

a balance equation with a relaxation term on its right hand side. In the procedure
of hydrodynamic limit time is speeded up, thus w should vanish in a mean sense.
Of course, the materialization of this argument at the microscopic level requires
additional tools. Just as in Fritz and Tóth (2004), first we apply the logarithmic
Sobolev inequality due to stirring S . The argument is then completed by substitut-
ing block averages of ω with those of κη via a second LSI related to the Glauberian
generator Gκ .
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1.3. Main result. It is well known that the Burgers equation develops shocks, and
uniqueness of weak solutions breaks down at the same time, thus we must be careful
with definitions. A locally integrable ρ : R

2
+ 7→ [0, 1] is a weak solution to (1.5) with

initial value ρ0 ∈ L∞(R) if
∫ ∞

0

∫ ∞

−∞

(

ρψ′
t + (κρ−κρ2)ψ′

x

)

dx dt+

∫ ∞

−∞

ψ(0, x)ρ0(x) dx = 0 (1.7)

for all ψ ∈ C1
c (R2) . The notion of Lax entropy plays a fundamental role in the

study of weak solutions. A couple h, J ∈ C1(R) is called a Lax entropy pair if
J ′(ρ) = κ (1 − 2ρ)h′(ρ) , that is ∂th(ρ) + ∂xJ(ρ) = 0 along classical solutions. A
measurable and bounded ρ(t, x) is a weak entropy solution to ∂tρ+ κ∂x(ρ− ρ2) = 0
with initial data ρ0 if

∫ ∞

0

∫ ∞

−∞

(

h(ρ)ψ′
t + J(ρ)ψ′

x

)

dx dt+

∫ ∞

−∞

h(ρ0(x))ψ(0, x) dx ≥ 0 (1.8)

for all compactly supported 0 ≤ ψ ∈ C1
c (R2) and entropy pairs (h, J) with h convex.

Since h(ρ) ≡ ρ and h(ρ) ≡ −ρ are both convex, all weak entropy solutions are weak
solutions in the usual sense. Convexity of an entropy pair (h, J) means that h is a
convex function.

At any level ε > 0 of scaling, the simplest version of the empirical process of
particle density is defined as ρε(t, x) := ηk(t/ε) = ω2

k(t/ε) if |x− εk| < ε/2 , and

Rε(ψ) :=

∫ ∞

0

∫ ∞

−∞

ψ(t, x) ρε(t, x) dx dt (1.9)

is the scaled density field, where ψ ∈ Cc(R
2) is compactly supported. The initial

conditions are specified in terms of a family µε,0 of probability measures, we are
assuming that

lim
ε→0

∫ ∞

−∞

ϕ(x) ρε(0, x) dx =

∫ ∞

−∞

ϕ(x) ρ0(x) dx (1.10)

in probability for all ϕ ∈ Cc(R), where 0 ≤ ρ0 ≤ 1 is a given measurable function.
Here and below a subscript “c“ refers to compactly supported functions, R+ :=
[0,+∞) , R

2
+ := R+ × R and C1

co(R
2
+) is the space of continuously differentiable

ψ : R
2 7→ R with compact support in the interior of R

2
+ . In its simplest form, our

main result can be stated as

Theorem 1.1. Suppose (1.10) and specify σ = σ(ε) and α = α(ε) such that

εσ(ε) → 0 but εσ2(ε) → +∞ , while σ(ε)α(ε) → +∞ as ε→ 0. Then

lim
ε→0

Rε(ψ) =

∫ ∞

0

∫ ∞

−∞

ψ(t, x)ρ(t, x) dx dt

in probability for all ψ ∈ Cc(R
2) ; this ρ(t, x) is the uniquely specified weak entropy

solution (1.8) to ∂tρ+ κ∂x(ρ− ρ2) = 0 with initial value ρ0 .

Compensated compactness yields strong convergence of approximate solutions;
an improved version of the above result is discussed at the end of the paper in this
spirit. A trivial equation, ∂tρ = 0 is obtained when κ = 0, and diffusive scaling

is the natural one in this particular case. Since the microscopic flux jk is not
a difference, we have got a non-gradient problem requiring methods of Varadhan
(1993) that do not fit into the frames of the paper; we are going to return to this
issue elsewhere.
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2. An outline of the proof

The main ideas of the proof go back to Fritz (2001, 2004); Fritz and Tóth (2004),
we have to develop compensated compactness and verify the entropy inequality (1.8)
at the microscopic level as ε→ 0 .

2.1. Block averages. As it is more or less obligatory in the microscopic theory of
hydrodynamics, first we rewrite the empirical process in terms of block averages.
For l ∈ N and any sequence ξ indexed by Z set

ξ̄l,k :=
1

l

l−1
∑

j=0

ξk+j and ξ̂l,k :=
1

l2

l
∑

j=−l

(l − |j|) ξk+j . (2.1)

The smooth averaging ξ̂l is used to define a modified empirical process ρ̂ε as
ρ̂ε(t, x) := η̂l,k(t/ε) if |x − εk| < ε/2 , while the usual arithmetic mean, ξ̄l is pre-
ferred in computing canonical expectations. Compensated compactness, see Murat
(1978); Tartar (1979) and DiPerna (1983, 1985); Dafermos (2000); Serre (2000) is
a basic key word of the proof, this method yields strong convergence of suitably
chosen approximate solutions. A stochastic version of the theory has been initi-
ated in Fritz (2001, 2004); Fritz and Tóth (2004). In contrast to diffusive scaling
problems, first we prove strong convergence for mesoscopic block averages, see last
section: Concluding Remarks. The size l = l(ε) of these blocks should be chosen in
such a way that

lim
ε→0

σ(ε)

εl3(ε)
= 0 and lim

ε→0

l(ε)

σ(ε)
= 0 , (2.2)

thus εl2(ε) → +∞ as ε → 0. Since εσ(ε) → 0 and εσ2(ε) → +∞ , σ2 = o(l3) . We

also see that (σ/ε)1/3 = o(l) = o(σ) , thus the integer part of ε−1/4
√

σ(ε) is an
acceptable choice for l . From now on the block size l = l(ε) is specified according

to (2.2), and P̂ε denotes the distribution of ρ̂ε on L2
loc(R

2
+) , the space of locally

square integrable functions. This family is tight with respect to the weak topology
of L2

loc , we have to show that its weak limit exists, and it is concentrated on the
unique entropy solution satisfying (1.8) for all convex entropy pairs. Since ρ̂ε(t, ·)
is a stochastically continuous process when ε > 0 is fixed, P̂ε determines the initial
distribution of ρ̂ε , but this relation might be lost in the hydrodynamic limit.

2.2. Entropy production. The microscopic version of entropy production Xε =
∂th + ∂xJ is defined as a distribution: for ψ ∈ C1

c (R2) and entropy pairs (h, J)
we introduce

Xε(ψ, h) := −
∫ ∞

0

∫ ∞

−∞

(

h(ρ̂ε)ψ
′
t(t, x) + J(ρ̂ε)ψ

′
x(t, x)

)

dx dt . (2.3)

This formula follows by a formal integration by part if ψ ∈ C1
c (R2

+) and ψ(0, x) = 0
∀x ∈ R . Calculating the stochastic differential of

Hε(t, ψ, h) :=

∫ ∞

−∞

ψ(t, x)h(ρ̂ε(t, x)) dx (2.4)

we get a martingale Mε(t, ψ, h) , see (4.19) , such that

dHε =

∫ ∞

−∞

ψ′
t(t, x)h(ρ̂ε) dx dt+ ε−1LHε dt+ dMε ,
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whence

Xε(ψ, h) = Hε(0, ψ, h) + Lε(ψ, h) + Iε(ψ, h) +Mε(∞, ψ, h) +Nε(ψ, h) , (2.5)

where Lε(ψ, h) = Lo
ε(ψ, h) + σ(ε)Ls

ε(ψ, h) ,

Lo
ε(ψ, h) :=

1

ε

∫ ∞

0

∫ ∞

−∞

ψ(t, x) Loh(ρ̂ε(t, x)) dx dt , (2.6)

Ls
ε(ψ, h) :=

1

ε

∫ ∞

0

∫ ∞

−∞

ψ(t, x) Sh(ρ̂ε(t, x)) dx dt , (2.7)

Iε(ψ, h) :=
1

ε

∫ ∞

0

∫ ∞

−∞

ψ(t, x) (J(ρ̂ε(t, x))−J(ρ̂ε(t, x−ε))) dx dt , (2.8)

and Nε(ψ, h) is a numerical error due to the lattice approximation of the space
derivative, see (4.4).

The evaluation of Xε is quite easy when h(ρ) = ρ for all 0 ≤ ρ ≤ 1 because
Lηk is a difference of the currents along adjacent bonds, thus rearranging sums
by performing discrete integration by parts, the test function nicely absorbs the
factor ε−1 of L . However, a nonlinear entropy is not conserved by the microscopic
evolution; in that case we have to do something more to remove the singularity.

