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Abstract

In this paper, we present new general constructions of commitments and encryptions secure against
a Selective Opening Adversary (SOA). Although it was recognized almost twenty years ago that SOA
security was important, it was not until the recent breakthrough works of Hofheinz [Hof08] and Bellare,
Hofheinz and Yilek [BHY09] that any progress was made on this fundamental problem.

The Selective Opening problem is as follows: suppose an adversary receives n commitments (or
encryptions) of (possibly) correlated messages, and now the adversary can choose n/2 of the messages,
and receive decommitments (or decryptions and the randomness used to encrypt them). Do the
unopened commitments (encryptions) remain secure? A protocol which achieves this type of security
is called secure against a Selective Opening Adversary (SOA). This question arises naturally in the
context of Byzantine Agreement and Secure Multiparty Computation, where an active adversary is
able to eavesdrop on all the wires, and then choose a subset of players to corrupt. Unfortunately, the
traditional definitions of security (IND-CPA,IND-CCA) do not guarantee security in this setting. In
this paper:

o We formally define re-randomizable encryption and show that every re-randomizable encryption
scheme gives rise to efficient encryptions secure against a selective opening adversary. (Very
informally, an encryption is re-randomizable, if given any cyphertext, there is an efficient way to
map it to an almost uniform re-encryption of the same underlying message).

e We formally define re-randomizable one-way functions and show that every re-randomizable
one-way function family gives rise to efficient commitments secure against a Selective Opening
Adversary.

e Applying our constructions to the known cryptosystems of El-Gamal, Paillier, and Goldwasser
and Micali, we obtain IND-SO secure commitments and encryptions from the Decisional Diffie-
Hellman (DDH), Decisional Composite Residuosity (DCR) and Quadratic Residuosity (QR) as-
sumptions, that are either simpler or more efficient than existing constructions of Bellare Hofheinz
and Yilek.

e Applying our general results to the Paillier Cryptosystem we demonstrate the first cryptosystem
to achieve Semantic Selective Opening security from the DCR assumption.

o We give black-box constructions of Perfectly Binding SOA secure commitments, which is surpris-
ing given the negative results of Bellare, Hofheinz and Yilek.

e We define the notion of adaptive chosen ciphertext security (CCA-2) in the selective opening
setting, and describe the first encryption scheme which is CCA-2 secure (and simultaneously
SOA-secure).
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1 Introduction

In Byzantine agreement, and more generally in secure multiparty computation, it is often assumed that
all parties are connected to each other via private channels. In practice, these private channels are
implemented using a public-key cryptosystem. An active adversary in an MPC setting, however, has
very different powers than an adversary in an IND-CPA or IND-CCA game. In particular, an active
MPC adversary may view all the encryptions sent in a given round, and then choose to corrupt a certain
fraction of the players, thus revealing the decryptions of those players’ messages and the randomness used
to encrypt them. The question is then whether the messages sent from the uncorrupted players remain
secure. If the messages (and randomness) of all the players are chosen independently, then security in this
setting follows immediately from the IND-CPA security of the underlying encryption. If, however, the
messages are not chosen independently, the security does not immediately follow from the IND-CPA (or
even IND-CCA) security of the underlying scheme. In fact, although this problem was first investigated
over twenty years ago, it remains an open question whether IND-CPA (or IND-CCA) security implies
this Selective Opening security.

A similar question may be asked regarded in terms of commitments as well. Suppose an adversary is
allowed to see commitments to a number of related messages, the adversary may then choose a subset of
the commitments for the challenger to decommit. Does this reveal any information about the unopened
commitments? This question has applications to concurrent zero-knowledge proofs.