The most crucial step of the proof is to show that Lo
ε and Iε cancel each other

when ε → 0 , that is the Lax entropy is partially conserved in the hydrodynamic
limit; this will be shown by means of logarithmic Sobolev inequalities in Section 4.
The Glauberian component, α(ε)Gκ has no contribution to entropy production, the
martingale component and the numerical error both vanish as ε → 0. Finally, the
viscous perturbation σ(ε)S is responsible for a preliminary version of the entropy
condition (1.8): lim supε→0 Xε(ψ) ≤ 0 in probability whenever 0 ≤ ψ ∈ C2

co(R
2
+)

and h is convex. Remember that so far we have considered the empirical process
ρ̂ε in (0,+∞) × R only, the question of initial values is a different issue.

2.3. Measure-valued solutions. The notion of Young measure DiPerna (1983, 1985)
is a most convenient tool for the description of all limit distributions of our empirical
process ρ̂ε . Let Θ denote the set of measurable families θ of probability measures;
θ = {θt,x(dρ)} such that θt,x is a probability measure on [0, 1] for each (t, x) ∈
R

2
+ , and θt,x(h) is a measurable function of (t, x) if h : [0, 1] 7→ R is measurable.

The abbreviation θt,x(h) for expectation of a function h with respect to θt,x will
frequently be used also later on. We say that θ ∈ Θ is a measure solution to the
macroscopic equation ∂tρ+ ∂xf(ρ) = 0 with initial value ρ0 if

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞

θt,x(dρ)
(

ρψ′
t + f(ρ)ψ′

x

)

dx dt+

∫ ∞

−∞

ψ(0, x)ρ0(x) dx = 0 (2.9)

for all ψ ∈ C1
c (R2) . A measurable function u : R

2
+ 7→ [0, 1] is represented by a family

θ ∈ Θ of Dirac measures such that θt,x is concentrated on the actual value u(t, x)
of u ; this θ is called the Young representation of u . Therefore any weak solution is
a measure solution.

On the other hand, any θ ∈ Θ can be identified as a locally finite measure mθ

by dmθ := dt dx θt,x(du) on X := R+ × R× [0, 1] ; let Mθ(X) denote the set of such
measures mθ equipped with the associated weak topology. In view of the Young
representation, our empirical process ρ̂ε can be considered as a random element
m̂θ,ε of Mθ(X) ; let P̂θ,ε denote its distribution. This family is tight because ρ̂ε is
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bounded, and as we shall see, any of its limit distributions P̂θ is concentrated on a
set of measure solutions. The uniqueness of measure solutions is more problematic.

The probabilistic evaluation of entropy production yields the Lax inequality in
a very weak form, as follows. With probability one with respect to any limit
distribution of P̂θ,ε on Mθ(X) as ε→ 0, we have

∫ ∞

0

∫ ∞

−∞

(θt,x(h)ψ′
t(t, x) + θt,x(J)ψ′

x(t, x)) dx dt ≥ 0 (2.10)

whenever (h, J) is a convex entropy pair and 0 ≤ ψ ∈ C1
c (R2

+) .
Unfortunately, the initial condition (1.10) does not allow us to include the initial

entropy into (2.10) when h is not linear, while the uniqueness result of Gallouët
and Herbin (1993) requires

∫ ∞

0

∫ ∞

−∞

(θt,x(h)ψ′
t(t, x) + θt,x(J)ψ′

x(t, x)) dx dt

+

∫ ∞

−∞

ψ(0, x)h(ρ0(x)) dx ≥ 0

(2.11)

for all convex entropies and 0 ≤ ψ ∈ C1
c (R2) . For our purposes we ought to have

(2.11) with probability one with respect to any limit distribution P̂θ of the Young
representation of the empirical process ρ̂ε , which can only be derived from the
strong initial condition

lim
ε→0

∫ r

−r

|ρ̂ε(0, x) − ρ0(x)| dx = 0 for all r > 1 (2.12)

in probability. Although (2.12) is not so bad in the case of stochastic models
because we could assume that the initial distributions are well adjusted product
measures, cf. Rezakhanlou (1991), we prefer the weaker condition (1.10) and com-
pensated compactness. Indeed, (2.12) does not really simplify the proof, most tools
of the next sections are needed in both cases. Moreover, in this setting we get a
sharp result: strong convergence of the empirical process ρ̂ε to the unique entropy
solution.

2.4. Compensated compactness. This technique is used to show that measure so-
lutions are, in fact weak solutions. In view of the stochastic version Fritz (2001,
2004); Fritz and Tóth (2004) of the Tartar–Murat theory of compensated compact-
ness, we have to find a decomposition Xε = Yε +Zε , and some random functionals
Aε(φ) , Bε(φ) such that Aε(φ) , Bε(φ) do not depend on ψ , moreover

|Yε(φψ, h)| ≤ Aε(φ)‖ψ‖+1 and lim
ε→0

EAε(φ) = 0 , (2.13)

|Zε(φψ, h)| ≤ Bε(φ)‖ψ‖ and lim sup
ε→0

EBε(φ) < +∞ (2.14)

for each ψ ∈ C1
c (R2) and φ ∈ C2

co(R
2
+) , where ‖ψ‖ is the uniform and ‖ψ‖2 is the

L2(R2) norm of ψ , finally ‖ψ‖+1 is the H+1 norm, ‖ψ‖2
+1 := ‖ψ‖2

2+‖ψ′
t‖2

2+‖ψ′
x‖2

2 .
Let H−1 denote the dual of H+1 with respect to L2(R2) ; ‖ · ‖−1 is its norm. (2.13)
means that Yε → 0 strongly in H−1

loc , while (2.14) implies that Zε is locally bounded
in the space of signed measures. More precisely, conditions (2.13) and (2.14) imply
tightness of the underlying probability distributions, therefore the Skorohod em-
bedding theorem allows us to realize the process on a huge probability space in
such a way that convergence of all processes that are involved in the argument,
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holds true with probability one. Therefore the celebrated Div-Curl lemma (Mu-
rat, 1978; Tartar, 1979; Serre, 2000; Dafermos, 2000) of L. Tartar and F. Murat
applies; in fact we obtain the following statement, see Proposition 2.1. in Fritz
(2004) or Proposition 2. in Fritz and Tóth (2004) for more details. For any couple
(h1, J1), (h2, J2) of entropy pairs we have

θt,x(h1J2) − θt,x(h2J1) = θt,x(h1)θt,x(J2) − θt,x(h2)θt,x(J1) (2.15)

for almost every (t, x) ∈ R
2
+ ; this factorization property is valid with probability

one with respect to any limit distribution, P̂θ of the Young representation of ρ̂ε .
Our main task now is the verification of conditions (2.13) and (2.14) above. Most

terms on the right hand side of (2.5) will be split into further ones, and we shall
show in Section 4 that each of them satisfies (2.13) or (2.14). The derivation of the
weak entropy condition (2.10) for measure solutions goes in much the same way;
but under the weak initial condition (1.10) we can not control the space integral of
ψh at time zero.

The Div-Curl lemma implies the Dirac property of the Young measure in sev-
eral situations Tartar (1979); DiPerna (1983, 1985); Dafermos (2000); Serre (2000).
Since we are considering a single conservation law, to prove convergence of the
empirical process ρ̂ε to a set of weak solutions, it is sufficient to apply (2.15) to
two entropy pairs only, say to the trivial h1(ρ) := ρ , J1(ρ) := κρ(1 − ρ) , and to
h2(ρ) := ρ2 with the associated J2(ρ) := κρ2 − (4κ/3)ρ3 . Therefore, as a direct
consequence we also have the weak entropy condition for weak solutions:

∫ ∞

0

∫ ∞

−∞

(

h(ρ)ψ′
t(t, x) + J(ρ)ψ′

x(t, x)
)

dx dt ≥ 0 (2.16)

for all convex entropy pairs (h, J) and nonnegative ψ ∈ C1
c (R2

+) with probability

one with respect to limit distributions P̂θ of the Young representation of ρ̂ε . The
final step of the probabilistic argumentation is to conclude strong convergence of
the empirical process in the L2

loc(R
2
+) sense. Hence (2.5) implies (1.7), thus we

can refer to some advanced results on a single conservation law in one or more
space dimensions Kružkov (1970); Bressan (2000); Chen and Rascle (2000); Vasseur
(2001); Panov (1994); De Lellis et al. (2004) concerning uniqueness of weak entropy
solutions.

2.5. Entropy and LSI. Probabilistic estimates of the proofs are mainly based on
relative entropy of the evolved measure with respect to equilibrium, and on the
associated Dirichlet form; these ideas go back to Guo et al. (1988), see also Varadhan
(1993) and Yau (1997). Since we are going to treat hydrodynamic limit in infinite
volume, we have to control entropy flux by means of its rate of production, see Fritz
(1990, 2004) for a bit simpler problems. This a priori bound allows us to apply
the robust logarithmic Sobolev inequality due to stirring σS , and also the second,
Glauberian one. LSI based estimates result then in a replacement of the microscopic

flux ĵl,k of η̂l,k with the empirical estimator of its equilibrium expectation, see
Lemma 3.2 and Lemma 3.5. The conditions (2.13) and (2.14) of the Div-Curl
Lemma are verified in a similar way.