2 Previous Work

There have been many attempts to design encryption protocols that can be used to implement secure
multiparty computation against an active adversary. The first protocols by Beaver and Haber [BH92]
required interaction between the sender and receiver, required erasure and were fairly inefficient. The
first non-interactive protocol was given by Canetti, Feige, Goldreich and Naor in [CFGN96]. In [CFGN96]
the authors defined a new primitive called Non-Committing Encryption, and gave an example of such a
scheme based on the RSA assumption. In [Bea97], Beaver extended the work of [CFGN96], and created
adaptively secure key exchange under the Diffie-Hellman assumption. In subsequent work Damgard and
Nielsen improved the efficiency of the schemes of Canetti et al. and Beaver, they were also able to obtain
Non-Committing Encryption based on one-way trapdoor functions with invertible sampling. In [CHKO5],
Canetti, Halevi and Katz presented a Non-Committing encryption protocols with evolving keys.

In [CDNO97], Canetti, Dwork, Naor and Ostrovsky extended the notion of Non-Committing Encryp-
tion to a new protocol which they called Deniable Encryption. In Non-Committing Encryption schemes
there is a simulator, which can generate non-committing ciphertexts, and later open them to any desired
message, while in Deniable Encryption, valid encryptions generated by the sender and receiver can later
be opened to any desired message. The power of this primitive made it relatively difficult to realize, and
Canetti et al. were only able to obtain modest examples of Deniable Encryption and left it as an open
question whether fully deniable schemes could be created.

The notions of security against an adaptive adversary can also be applied to commitments. In fact,
according to [DNRSO03| the necessity of adaptively-secure commitments was realized by 1985. Despite
its utility, until recently there have been relatively few papers that directly address the question of
commitments secure against a Selective Opening Adversary (SOA). The work of Dwork, Naor, Reingold
and Stockmeyer [DNRS03] was the first to explicitly address the problem. In [DNRS03], Dwork et al.
showed that non-interactive SOA-secure commitments can be used to create a 3-round zero-knowledge
proof system for NP with negligible soundness error, and they gave constructions of a weak form of
SOA-secure commitments, but leave open the question of whether general SOA-secure commitments
exist.

The question of SOA-secure commitments was put on firm foundations by Hofheinz [Hof08] and Bel-
lare, Hotheinz and Yilek in [BHY09]. In [BHY09], Bellare et al. distinguished between simulation-based
and indistinguishability-based definitions of security, and gave a number of constructions and black-box



separations. In particular, Hofheinz showed that in the simulation-based setting, non-interactive SOA-
secure commitments cannot be realized in a black-box manner from standard cryptographic assumptions,
but if interaction is allowed, they can be created from one-way permutations in a non-black-box manner.
In the indistinguishability-based setting, they showed that any statistically-hiding scheme achieves this
level of security, but that there is a black-box separation between perfectly-binding SOA-secure commit-
ments and most standard cryptographic assumptions. In this paper, we build on the breakthrough results
of [BHY09].

3 Our Contributions

In this paper we consider both encryptions and commitments secure against a selective opening adver-
sary. In particular, we formalize the notion of Re-Randomizable Public-Key Encryption and we show
that any re-randomizable encryption implies both commitments and encryptions secure against a selective
opening adversary. We also define the notion of re-randomizable one-way functions and show that re-
randomizable one-way functions imply commitments secure against a selective opening adversary. Using
the definitions an terminology from [BHY09], we obtain black box constructions of IND-SO-COM com-
mitments from any re-randomizable one-way function family, and IND-SO-ENC encryptions from any
re-randomizable encryption. We also exhibit a black-box construction of perfectly-binding IND-SO-COM
commitments from any re-randomizable one-way function family. This construction is somewhat surpris-
ing given the strong impossibility results for perfectly binding IND-SO-COM commitments in [BHY09].
Our constructions are simple, non-interactive and efficient.

On the encryption side, we show that re-randomizable encryption implies Lossy Encryption as defined
in [PVWO08], and expanded in [BHY09]. Combining this with the recent result of Bellare, Hofheinz and
Yilek [BHY09] showing that Lossy Encryption is IND-SO-ENC secure, we have an efficient construction
of IND-SO-ENC secure encryption from any re-randomizable encryption (which generalizes and extends
previous results). Furthermore, both of these constructions retain the efficiency of the underlying re-
randomizable encryption protocol.

Applying our results to the well-known cryptosystems of El-Gamal, Paillier, and Goldwasser-Micali,
we obtain statistically-hiding or perfectly-binding IND-SO secure commitments and IND-SO encryptions
based on the Decisional Diffie-Hellman problem, or the Decisional Composite Residuosity Problem, or
the Quadratic Residuosity Problems respectively. We emphasize that in [BHY09] Bellare, Hotheinz
and Yilek showed a Black-Box separation between perfectly-binding IND-SO-COM commitments and
one-way permutations, one-way trapdoor permutations, and IND-CCA encryption, thus it is surprising
to find Black-Box construction of perfectly-binding IND-SO secure commitments from re-randomizable
functions.

While our primary contribution is the creation of IND-SO secure commitments and encryptions based
on general assumption (of Re-Randomizable One-Way Functions and Re-Randomizable Public-Key En-
cryption respectively), our efficient construction of Lossy Encryption from any Re-Randomizable Encryp-
tion is interesting in its own right. In [PVWO08] and [BHY09] it was shown that Lossy-Trapdoor Functions
(as defined in [PWO08]) imply Lossy Encryption, but it remained an open question whether in general the
re-randomizable encryption implies Lossy Encryption. Here, we resolve this open question as well.

Applying our results to the Paillier Cryptosystem, we obtain the first cryptosystem which attains
a strong, simulation-based form of semantic security under selective openings (SEM-SO-ENC security).
This is the first construction of this type from the Decisional Composite Residuosity (DCR) assumption,
and the most efficient known construction of SEM-SO-ENC secure encryption.

Finally, we present a definition of a chosen ciphertext (CCA-2) attack in the selective opening setting
and create a the first public-key cryptosystem that satisfies this strengthened form of security. We note
that our constructions are completely orthogonal to the recent work of Prabhakaran and Rosulek [PRO7]
creating RCCA Encryption. In their work, they create encryptions which satisfy a version of security
against a chosen-ciphertext attack, while remaining re-randomizable. In this work, we use re-randomizable



(CPA secure) encryption to create Selective Opening secure encryption, and then use Selective Opening
secure encryption (and other tools) to create a cryptosystem that retains its Selective Opening security
against an adaptive chosen ciphertext attack.

4 Notation

If f: X =Y is a function, for any Z C X, we let f(Z) ={f(x) :x € Z}.

If A is a PPT machine, then we use a «— A to denote running the machine A and obtaining an
output, where a is distributed according to the internal randomness of A. For a PPT machine A, we use
coins(A) to denote the distribution of the internal randomness of A. So the distributions {a <+ A} and
{r « coins(A) : a = A(r)} are identical. If R is a set, we use r < R to denote sampling uniformly from
R.

If X and Y are families of distributions indexed by a security parameter A\, we use X =5 Y to mean
the distributions X and Y are statistically close, i.e. for all polynomials p and sufficiently large A we have

zw: |Pr[X = 2] — Pr]Y = 1] < O

We use X ~. Y to mean X and Y are computationally close, i.e. for all PPT adversaries A, for all
polynomials p, then for all sufficiently large A,

X _ 11— prlaY = -
|Pr[A* =1] — Pr[A 1H<p(k)

5 Re-randomizable Encryption

In many cryptosystems, given a ciphertext ¢, and a public-key it is possible to re-randomize the ciphertext
to a new ciphertext ¢/, such that ¢ and ¢ are valid encryptions of the same plaintext, but they are
statistically independent. Formally, we call a Public Key Cryptosystem given by algorithms (G, E, D)
re-randomizable (RRPKC) if

e (G, E, D) is semantically-secure in the standard sense (IND-CPA).

e There is an efficient function ReRand such that if »’ is chosen uniformly from coins(ReRand), and
70,71 are chosen uniformly from coins(E), then the distributions

{ro « coins(E) : E(pk,m,r9)} ~¢ {r’ + coins(ReRand) : ReRand(E(pk, m,r1),7’)}
for all public keys pk and messages m, and randomness 7.