Most technical details of this estimation procedure have been elaborated in Fritz
(2001, 2004); Fritz and Tóth (2004); our basic reference is Fritz and Tóth (2004).
First we substitute the microscopic time derivative Loh(ρ̂ε) with the spatial gradient
of a mesoscopic flux depending on block averages η̄l,k and ω̄l,k of the conserved
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quantities of the original, two-component model. The replacement of ω̄l,k by the
empirical estimator κ η̄k,l of its equilibrium expectation is based on a second LSI,
it is related to the spin-flip component Gκ . Although the spin-flip dynamics is
not ergodic because empty sites are not affected, its Dirichlet form controls the
distribution of ω̄l,k quite well, see Lemma 3.5. Since this step uses the explicit

relation between block averages ξ̄ and ξ̂ , which is not present in Fritz and Tóth
(2004), for Reader’s convenience we reproduce the main steps in terms of the present
system of notations, elementary proofs of some known facts are also added.

3. Entropy, Dirichlet form and LSI

In this section we derive some fundamental estimates based on entropy and the
associated Dirichlet forms. The parameters α, σ and l are almost arbitrary here,
their dependence on the scaling parameter ε > 0 is not important. We only need
α > 0, σ ≥ 1 and l ∈ N .

3.1. Entropy and its temporal derivative. If µ and λ are probability measures on the
same space, then entropy of µ relative to λ is defined by S[µ|λ] := µ(log f) if µ� λ
and f := dµ/dλ ; as before, µ(ϕ) ≡ Eµϕ abbreviates expectation with respect to µ .
A frequently used entropy inequality, µ(ϕ) ≤ S[µ|λ]+logλ(eϕ) follows immediately
by convexity. Since equality holds true if ϕ = log f , we have another definition of
relative entropy:

S[µ|λ] := sup
ϕ

{µ(ϕ) − logλ(eϕ) : λ(eϕ) < +∞} . (3.1)

From f log(1/f) = 2f log(f−1/2) ≤ 2f(f−1/2 − 1) = 2
√
f − 2f it follows that

Eλ(
√
f − 1)2 ≤ S[µ|λ] .

Given a Markov generator A , the Donsker-Varadhan rate function of large devia-
tions is defined as

D[µ|A] := − inf

{∫

Aψ

ψ
dµ : 0 < ψ ∈ Dom(A)

}

; (3.2)

D[µ|A] = D(
√
f) if A is self-adjoint in L2(λ) and f = dµ/dλ , where D(ϕ) :=

−λ(ϕAϕ) is the Dirichlet form of A . Remember that in view of their variational
characterizations (3.1) and (3.2), both S and D are convex functionals of µ , and
the definitions and relations above extend to conditional distributions and densities,
too.

As a reference measure we can choose any of the equilibrium product measures
λ = λρ with 0 < ρ < 1 fixed, say ρ = 1/2 . The evolved measure of the process is
denoted by µε,t , and µε,t,n is the restriction of µε,t to Fn := σ{ωk : k ∈ Λn} ,
Λn := [−n, n] ∩ Z . The sequence of local densities fn = fε,t,n is defined by
dµε,t,n = fε,t,n dλ such that fn : Ω 7→ R+ is a martingale adapted to Fn , i.e.
fn = Eλ(fn+1|Fn) λ-a.s. Entropy in the box Λn is defined as

Sn(t) := S[µε,t,n|λ] =

∫

log fε,t,n dµε,t ,

and local versions of the Dirichlet form for Lo , S and Gκ at ϕ =
√

fε,t,n read as

Do
n(t) :=

1

2

∑

b⊂Λn

∫

cb(ω)

(

√

fε,t,n(ωb) −
√

fε,t,n(ω)

)2

λ(dω) , (3.3)
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Dn(t) :=
1

2

∑

b⊂Λn

∫ (

√

fε,t,n(ωb) −
√

fε,t,n(ω)

)2

λ(dω) , (3.4)

Dg
n(t) :=

1

2

∑

k∈Λn

∫

ck(ω)

(

√

fε,t,n(ωk) −
√

fε,t,n(ω)

)2

λ(dω) , (3.5)

respectively. By convexity, both Sn andDn are nondecreasing sequences. Moreover,
Sn+1 = Sn + Sn+1|n , where Sn+1|n := EµS[µn+1|n|λ] is the conditional entropy
given Fn , i.e. µn+1|n denotes the conditional distribution of µ on Fn+1 with respect
to Fn .

3.2. Entropy flux. Our basic a priori bound on local entropy and Dirichlet forms is
the content of

Lemma 3.1. If σ ≥ 1 then we have a constant C0 depending only on λ such that

Sn(t) + 2α

∫ t

0

Dg
n(τ) dτ + σ

∫ t

0

Dn(τ) dτ ≤ C0

(

t+
√

n2 + σt
)

for any initial distribution µε,0 , n ∈ N and t > 0 .

Proof . We follow the argument of Fritz (1990, 2004), our starting point is the
Kolmogorov equation for the temporal derivative of entropy:

∂tSn =

∫

(∂t + L) log fn,t(ω)µt(dω) =

∫

fn+1 L log fn λ(dω)

=
∑

k∈Z

∫

ckfn log
fk

n

fn
λ(dω) +

∑

b∈Z∗

∫

(cb + σ)fn+1 log
f b

n

fn
λ(dω) ,

where abbreviations as ϕb := ϕ(ωb) and ϕk := ϕ(ωk) are used, and where it is not
necessary, the dependence of densities on ε and t is omitted. Since y log(x/y) =

2y log
√

x/y ≤ 2
√
y (

√
x−√

y) = x− y − (
√
x−√

y)2 , we have

fn+1 log
f b

n

fn
≤ fn+1

fn

(

f b
n − fn −

(

√

f b
n −

√

fn

)2
)

= f b
n − fn −

(

√

f b
n −

√

fn

)2

+ 2Φn,b(t) ,

where

Φn,b(t) :=

(

fn+1

fn
− 1

)(

√

f b
n −

√

fn

)

√

fn .

The expectation of the sum of cb(f
b
n−fn) vanishes by stationarity of λ with respect

to L0 , while cbΦn,b has zero expectation with respect to λ unless b ⊂ ∂Λn :=
{−n−1,−n, n, n+1} . Finally, 1 ≤ cb ≤ 2 if ωb 6= ω , consequently

∂tSn(t) + 2αDg
n(t) + 2σDn(t) ≤ Bo

n(t) + σBn(t) , (3.6)

where

Bo
n(t) := −D∂n(t) + 4

∑

b⊂∂Λn

∫

|Φn,b(t)| dλ ,

D∂n(t) :=
∑

b⊂∂Λn

∫ (

√

f b
n −

√

fn

)2

dλ ,
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Bn(t) :=
∑

b⊂∂Λn

∫

fn+1 log
f b

n

fn
dλ .

Observe now that we have a universal constant K0 depending only on λ such that

Bo
n(t) ≤ −D∂n(t) + 4K0

√

Sn+1(t) − Sn(t)
√

D∂n(t)

≤ 4K2
0 (Sn+1(t) − Sn(t)) .

(3.7)

Indeed, fn+1 = O(fn) because fn = Eλ[fn+1|Fn] , moreover

fn+1

fn
− 1 =

(

√

fn+1

fn
− 1

) (

√

fn+1

fn
+ 1

)

,

and from Eλ(
√
f − 1)2 ≤ S[µ|λ] for the conditional density fn+1/fn we get

Eλ(
√

fn+1 −
√

fn)2 ≤ Sn+1|n = Sn+1 − Sn .

Therefore supposing 1+
√

fn+1/fn ≤ K0 , we obtain (3.7) by the Schwarz inequality.

In the case of Bn we have λ(f b
n) = λ(fn) = 1 for all b ∈ Z∗ , thus repeating the

argument above, we have

Bn(t) ≤ −D∂n(t)+K0

√

Sn+1(t) − Sn(t)
√

D∂n(t)

≤ (K2
0/4) (Sn+1(t) − Sn(t)) .

(3.8)

To complete the proof, we have to derive the following system of differential
inequalities:

∂tSn(t) + 2αDg
n(t) + 2σDn(t) ≤ K1 (Sn+1(t) − Sn(t))

+ σK1

√

Sn+1(t) − Sn(t)
√

Dn+1(t) −Dn(t) ,
(3.9)

where σ ≥ 1 may be assumed, thus K1 depends only on λ . This system admits an
explicit solution implying the statement. Indeed, with un := Sn and vn := Dn in
Lemma 3 of Fritz (1990) we get

Sn(t) + 2α

∫ t

0

Dg
n(τ) dτ + σ

∫ t

0

Dn(τ) dτ ≤ M

R

∞
∑

m=0

exp(−m/R)Sm(0) ,

where R := Mt+ (n2 + σt)1/2 , and M depends only on K1 . Since Sn(0) = O(n) ,
it is really sufficient to verify (3.9).