We note that this definition of re-randomizable encryption provides a statistical re-randomization.
It is possible to define re-randomizable encryption which satisfies perfect re-randomization (stronger) or
computational re-randomization (weaker). Such definitions already exist in the literature (see for example
[PRO7],[Gro04],[JJS04]). Our constructions require statistical re-randomization, and do not go through
under a computational re-randomization assumption.

There are many known examples of re-randomizable encryption. For example, if (G, E, D) is ho-
momorphic, i.e. E(pk,mq,r9) - E(pk,m1,r1) = E(pk,mo + my,r*), we can re-randomize by taking
ReRand(pk, c,r") = ¢ - E(pk,0,7"). For all known homomorphic cryptosystems, (e.g. El-Gamal, Paillier,
Damgard-Jurik, Goldwasser-Micali) we obtain re-randomizable encryption with this definition of ReRand.

We note, however, that this seems like a weaker requirement than homomorphic encryption, since re-
randomization does not require any kind of group structure on the plaintext, or any method for combining
ciphertexts.



6 Homomorphic Encryption

A Public Key Cryptosystem given by algorithms (G, E, D) is called homomorphic if
e The plaintext space forms a group X, with group operation +.
e The ciphertexts are members of a group Y.

e For all zg,z1 € X, and for all rg,r; € coins(E), there exists an 7* € coins(E) such that

E(pk,xo + x1,7") = E(pk, xo,70)E(pk, x1,71).

Notice that we do not assume that the encryption is also homomorphic over the randomness, as is
the case in most homomorphic encryption schemes, e.g. El-Gamal, Paillier, and Goldwasser-Micali. We
also do not assume that the image E(pk, X, R) is all of the group Y, only that E(pk, X, R) C Y. Since
the homomorphic property implies closure, we have that E(pk, X, R) is a semi-group. Notice also, that
while it is common to use the word “homomorphic” to describe the cryptosystem, encryption is not a
homomorphism in the mathematical sense.

We now show some basic properties from all homomorphic encryption schemes, these facts are com-
monly used, but since our definition is weaker than the (implicit) definitions of homomorphic encryption
that appear in the literature, it is important to note that they hold under this definition as well.

e E(pk,X,R) is a group.
e E(pk,0, R) is a subgroup of E(pk, X, R).

e For all z € X, E(pk,z, R) is the coset E(pk,z,r)E(pk,0,R).

For all xg,z1 € X, |E(pk, zo, R)| = |E(pk,x1, R)|.

If y is chosen uniformly from E(pk,0, R), then yE(pk,x,r) is uniform in E(pk,z, R).

The group E(pk, X, R) ~ X x E(pk,0, R), and decryption is simply the homomorphism
We call a cryptosystem a Homomorphic Public Key Cryptosystem (HPKC), if the cryptosystem is
IND-CPA secure, and homomorphic.

If we make the additional assumption that we can sample in a manner statistically close to uniform
on the subgroup E(pk,0, R), then the cryptosystem (G, E, D) will be re-randomizable.

Definition 1. We call a Homomorphic Public Key Cryptosystem Uniformly Sampleable if there exists a
PPT algorithm sample such that the output of sample(pk) is statistically close to uniform on the group
E(pk,0, R).

We note, that for all known homomorphic cryptosystems we may define
sample(pk) = {r < coins(FE) : E(pk,0,7)}.

It is not too hard to see that this property does mot follow from the definition of Homomorphic
Encryption.