Unfortunately, Bn has a big factor σ, thus its trivial bound Sn+1 −Sn should be
replaced with a better one. To get another inequality, observe that

Bn =
1

2

∑

b⊂∂Λn

∫

(fn+1 − f b
n+1) log(f b

n/fn) dλ

and

(fn+1−f b
n+1) log

f b
n

fn
=

2

α
(
√

fn+1+
√

f b
n+1)(

√

fn+1−
√

f b
n+1)(

√

f b
n−
√

fn) ,

where α is a number between
√
fn and

√

f b
n . There is nothing to do if the left hand

side is negative, thus either f b
n > fn and fn+1 > f b

n+1 , or f b
n < fn and fn+1 < f b

n+1

may be assumed. Using fn+1 = O(fn) or f b
n+1 = O(f b

n) we get

(fn+1 − f b
n+1) log

f b
n

fn
≤ K2

∣

∣

∣

∣

√

fn+1 −
√

f b
n+1

∣

∣

∣

∣

∣

∣

∣

∣

√

f b
n −

√

fn

∣

∣

∣

∣

,
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whence by the Schwarz inequality and convexity of D we get a second bound:

Bn(t) ≤ K2

√

Dn+1(t) −Dn(t)
√

D∂n(t) . (3.10)

Finally, if Bn > 0 then (3.8) implies D∂n ≤ (K2
0/4)(Sn+1 −Sn) , thus (3.10) results

in (3.9), which completes the proof. �

This lemma is the a priori bound we need to materialize hydrodynamic limit in
infinite volume, it obviously applies also to the original model of Fritz and Tóth
(2004). From now on we are assuming that σ ≥ 1 . This lemma shall be used when
t ≈ τ/ε and n ≈ r/ε , τ, r ≥ 1 , then (r + τ)/ε is the order of the bound.

3.3. The first LSI. The first replacement lemma for microscopic currents is based
on the logarithmic Sobolev inequality Fritz and Tóth (2004) for stirring S . Let λρ,u

denote the product measure on Ω such that λρ,u(ηk) = ρ and λρ,u(ωk) = u for all
k ∈ Z , then λρ,u(jok) = J(ρ, u) := u− uρ .

Lemma 3.2. There exists a universal constant C1 such that

ε2
∑

|k|<r/ε

∫ τ/ε

0

∫

(

j̄ol,k − J(η̄l,k, ω̄l,k)
)2
dµε,t dt ≤ C1

(

(r + τ)εl2

σ
+
rτ

l

)

for all initial distributions µε,0 , and r, τ > 1 .

Proof . In view of Lemma 3.1, this is essentially the first inequality of Proposition 1
in Fritz and Tóth (2004), for Reader’s convenience we indicate the main steps of the
argument. Let λ̄ρ,u

l,k denote the canonical measure defined by λ̄ρ,u
l,k (ϕ) = Eλ[ϕ|η̄l,k =

ρ, ω̄l,k = u] ; it is just the uniform distribution on the subspace of codimension two
specified by the conditions. In view of Proposition 4 of Fritz and Tóth (2004), we
have a universal number ℵ such that

S[ν|λ̄ρ,u
l,k ] ≤ ℵ l2

∑

b⊂[k,k+l−1]

∫

(

√

f b −
√

f
)2

dλ̄ρ,u
l,k (3.11)

whenever dν = fdλ̄ρ,u
l,k . It is important that ℵ does not depend on ρ and u . Consider

now a function ϕk of ωl
k := (ωk, ωk+1, ..., ωk+l−1) , then for β > 0 by the entropy

inequality

µε,t(ϕ
2
k) ≤ 1

β

∫

S[µ̄ρ,u
t,l,k|λ̄

ρ,u
l,k ] µ̃ε,t(dρ, du) +

1

β

∫

log λ̄ρ,u
l,k (eβϕ2

k) µ̃ε,t(dρ, du) ,

where µ̄ρ,u
t,l,k is the conditional measure of µε,t given η̄l,k = ρ and ω̄l,k = u , while

µ̃ε,t is the joint distribution of η̄l,k and ω̄l,k under µε,t . The first term on the right
hand side is estimated via (3.11), while Lemma 3.1 yields a bound for the Dirichlet
form. Since D is convex, and the exchanges do not alter η̄l,k or ω̄l,k , we obtain a
bound O(rεl3/βσ) for this part of the sum.

The canonical exponential moment of the second term can be handled by means
of the slightly sophisticated Lemma 9. of Fritz and Tóth (2004), see also Tóth and
Valkó (2003) for the original proof. Here we present a nice, elementary argument.
In general, the local version of the central limit theorem implies that if 0 < ` < l
and `/l is bounded away from one (` ≤ (l+1)/2 , say), then canonical probabilities
related to the interval [k, k+ `) are bounded by the corresponding grand canonical
probabilities, which makes life easier. More precisely,

λ̄ρ,u
l,k [ω`

k = y`
k] = O

(

λρ,u[ω`
k = y`

k]
)

(3.12)
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with a uniform bound. To prove this, for arbitrary nonnegative integers m0 , m+

and m− set

q(m0,m+,m−) :=
(m0 +m+ +m−)!

m0!m+!m−!

(n0

l

)m0
(n+

l

)m+
(n−

l

)m−

,

where n0 , n+ , n− are the frequencies of 0 and ±1 in the sequence ωl
k , i.e. n+ =

l(ρ + u)/2 , n− = l(ρ − u)/2 and n0 = l(1 − ρ) with respect to the canonical
measure λ̄ρ,u

l,k . Therefore if m0 , m+ and m− are the corresponding frequencies in

the complementary sequence ωk+` , ωk+`+1 , · · · , ωk+l−1 of ω`
k , then we have

Q :=
λ̄ρ,u

l,k [ω`
k = y`

k]

λρ,u[ω`
k = y`

k]
=
q(m0,m+,m−)

q(n0, n+, n−)
,

whence

Q =
(l − `)!n0!n+!n−!

l!m0!m+!m−!

(n0

l

)m0−n0
(n+

l

)m+−n+
(n−

l

)m−−n−

.

We may and do assume that m0m+m− > 0 , then by Stirling’s formula and a direct
calculation we obtain that Q is bounded by a constant multiple of

Q̃ :=
(

l−`
l

)l−`+1/2
(

n0

m0

)m0+1/2 (
n+

m+

)m++1/2 (
n−

m−

)m−+1/2

.

Since Q̃ = Q̄R , where

R :=
(

m0+1/2
m0

)m0+1/2 (
m++1/2

m+

)m++1/2 (
m−+1/2

m−

)m−+1/2

≤ (2e)3/2 ,

we have to estimate

Q̄ :=
(

l−`
l

)l−`+1/2
(

n0

m0+1/2

)m0+1/2 (
n+

m++1/2

)m++1/2 (
n−

m−+1/2

)m−+1/2

.

The inequality of geometric and arithmetic means implies

Q̄ ≤
(

l−`
l

)l−`+1/2
(

l
l−`+3/2

)l−`+3/2

≤ l

l − `
,

which completes the proof of (3.12).
Let ϕk := j̄ol,k − u + uρ with ρ = η̄l,k and u = ω̄l,k ; the central limit theorem

suggests that expectation of exp(βϕ2
k) is bounded if β/l is small enough. To do the

calculation, we write exp(βϕ2
k) = Eθ exp(θϕk

√
2β) , where θ is a standard Gaussian

variable, and Eθ denotes expectation with respect to its distribution. In this way
the second bound has been reduced to a usual large deviation estimate. Indeed, let

F (z, ρ, u) := log

∫

exp(zjoi − zu+ zuρ)λρ,u(dω) ,

then F (0, ρ, u) = F ′
z(0, ρ, u) = 0 and F ′′

zz(z, ρ, u) ≤ 4 because it is the variance of a
variable bounded by 2 . Therefore

∫

exp(zjoi − zu+ zuρ)λρ,u(dω) ≤ exp(2z2) , (3.13)

where z :=
√

2β(θ/l) is the right choice.
To apply (3.12), first we split [k, k+l) into two almost equal parts and decompose

ϕk in the same way. These two terms can be separated by means of the Schwarz
inequality, thus (3.12) applies to each of them. Since the individual currents joi are
not independent with respect to λρ,u , we separate odd and even indices i in the
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individual subintervals by Schwarz, and use (3.13). Choosing β as a small multiple
of l , the proof is now completed by a direct calculation. We see that 1/l is the
order of the second, large deviation part of the bound. �

This is a sharp form of the so called one block lemma of Guo, Papanicolau
and Varadhan (Guo et al., 1988), the explicit rate due to LSI is needed for the
evaluation of entropy production X . Notice that, in view of (2.2), εl2/σ is the
leading term of the bound. The following version of the two blocks lemma of Guo
et al. (1988); Kipnis and Landim (1999) is a particular case of the second inequality
of Proposition 1 in Fritz and Tóth (2004); it follows easily from LSI by (3.12) as
Lemma 3.2 did. For two sequences A and ξ indexed by Z let A ∗ ξ denote their
convolution, i.e. (A ∗ ξ)k :=

∑

j Ajξk−j .