7 Efficient Re-randomizable Encryption from Uniformly Sampleable
Homomorphic Encryption

The scheme described above only allows commitment to single bits. If the underlying cryptosystem
(G, E, D), can encrypt more than one bit at a time, we can increase the efficiency of this system, by
simply putting co, c1, ..., ¢, into the public key, and a commitment to ¢ will be ReRand(pk, ¢;, 7). In most
cases, however, we can increase the size of the committed messages without increasing the public-key.
In particular, if (G, E, D,sample) is a Uniformly Sampleable Homomorphic Encryption scheme and
Z/NZ — X. Then, we can commit to elements in {0,1,..., N — 1} instead of {0,1} by simply taking

Parameter Generation: Encryption:
o (pk,sk) — G(1"), e 1’ «— coins(sample).
e r «— coins(E), o ¢ — sample(pk,r’).
e ¢ = E(pk,b,r), e return ¢ - .
The public parameters are (pk,c). Decryption:
To decrypt a ciphertext ¢, simply return D(c).

Now, if ¢ = E(pk,0,r) the scheme is lossy, since all encryptions will be uniformly distributed in the
subgroup E(pk,0, R), while if ¢ = E(pk, 1,r) the scheme is injective by the correctness of the decryption
algorithm. This is the natural construction when working with the Paillier or Damgard-Jurik cryptosys-
tems. We must use caution when applying this to El-Gamal, since the inverse map Z/NZ — X is not
efficiently computable (it’s the discrete log). In this context, it will not be a problem, since we never
have to compute the inverse to decommit. If, on the other hand, we wanted to view this as an encryption
scheme instead of a commitment scheme, then this lack of inverse would be an issue. Fortunately, there
is a well known scheme to create a re-randomizable encryption from the DDH assumption that is only a
slight modification of the original El-Gamal scheme. See [NPO01], [PVWO08] or [BHY09] for a description
of this scheme. We stress, however, that “plain” El-Gamal is re-randomizable, however, it is slightly less
efficient than this modification.

8 Re-randomizable One-Way Functions

A family of functions F, indexed by a security parameter A is called a re-randomizable one-way function
family if the following conditions are satisfied

e Efficiently Computable: For all f € F, the function
fTMxR—-Y
is efficiently computable.

e One-Way: For all PPT adversaries A = (A, A2),

1
Pr[f — Fi (mo,mi,st) — A1(£)ib— {0, 1hr — Rt/ — Ap(f(my, 1), 5t) 1 b=1] < 5+

for some negligible function v (of \).



e Injective on the first input: For all m # m' € M, and r,7’ € R,
flm,r) # f(m', o).
This is equivalent to the statement
f(m,R)N f(m',R) =10
for all m # m/.

¢ Re-randomizable: For each f, there exists and efficient function ReRand such that for all m € M
and rg € R, we have

{r < R; f(m,r)} =5 {r < coins(ReRand); ReRand(f(m,r9),7)}.

It is easy to see that the encryption algorithm from a re-randomizable encryption scheme is imme-
diately a re-randomizable one-way function. We note, however, that re-randomizable one-way functions
are a significantly weaker primitive since we do not require any kind of trapdoor.

9 Commitments from Re-randomizable One-Way Functions

We begin by describing a construction of a simple bit commitment scheme that arises from any re-
randomizable one-way function. Let F be a re-randomizable one-way function family. Then we define

r 2Ya

Parameter Generation:
Commitment:
e (f,ReRand) — F(1%),
e 1/ «— coins(ReRand),
o T07T1 — R7
e Com(b,r') = ReRand(cp, 1").
e co = f(bo,70),

c1 = f(b1,711).
1= f(b1,71) Decommitment:

The public parameters are (f, ReRand, ¢, c1). To decommit, simply reveal the randomness r’.

(. VAN

This scheme has a number of nice properties. If by = by then the scheme is statistically hiding by the
properties of ReRand. Alternatively, if by # b1 then the scheme is perfectly binding by the injectivity of
f on its first input. Now, the two modes are indistinguishable by the one-wayness of the f, combining
this with the preceding observations, we obtain the following consequences. If by = b; then the scheme is
computationally binding, and if by # by the scheme is computationally hiding.

The security analysis is very straightforward, but as this will be the foundation of all our constructions
we include it.

Lemma 1. If by = by, the scheme described in Section 9 is statistically hiding and if by # by, this scheme
is perfectly binding.

Proof. If by = by, the distributions
{r" < coins(Com) : Com(0,7")} ~ {s" « coins(Com) : Com(1,s")},

by the definition of ReRand. On the other hand, if by # b1, Com(0,r) € f(bo, R), and Com(1, s) € f(b1, R),
but by the injectivity on the first input, these sets are disjoint . O



Lemma 2. The schemes when by = b; and when by # b are computationally indistinguishable.
Proof. This is exactly the one-way property of f. O

Corollary 1. If by = by, this scheme is computationally binding, and if by # b1, this scheme is compu-
tationally hiding.

Proof. Since the scheme is perfectly binding when by # by, breaking the binding property amounts to
a proof that by = by. Since the two modes are computationally indistinguishable, no computationally
bounded adversary can create such a “proof.” Similarly, since the scheme is perfectly hiding when by = by,
breaking the hiding property amounts to showing that by # b1, since the two modes are computationally
indistinguishable, no probabilistic polynomial-time adversary can break the hiding property. O

The ability to choose whether the commitment scheme is statistically hiding or perfectly binding is a
valuable property, but it is the fact that this choice can be hidden from the committer that makes this
construction truly useful.

10 Selective Opening Secure Commitments

10.1 Definitions

Definition 2. (Indistinguishability under selective openings/IND-SO-COM).

Let Com be a commitment scheme, we say that Com is indistinguishable under selective openings
(IND-SO-COM secure) if for every PPT message distribution M and every PPT adversary A, we have
that

’Pr [Aind—so—real _ 1] _Pr [Aind—so—ideal _ 1} ‘ <y

for some negligible function v, and where the games ind-so-real and ind-so-ideal are defined as follows

IND-SO-COM (Real) ( IND-SO-COM (Ideal)
e (my,...,myp) — M o (my,...,myp) — M
® 71,...,7r, < coins(Com) ® 71,...,1ry < coins(Com)
o [ — A((Com(my,r1),...,Com(my,ry,)) o [ — A((Com(my,r1),...,Com(my,ry,))
o b — A(Dec(Com(mi,r1))icr, (Mmi,...,my)) o (my,...,ml) — M|M;
o b — A(Dec(Com(mg,r;))ier, (m},...,ml))

More explicitly, in the real game,
e The challenger samples messages (my,...,my,) < M, from the joint message distribution.
e The challenger generates randomness 71, ..., 7, < coins(Com).

e The challenger sends (Com(mi,r1),...,Com(my,ry,)) to A.

The adversary A responds with a subset I C {1,...,n}, with |I| =n/2.

The challenger decommits (Com(m;,7;))ier-

The challenger sends (myq,...,my,) to the adversary.



e The adversary outputs a bit b.

In the ideal game,

e The challenger samples messages (mq,...,my,) < M, from the joint message distribution.
e The challenger generates randomness 71, ..., 7, < coins(Com).
e The challenger sends (Com(mi,r1),...,Com(my,ry,)) to A.

e The adversary A responds with a subset I C {1,...,n}, with |I| =n/2.
e The challenger decommits (Com(m;,7;))icr-

e The challenger samples a new vector m’ «— M|M;j, from M conditioned on the fact that m; = m/
for ¢ € I, and sends M’ to A.

e The adversary outputs a bit b.

10.2 IND-SO-COM Constructions from Re-randomizable Encryption

To construct an IND-SO-COM secure commitment scheme, it is enough to create a statistically hiding
commitment scheme, since Bellare, Hofheinz and Yilek showed

Theorem 1. (Theorem 6 From [BHY09)).
Statistically-hiding commitment schemes are IND-SO-COM secure.