Lemma 3.3. Let m ∈ N and Aj ∈ R for j ∈ Z such that Aj = 0 unless 0 ≤ j ≤ m,
∑

j Aj = 0 and
∑

A2
j ≤ a/m . Then we have

ε2
∑

|k|<r/ε

∫ τ/ε

0

∫

(A ∗ η)2k dµε,t dt ≤ C2

(

a(r + τ)εm2

σ
+
arτ

m

)

for all µε,0 and r, τ > 1 with some universal constant C2 .

Interesting special cases of A ∗ η are differences like η̄l,k+m − η̄l,k , in particular
with m = l, η̂l,k − η̄l,k and η̂l,k+l − η̂l,k . The representation A ∗ η of differences of
block averages with some A such that

∑

Aj = 0 is convenient for the calculation
of the large deviation part of the bound. However, LSI is not optimal for the
comparison of remote blocks. In that case we rewrite A ∗ η as A ∗ η = B ∗ ∇1η ,
where ∇1ηj := ηj+1 − ηj , i.e. (A ∗ η)k =

∑

j Bk−j(ηj+1 − ηj) , A = ∇1B ; and do
some direct calculations in terms of the Dirichlet form, see Lemma IP and Lemma
2B in Fritz (2001).

Lemma 3.4. Let 0 < m < r/ε and Bj ∈ R for j ∈ Z such that Bj = 0 unless

0 ≤ j ≤ m, then

ε2
∑

|k|<r/ε

∫ τ/ε

0

∫

(B ∗ ∇1η)
2
k dµε,t dt ≤ C ′

2

(

rτ‖B∆1B‖1 +
rε+ τε

σ
‖B‖2

1

)

for all µε,0 and r, τ > 1 , ε ≤ 1 with some universal constant C ′
2 , where ∆1Bj :=

Bj+1 +Bj−1 − 2Bj , ‖B‖1 :=
∑

j |Bj | , ‖B∆1B‖1 :=
∑

j |Bj∆1Bj | .

Proof . Let b ∈ Z∗ denote the bond b = (j, j + 1) and set φk := (B ∗ ∇1η)k for
brevity. Since our reference measure λ is exchangeable, for any measure µ on Ω
with dµ = f dλ we have

∫

(ηj+1−ηj)φk dµ =

∫

ηj(φ
b
kf

b−φkf) dλ

=

∫

ηj(φ
b
k−φk) dµ+

∫

ηjφ
b
k(f b−f) dλ

As before, we write f b − f = (
√

f b +
√
f)(
√

f b −√
f) , moreover

∫

ηjφ
b
k

√

f b(
√

f b −
√

f) dλ = −
∫

ηj+1φk

√

f(
√

f b −
√

f) dλ ,
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consequently
∫

(ηj+1 − ηj)φk dµ =

∫

ηj(φ
b
k − φk) dµ

+

∫

(

ηj(φ
b
k − φk) + (ηj − ηj+1)φk

)
√

f(
√

f b −
√

f) dλ .

On the other hand, as φ2
k = φk

∑

j Bk−j(ηj+1−ηj) , 1+D1/2 ≤ 2+D and φb
k−φk =

(ηj − ηj+1)∆1Bk−j , by a direct calculation using Schwarz we get
∑

|k|<r/ε

µ(φ2
k) ≤

∑

|k|<r/ε

∑

j∈Z

|Bk−j∆1Bk−j |(2 +D[µ|Sj ])

+
∑

|k|<r/ε

∑

j∈Z

|Bk−j |
√

µ(φ2
k)D[µ|Sj ] ,

where Sjψ := ψb − ψ is the exchange operator across the bond b = (j, j + 1) .
Now we are in a position to return to the original problem. Since the `2 norm

of a convolution operator is bounded by the `1 norm of its kernel,

Γ :=
∑

|k|<r/ε

∫

(B ∗ ∇1η)
2
k dµε,t ≤ ‖B∆1B‖1(2n+Dn(t)) + ‖B‖1

√

ΓDn(t) ,

whenever n > m+ 2r/ε , whence
∑

|k|<r/ε

∫

(B ∗ ∇1η)
2
k dµε,t ≤ 2‖B∆1B‖1(2n+Dn(t)) + 2‖B‖2

1Dn(t) (3.14)

because y2 ≤ a + by implies y2 ≤ 2a+ 2b2 , which completes the proof by Lemma
3.1. �

Observe that
∑

k A
2
k ≤ ‖B∆1B‖1 , and ‖B‖1 = O(m) if B is a bounded sequence,

thus consequences of Lemma 3.3 and Lemma 3.4 are similar, although not identical.
For instance, if m = l then Lemma 3.4 yields the very same bound for φk =
η̄l,k+m − η̄l,k that Lemma 3.3 does, but Lemma 3.4 is better when m is large, see
Concluding Remarks at the end of the paper. Let us remark that without any
change of the statement and its proof, we can replace the sequence ηk by ωk ; this
result is not needed here.

3.4. The second LSI. In order to replace ω̄l,k with its empirical estimator κη̄l,k , a
second LSI is needed, it is due to the Glauberian component Gκ of the evolution.

Lemma 3.5. We have a universal constant C3 such that if r, τ ≥ 1 then

ε2
∑

|k|<r/ε

∫ τ/ε

0

∫

|ω̄l,k − κ η̄l,k|2 dµε,t dt ≤ C3

(

rε+ τε

α
+
rτ

l

)

for all initial distributions µε,0 , and r, τ > 1 .

Proof . As it was in the first part of this section, our reference measure is again
λρ := λρ,u with u = κρ , thus we have p0 := λρ[ωk = 0] = 1 − ρ , p+ := λρ[ωk =
1] = (ρ + κρ)/2 and p− := λρ[ωk = −1] = (ρ − κρ)/2 . We consider blocks of size
l , the true distribution of ωl

k will be denoted by µl . Observe now that the spin-flip
dynamics of ωl

k becomes ergodic if we fix the positions Γ = γ ⊂ [k, k + l) of empty
sites, let λγ

l and µγ
l denote the corresponding conditional distributions given Γ = γ ,
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while νl is the distribution of the random set Γ ⊂ [k, k+ l) . It is plain that λγ
l is a

product measure such that

λ+ := λγ
l [ωj = 1] =

1 + κ

2
and λ− := λγ

l [ωj = −1] =
1 − κ

2

if j /∈ γ . On the other hand, if f+, f− > 0 and λ+f++λ−f− = 1 , then by convexity

λ+f+ log f+ + λ−f− log f− ≤ 2λ+f+(
√

f+ − 1) + 2λ−f−(
√

f− − 1)

≤ 2λ+(f+ − 1)(
√

f+ − 1) + 2λ−(f− − 1)(
√

f− − 1) ≤
(

2λ+(
√

f+ + 1) + 2λ−(
√

f− + 1)
)(

√

f+ −
√

f−

)2

≤ 4
(

√

f+ −
√

f−

)2

because f+ > 1 implies f− < 1 and vice versa. Since the Dirichlet form of a single
spin-flip is just (1 − κ2)(φ+ − φ−)2/2 , this means that we have LSI at single sites
with a universal constant, whence

S(µγ
l |λ

γ
l ) ≤ 8

1 − κ2
D(µγ

l |Gκ) (3.15)

because spin-flips at different sites are independent, and λγ
l is a product measure,

see e.g. Lemma 2.2.11 in Saloff–Coste (1996) for the tensorization property of LSI.
(3.15) is essentially the classical logarithmic Sobolev inequality of L. Gross (1976)
for the binomial distribution.

From the entropy inequality for β > 0 by (3.15) we get

µ(ϕ2
k) ≤ 8

β − βκ2

∫

D(µγ
l |Gκ) νl(dγ) +

1

β

∫

logλγ
l (eβϕ2

k) νl(dγ) ;

here ϕk := ω̄l,k − κη̄l,k . The Dirichlet form is estimated by means of Lemma 3.1,
the contribution of these terms is O(lε/αβ) . To calculate exponential moments, set
again exp(βϕ2

k) = Eθ exp(θϕk

√
2β) , where θ is a standard Gaussian variable, and

introduce G(z) := log λγ
l (ez(ωj−κηj)) with j ∈ γ. We have G(0) = G′(0) = 0 and

G′′(z) ≤ 4 as |ωj − κηj | ≤ 2 , thus G(z) ≤ 2z2 , consequently

λγ
l (eβϕ2

k) ≤ Eθ exp(4nβl−2θ2) = (1 − 8nβ/l2)−1/2

if 8nβ < l2 , where n ≤ l is the number of active sites. Specifying β as a small
multiple of l , we obtain the statement. �

Now we are in a position to replace the microscopic currents with the empirical
estimator of their equilibrium expectations.

4. Estimation of entropy production

In this section the components Lε , Mε Iε and Nε of entropy production Xε are
evaluated, we are assuming that h, J ∈ C2(R) . Several steps of the proofs have
essentially been done in Fritz (2004); Fritz and Tóth (2004); Fritz and Tóth (2004)
is our basic reference. Since there are some technical differences, for convenience
we list the main points. Most calculations are done at the microscopic level, the
following abbreviations reflect this picture. Fk(t) := F (ρ̂ε(εt, εk)) = F (η̂l,k(t)) is
used for any function of the empirical process. The a priori bounds (2.13) and
(2.14) we need for compensated compactness are localized by a smooth function
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φ ∈ C2
co(R

2
+) of compact support. The integral mean of φ(εt, x)ψ(εt, x) over the

space interval |x− εk| < ε/2 will be denoted by ψk(t) ,

ψk(t) :=
1

ε

∫ εk+ε/2

εk−ε/2

ϕ(εt, x) dx ,

where ϕ(t, x) := φ(t, x)ψ(t, x) .
Finally, define ∇εϕ(x) := ε−1(ϕ(x + ε) − ϕ(x)) for functions, in the case of

sequences we write ∇lξk := l−1(ξk+l − ξk) , ∇∗
l ξk := l−1(ξk−l − ξk) , and ∆lξk :=

−∇∗
l ∇lξk . Note that ∇∗

l is the adjoint of ∇l in `2(Z) and ∇1ξ̂l,k = ∇lξ̄l,k+1−l while

∇∗
1ξ̂l,k = ∇∗

l ξ̄l,k . For ∇1ψk we have an identity,

∇1ψk(t) =
1

ε

∫ ε

−ε

(ε− |x|)ϕ′
x(εt, εk + x+ ε/2) dx , (4.1)

where ϕ = φψ , whence by the Schwarz inequality

(∇1ψk(t))
2 ≤ 2ε

3

∫ εk+3ε/2

εk−ε/2

ϕ′2
x (εt, x) dx . (4.2)

A similar bound of (∇lψk)2 follows easily because ∇lψk = ∇1ψ̄l,k , thus

(∇lψk(t))2 ≤ 1

l

k+l−1
∑

j=k

(ψj+1(t) − ψj(t))
2 ; (4.3)

such estimates are frequently used in the following calculations.
Our strategy is to derive (2.13) or (2.14) for components of entropy production

first in terms of ϕ = φψ and its derivatives, but ‖ϕ‖ = O(‖ψ‖) and ‖ϕ‖+1 =
O(‖ψ‖+1) such that the constants depend only on φ , thus we need not worry too
much about localization. In the rest of this section Oφ(·) denotes a bound depending
only on φ ; dependence on h is not indicated because it is fixed here.

4.1. The numerical error. This is the easiest case, by a direct calculation

Nε(φψ, h) = ε
∑

k∈Z

∫ ∞

0

(∇1ψk(t) − ε∇εϕ(εt, εk − ε/2))Jk(t) dt , (4.4)

where ϕ = φψ .

Lemma 4.1. The numerical error, Nε satisfies (2.13).

Proof . This looks elementary, but we must be a bit careful because ψ′′
xx can not

appear in the bound. Doing discrete integration by parts we obtain

Nε(φψ, h) = ε
∑

k∈Z

∫ ∞

0

δε,k(t)∇∗
1Jk(t) dt ,

where δε,k(t) := ψk(t) − ϕ(εt, εk − ε/2) can be rewritten as

δε,k(t) =
1

2ε

∫ ε/2

−ε/2

(ε− 2x)ϕ′
x(εt, εk + x) dx .
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Now we factorize the sum of integrals into a product by means of the Cauchy and
Schwarz inequalities, here and also several times later on, we are using the scheme

N2
ε (ϕ, h) ≤

(

∑

k∈Z

∫ ∞

0

δ2ε,k(t) dt

)



ε2
∑

|k|≤r/ε

∫ τ/ε

0

(∇∗
1Jk(t))

2
dt



 ,

where r, τ ≥ 1 are so large that φ(t, x) = 0 if t > τ or |x| + ε > r . On the other
hand, by Schwarz again

δ2ε,k(t) ≤ ε

3

∫ ε/2

−ε/2

ϕ′2
x (εt, εk + x) dx ,

while ∇∗
1Jk = J ′(ξk)∇∗

l η̄l,k with some intermediate value ξk . Since J ′ is bounded
and ∇∗

l η̄l,k = O(1/l) , we get a bound in terms of ϕ′
x, namely Nε(ϕ,h)=‖ϕ′

x‖2 Oφ(1/l).

Since ‖ψ‖+1 dominates both ‖ψ‖2 and ‖ψ′
x‖2 , we have ‖ϕ′

x‖2 ≤ ‖φ‖‖ψ′
x‖2 +

‖φ′x‖‖ψ‖2 = Oφ(‖ψ‖+1) , consequently we have Nε = ‖ψ‖+1Oφ(1/l) . �

By means of Lemma 3.3 and (2.2) a slightly better bound, namely E|Nε| =
‖ψ‖+1Oφ((ε/σ)1/2) is obtained; notice that ε/σ = o(1/l2) . In the case of un-
bounded spins, as in Fritz (2004), uniform bounds are not available, only the ex-
pectation of |Nε| can be estimated.

4.2. The microscopic current. The starting point of the estimation of Lε is an
identity,

Lh(η̂l,k) = h′(η̂l,k) Lη̂l,k +
1

2

∑

b∈Z∗

h′′(η̃k,b)(cb + σ)(η̂b
l,k − η̂l,k)2 , (4.5)

where η̃k,b is an intermediate value between η̂b
l,k and η̂l,k . The second sum on the

right hand side is a second order remainder, let Qε denote the resultant of these
terms:

Qε(φψ, h) :=
ε

2

∑

k∈Z

∑

b∈Z∗

∫ ∞

0

ψk(t)h′′(η̃k,b)(cb + σ)(η̂b
l,k − η̂l,k)2 dt . (4.6)

Since |η̂b
l,k−η̂l,k| ≤ 2l−2 , we have a uniform boundQε = ‖ψ‖Oφ(σε−1l−3) depending

only on φ and h, i.e. Qε satisfies (2.14). Similar remainders appear also in the
definition (4.16) of Qi

ε . The first condition of (2.2) prescribing that l, the size of
our mesoscopic blocks is large enough is needed to show that these remainders do
vanish as ε → 0, the numerical error, Nε(ψ, h) and the martingale, Mε(t, ψ, h)
behave in a similar manner. On the other hand, LSI is effective when l(ε) is small,
see the second condition of (2.2) and the next coming computations.

Observe now that Loη̂l,k = ∇∗
l j̄

o
l,k , see (1.4) for the definition of j . In view of

Lemma 3.2 and Lemma 3.3 or 3.4 we decompose Lε as Lε = Wε +σLso
ε +Vε +Qε ,

where Wε = Loo
ε − Vε and

Loo
ε (φψ, h) := ε

∑

k∈Z

∫ ∞

0

ψk(t)h′k(t)∇∗
l j̄

o
l,k(ω(t)) dt , (4.7)

Lso
ε (φψ, h) := ε

∑

k∈Z

∫ ∞

0

ψk(t)h′k(t)∆1η̂l,k(t) dt , (4.8)
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Vε(φψ, h) := ε
∑

k∈Z

∫ ∞

0

ψk(t)h′k(t)∇∗
l J(η̄l,k(t), ω̄l,k(t)) dt ; (4.9)

Iε will be canceled by Vε at the end of the argument.
Each of the sums above contains a space gradient, and

∑

xk∇∗
l yk =

∑

yk∇lxk ,
moreover ∇l(xkyk) = yk+l∇lxk + xk∇lyk , therefore Wε = Y w

ε + Zw
ε and Lso

ε =
Y s

ε + Zs
ε , where

Y w
ε (φψ, h) := ε

∑

k∈Z

∫ ∞

0

(∇lψk)h′k(t)(̄jol,k − J(η̄l,k, ω̄l,k)) dt , (4.10)

Zw
ε (φψ, h) := ε

∑

k∈Z

∫ ∞

0

ψk+l(t)(∇lh
′
k)(̄jol,k − J(η̄l,k, ω̄l,k)) dt , (4.11)

Y s
ε (φψ, h) := −ε

∑

k∈Z

∫ ∞

0

(∇1ψk(t))h′k(t)∇1η̂l,k(t) dt , (4.12)

Zs
ε (φψ, h) := −ε

∑

k∈Z

∫ ∞

0

ψk+1(t)(∇1h
′
k(t))∇1η̂l,k(t) dt . (4.13)

The following bounds are more or less direct consequences of Lemma 3.2 and
Lemma 3.3 or 3.4.

Lemma 4.2. Y w
ε and σY s

ε satisfy (2.13) , Qε , Z
w
ε and σZs

ε satisfy (2.14). The

bounds of Qε and Zw
ε vanish as ε→ 0 , while Zs

ε ≤ 0 if h is convex and φψ ≥ 0.

Proof . Qε has a trivial deterministic bound, the estimation of Y w
ε and Y s

ε is fairly
similar to that of Nε . Separating ∇lψk and jo − J by means of the Cauchy and
Schwarz inequalities, (4.3) and Lemma 3.2 imply that E|Y w

ε | = ‖ψ‖+1Oφ(l
√

ε/σ) .
In the same way, but now from (4.2) and Lemma 3.3 or 3.4, we get σ(ε)E|Y s

ε | =
‖ψ‖+1Oφ(

√
εσ) .

In the case of Zw
ε we separate ∇lh

′ and jo − J in the usual way. Since ∇lh
′
k =

h′′(η̃k)∇lη̂l,k with some intermediate value, and l∇lη̂l,k = (A ∗ η)k , where the
convolution kernel A satisfies

∑

Aj = 0 and
∑

A2
j = O(1/l) , Lemma 3.2 and

Lemma 3.3 or 3.4 result in E|Zw
ε | = ‖ψ‖Oφ(l/σ). Finally, the inequality Zs

ε ≤ 0 is
trivial if h′′ ≥ 0 and φψ ≥ 0, in the general case σ(ε)E|Zs

ε | = Oφ(‖ψ‖) is a direct
consequence of Lemma 3.3 with (A ∗ η)k = η̄l,k+l − η̄l,k . �

The gradient of the microscopic entropy flux can be written as

Iε(φψ, h) = −ε
∑

k∈Z

∫ ∞

0

ψk(t)∇∗
1Jk(t) dt , (4.14)

and ∇∗
1Jk = Jk−1−Jk = J ′

k ∇∗
l η̄l,k + (1/2)J ′′(η̃k)(∇∗

l η̄l,k)2 with some intermediate
value η̃k . Since J ′(ρ) = κh′(ρ)(1 − 2ρ) ,

J ′
k ∇∗

l η̄l,k = κh′k∇∗
l

(

η̄l,k−(η̄l,k)2
)

+ κh′k (η̄l,k−l+η̄l,k−2η̂l,k)∇∗
l η̄l,k ,

consequently Iε = Io
ε −Qi

ε , where

Io
ε (φψ, h) := −κε

∑

k∈Z

∫ ∞

0

ψk(t)h′k(t)∇∗
l (η̄l,k −

(

η̄l,k)2
)

dt , (4.15)
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and Qi
ε consists of the second order remainders above,

Qi
ε(φψ, h) :=

ε

2

∑

k∈Z

∫ ∞

0

ψk(t)h′k(t)J ′′(η̃k)(∇∗
l η̄l,k)2 dt

+κε
∑

k∈Z

∫ ∞

0

ψk(t)h′k(t)(η̄l,k−l + η̄l,k − 2η̂l,k)∇∗
l η̄l,k dt .

(4.16)

The first sum of Qi
ε can directly be estimated, ‖ψ‖(εl2)−1 is its order. Factorizing

the second one, a bit larger bound, E|Qi
ε| = ‖ψ‖Oφ(l/σ) follows by Lemma 3.3 or

3.4.
The crucial step of the argument is the replacement of the mesoscopic current,

J by its canonical expectation given η̄l,k. Just as before Lemma 4.2, we have
Vε + Io

ε = Y i
ε + Zi

ε , where

Y i
ε (φψ, h) := ε

∑

k∈Z

∫ ∞

0

(∇lψk)h′k
(

J(η̄l,k, ω̄l,k) − κ (η̄l,k − η̄2
l,k)
)

dt , (4.17)

Zi
ε(φψ, h) := ε

∑

k∈Z

∫ ∞

0

ψk+l(∇lh
′
k)
(

J(η̄l,k , ω̄l,k) − κ (η̄l,k−η̄2
l,k)
)

dt . (4.18)

Since J(η̄l,k, ω̄l,k)−κ (η̄l,k − η̄2
l,k) = (1− η̄l,k)(ω̄l,k −κ η̄l,k) , we are now in a position

to apply Lemma 3.5, too.

Lemma 4.3. Y i
ε satisfies (2.13), Qi

ε and Zi
ε satisfy (2.14) with vanishing bounds.

Proof . The treatment of Y i
ε follows that of Y w

ε , by means of (4.3) and Lemma

3.5 we get E|Y i
ε | = ‖ψ‖+1Oφ(

√

ε/α+ 1/l) . Finally, as in the case of Zw
ε , Lemma

3.3 and Lemma 3.5 imply E|Zi
ε| = ‖ψ‖Oφ(

√

1/ασ + 1/εσl) , which completes the
proof. �

4.3. The martingale. Mε(t, ψ, h) is delicate because it can not be written as integral
of a function over space and time. The stochastic differential dh(ρ̂ε) = ε−1Lh(ρ̂ε)+
dmε defines a martingale mε = mε(t, x) for each x ∈ R such that mε(t, x) =
mε(t, εk) if |x− εk| < ε/2 and

Mε(t, φψ, h) =

∫ ∞

−∞

∫ t

0

ψ(t, x)φ(t, x)mε(dt, x) dx . (4.19)

mε is identified by the intensity qε of its quadratic variation 〈mε〉 ,

qε(t, x) :=
1

ε

(

Lh2(ρ̂ε) − 2h(ρ̂ε)Lh(ρ̂ε)
)

=
1

ε

∑

b∈Z∗

(cb + σ)
(

h(η̂b
l,k) − h(η̂l,k)

)2 (4.20)

if |x−εk| < ε/2 , cf. (4.5). Since d〈mε〉 = qε dt , we have Em2
ε(t, x) =

∫ t

0 E qε(τ, x) dτ.

Lemma 4.4. Mε(∞, φψ, h) satisfies (2.13).

Proof . Let ṁε(t, x) denote the time derivative of mε in the H−1 sense, we have
to show that E‖ϕ ṁε‖2

−1 → 0 as ε → 0 . Since ‖∂t(ϕmε)‖−1 ≤ ‖ϕmε‖2 and
‖ϕ′

tmε‖−1 ≤ ‖ϕ′
tmε‖2 , the problem reduces to the calculation of qε . Just as in

the case of Qε , see (4.20) and (4.5), independently of the configuration we have
qε(t, x) = O(σ/l3ε) , which completes the proof. �
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Summarizing the results of this section, we see that entropy productionXε(φψ,h),
ψ ∈ C1

c (R2), φ ∈ C2
co(R

2
+) has been decomposed as Xε = Yε + Zε + σZs

ε , where

Yε := Nε + Y w
ε + σY s

ε + Y i
ε + Mε vanishes in H−1

loc , Zε := Zw
ε + Zi

ε + Qε − Qi
ε

vanishes in the space of locally bounded measures, and σZs
ε is bounded in the same

sense. Moreover, Zs
ε ≤ 0 if ψ, φ ≥ 0 and h is convex. The rest of the proof is an

application of the stochastic version of the theory of compensated compactness and
PDE theory on uniqueness of weak solutions to a single conservation law.

5. Completion of the proof

Let us consider the distributions P̂θ,ε , ε > 0 of the Young representation of the
empirical process ρ̂ε , see Section 2 for definitions. This family is tight with respect
to the weak topology of the spaceMθ(X) of locally finite measures, denote P̂θ any of
its limit distributions. In the proof of uniqueness the distribution of the empirical
process shall be considered also as a probability measure on the space L2

loc(R
2
+) .

5.1. Convergence to weak solutions. In the previous section conditions (2.13) and
(2.14) on entropy production have been verified, consequently Proposition 2.1 of
Fritz (2004) or Lemma 8 of Fritz and Tóth (2004) imply Tartar’s factorization (2.15)

P̂θ-a.s. for all couples of smooth entropy pairs. Evaluating (2.15) for h1(ρ) := ρ ,
J1(ρ) := κρ− κρ2 and h2(ρ) := ρ2 , J2(ρ) = κρ2 − 4κρ/3 if ρ ∈ [0, 1] , we get

θt,x(ρ4) − 4θt,x(ρ)θt,x(ρ3) + 3θ2t,x(ρ2) = 0

almost everywhere with respect to (t, x) and P̂θ . Observe that
∫∫

(u4 + v4 − 4u3v − 4uv3 + 6u2v2) θt,x(du) θt,x(dv)

=

∫∫

(u− v)4 θt,x(du) θt,x(dv) = 0 a.s

is an equivalent form of the equation of factorization, thus the product of the
measures θt,x(du) and θt,x(dv) is concentrated on the diagonal. This means that

θt,x is a Dirac measure a.s., and any limit distribution P̂θ is concentrated on a set
of weak solutions.

5.2. Uniqueness of the limit. Since Zs
ε (ψ, h) ≤ 0 if ψ ≥ 0 and h is convex, while

all other terms of entropy production vanish in the limit, from (2.5) we obtain the
weak Lax inequality (2.10) for measure solutions with probability one with respect

to any limit distribution P̂θ . As a consequence of compensated compactness, the
weak inequality (2.10) for measure solutions turns into the weak inequality (2.16)
for weak solutions; the initial value is not present in these inequalities. To get
uniqueness, we have to show that these weak solutions all satisfy the given initial
condition ρ0 ∈ L∞(R) , that is (1.7) holds true a.s. for all limit distributions of the
empirical process ρ̂ε as specified below; our starting point is again (2.5), but now
with h(ρ) ≡ ρ . The argument is an extension of the standard PDE proof in case of
the vanishing viscosity limit, see e.g. Dafermos (2000); Serre (2000).

Besides P̂ε,θ and P̂ε , the distribution P̂ε,2 of ρ̂2
ε ∈ L2

loc(R
2
+) plays also some role.

Any of these families is tight with respect to the weak topology of the underlying
spaces, thus Skorohod’s embedding applies: for every sequence ε(n) → 0 such that
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P̂ε,θ , P̂ε and P̂ε,2 all converge in the weak sense along this subsequence, we have a
probability space on which almost surely

lim
n→∞

∫ ∞

0

∫ ∞

−∞

ψ(t, x)ρ̂ε(n)(t, x) dx dt =

∫ ∞

0

∫ ∞

−∞

ψ(t, x)θt,x(ρ) dx dt ,

and

lim
n→∞

∫ ∞

0

∫ ∞

−∞

ψ(t, x)ρ̂2
ε(n)(t, x) dx dt =

∫ ∞

0

∫ ∞

−∞

ψ(t, x)θt,x(ρ2) dx dt

for all ψ ∈ Cc(R
2) . Here θt,x is the limiting Young measure, i.e. θt,x(ρ2) is just the

a.s. weak limit of ρ̂2
ε(n) . However, θt,x(ρ2) = θ2t,x(ρ) a.s. in view of the previous

subsection, consequently ρ̂ε(n) is almost surely convergent also with respect to the

strong topology of L2
loc(R

2
+) because weak convergence in a Hilbert space together

with convergence of the norm imply strong convergence.
Now we are in a position to return to (2.5), set 0 ≤ ψ ∈ C1

c (R2) and h(ρ) ≡ ρ .
Since Zs

ε (ψ, h) = 0 in this case, while Yε and Zε vanish in the limit, (1.10) implies
(1.7). Perhaps Corollary 6.1 of Bressan (2000) or Main Theorem of Chen and Rascle
(2000) are the most convenient references, these results tell us that the weak Lax
inequality (2.16) and the weak equation (1.7) including the initial condition imply
the uniqueness of weak solutions to a single conservation law as (1.5).

6. Concluding remarks

In view of the previous argument, the conclusion of Theorem 1.1 can considerably
be improved as follows, conditions are not changed. Let ρ denote the entropy
solution to (1.5) with initial condition ρ0, then

lim
ε→0

∫ τ

0

∫ r

−r

E|ρ̂ε(t, x) − ρ(t, x)|2 dx dt = 0

for all r, τ > 0. Notice that the statement is restricted to mesoscopic blocks of
size l(ε) as specified by (2.2). The bound of Lemma 3.3 is not sufficient to fill
in the gap between large microscopic and mesoscopic block averages because for
(A ∗ η)k = η̄p,k+m − η̄p,k we only have

ε2
∑

|k|<r/ε

∫ τ/ε

0

∫

(η̄p,k+m − η̄p,k)2 dµε,t dt ≤ C2

(

(r + τ)εm3

σp
+
rτ

p

)

,

thus m = O((σ/ε)1/3) is needed when p ∈ N is fixed and ε → 0. However, (2.2)
implies (σ(ε)/ε)1/3 = o(l(ε)) ; LSI is not optimal when m is large. Nevertheless

η̄p,k+m − η̄p,k =
1

p

k+p−1
∑

j=k

(ηj+m − ηj) =
1

p

k+p−1
∑

j=k

m−1
∑

i=0

(ηj+i+1 − ηj+i) ,

thus Lemma 3.4 implies

ε2
∑

|k|<r/ε

∫ τ/ε

0

∫

(η̄p,k+m − η̄p,k)2 dµε,t dt ≤ C ′
2

(

(r + τ)εm2

σ
+
rτ

p

)

,

whence by the Cauchy inequality

ε2
∑

|k|<r/ε

∫ τ/ε

0

∫

(η̄m,k − η̄p,k)2 dµε,t dt ≤ C ′
2

(

(r + τ)εm2

σ
+
rτ

p

)

,
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at lest if m is a multiple of p. Since εl2(ε)/σ(ε) → 0 as ε → 0, we can choose
m ≈ l(ε) to get

lim
p→∞

lim
ε→0

∫ τ

0

∫ r

−r

E|ρ̄ε,p(t, x) − ρ̂ε(t, x)|2 dx dt = 0 ,

where ρ̄ε,p(t, x) := η̄p,k(t/ε) if |x− kε| < ε/2 . Indeed, η̄l,k ≈ η̂l,k in a mean square
sense, see Lemma 3.3 or 3.4, consequently

lim
p→∞

lim
ε→0

∫ τ

0

∫ r

−r

E|ρ̄ε,p(t, x) − ρ(t, x)|2 dx dt = 0 .

There is another, not less interesting version of this model. Electrophoresis
can be mimicked by replacing the spin-flip action ωk → −ωk with a creation-
annihilation mechanism such that (ωk, ωk+1) = (0, 0) → (−1, 1) and (ωk, ωk+1) =
(−1, 1) → (0, 0) . Total charge

∑

ωk is the only conserved quantity in this case, the
associated empirical process is defined as ûε(t, x) := ω̂l,k(t/ε) if |x − εk| < ε/2 .
Stationary product measures, λu of this process are characterized by λu(ωk) = u
and λu(ωk = 0) = (1/3)((4 − 3u2)1/2 − 1) , and the macroscopic equation for the
limit of ûε reads as

∂tu = ∂x(u2 + 1
3

√

4 − 3u2) . (6.1)

A rigorous derivation of this equation could follow the argument of the paper,
but the final crucial step, the replacement of η̄l,k with its canonical expectation

4/3 − (1/3)(4 − 3ω̄2
l,k)1/2 is problematic because that second LSI is not available.

This system is also a relaxation scheme, perhaps methods of PDE theory Chen and
Rascle (2000); Dafermos (2000) are helpful.

Acknowledgement: We are deeply indebted to Christophe Bahadoran for valu-
able remarks on the main line of the argument concerning uniqueness theory of a
single conservation law, and also on several technical details of the proofs.
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F. Murat. Compacité par compensation. Ann. Sci. Norm. Sup. Pisa 5, 489–507
(1978).

O. Oleinik. Discontinuous solutions of non-linear differential equations. Usp. Mat.

Nauk 12, 3–73 (1957). English translation: AMS Translations Ser. II, 26:95–172.
S. Olla, S. R. S. Varadhan and H.-T. Yau. Hydrodynamical limit for a Hamiltonian

system with weak noise. Commun. Math. Phys. 155, 523–560 (1993).
E. Y. Panov. Uniqueness of the Cauchy problem for a first order quasilinear equation

with one admissible strictly convex entropy. Mat. Zametki 55, 116–129 (1994).
English translation: Math. Notes 55:517–525.

F. Rezakhanlou. Hydrodynamic limit for attractive particle systems on zd.. Com-

mun. Math. Phys. 140, 417–448 (1991).
F. Rezakhanlou. Continuum limit for some growth models. Stoch. Proc. Appl. 101,

1–41 (2002).
L. Saloff–Coste. Lectures on finite Markov chains, volume 1665 of Lectures on

Probability Theory and Statistics. Lecture Notes in Math. Springer Verlag, Berlin
(1996).
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B. Tóth and B. Valkó. Perturbation of singular equilibria of hyperbolic two-
component systems: a universal hydrodynamic limit. Comm. Math. Phys. 22,
63–80 (2005).

S.R.S. Varadhan. Nonlinear diffusion limit for a system with nearest neighbor
interactions ii. In Asymptotic Problems in Probability Theory, pages 75–128.
Longman Sci. Tech., Harlow (1993).

S.R.S. Varadhan. Large deviations for the asymmetric exclusion process. Advanced

Studies in Pure Mathematics 39, 1–27 (2004).
A. Vasseur. Strong traces for solutions to multidimensional scalar conservation

laws. Arch. Rational Mech. Anal. 160, 181–193 (2001).
H.-T. Yau. Relative entropy and hydrodynamics of Ginzburg–Landau models. Lett.

Math. Phys. 22, 63–80 (1991).
H.-T. Yau. Logarithmic Sobolev inequality for generalized simple exclusion pro-

cesses. Probab. Theory Rel. Fields 109, 507–538 (1997).