Proof. We follow the general form of the proof from [BHY09], but by restricting ourselves to non-
interactive commitments we can slightly simplify the exposition. We begin by defining an (inefficient)
algorithm called opener, which tries to open a commitment ¢ to a specified message m. In particular

opener(c, m) = r  s.t. Com(m,r) =c,
P "7 L if no such r exists .

Now, we proceed in a sequence of games. Let Game_; be the real IND-SO-COM game. Let Gameg
be the game, where the challenger uses opener to decommit the commitments (Com(m;,7;))icr. Notice
that the views of the adversary in Game_; and Gameq are identical (but Gamey is no longer efficiently

implementable). In particular
Pr[AGame*1 =1] = Pr[AGameO =1].

Next we describe Game j for j € [n]. The only difference between Game; and Gamey is that in Game;
for ¢ < 7, the challenger sends the vector

(Com(d,r1),...,Com(d,7j—1), Com(m;,rj),...,Com(my,ry)),

for some fixed dummy message 5. For concreteness, we may set 6 = 0*. Now, the only difference
between Game; and Game;_; is whether the jth commitment is a commitment to m; or 6. Since Com is
statistically-hiding, even an unbounded adversary has only a negligible probability of distinguishing the
two cases. Thus by the triangle inequality

| Pr[AGameo — 1] — pr[AGamen — 1]| < n - v = negligible,

where v is the probability that an unbounded adversary breaks the hiding property of Com. Thus we

obtain
| Pr[AIND=SO-COM _ 1] _ py[gGamen — 1] — pegligible.

real



Finally, we notice that in Game,,, all the commitments are independent of the message (mi,...,m,), so
we can repeat the above argument, starting with the ideal IND-SO-COM game, instead of the real game.
Thus we obtain

| Pr[AIND=SO-COM _ q] _ pr[gGamen — 1] — negligible.
Thus
| Pr{Aje SOZCOM — 1] — Pr[AINP- SO=COM _ 1]| = negligible.

O]

The commitment scheme constructed in §9 is statistically hiding when by = b1, so we obtain the
following corollary

Corollary 2. Re-randomizable one-way functions imply non-interactive IND-SO-COM secure commit-
ments.

Since Re-randomizable encryptions imply re-randomizable one-way functions, we have
Corollary 3. Re-randomizable encryption implies non-interactive IND-SO-COM secure commitments.

Perhaps more interesting is the case when by # b;. The commitment scheme constructed in §9 is
no longer perfectly hiding, so Theorem 1 doesn’t apply. In this case, we can still achieve IND-SO-COM
security, by using the indistinguishability of the two modes. Roughly, this follows because an IND-SO-
COM adversary must have similar probabilities of success against both modes, otherwise it could be used
to distinguish the modes. Thus we arrive at the following Corollary.

Corollary 4. Re-randomizable one-way functions imply perfectly-binding IND-SO-COM secure commit-
ments.

Since Re-randomizable encryptions imply re-randomizable one-way functions, we have

Corollary 5. Re-randomizable encryption implies perfectly binding non-interactive IND-SO-COM secure
commitments.

Proof. We proceed via contradiction. Suppose there exists an IND-SO-COM adversary A that succeeds
against the protocol with probability % + € when by = b;. We will use A to construct a distinguisher D for
the one-way game against the underlying re-randomizable one-way function f. In the one-wayness game
against f, the challenger samples a function f and sends it to D. D will respond by sending {0, 1} to
the one-wayness challenger, and the one-wayness challenger samples r < R and sends e = f(b,7) to D.
Now, D samples ' < R, and generates ¢/ = f(0,7’). Now, D creates an instantiation of the commitment
protocol setting ¢y = e,c; = €, and plays the IND-SO-COM game with the adversary A. If A wins, D
guesses b = 1, and if A loses, D guesses b = 0. From Theorem 1 we know that if b = 0 then A succeeds
with probability v for some negligible function v. On the other hand, by hypothesis, if b = 1, then A
wins the IND-SO-COM game with probability e. Now

Pr[D wins | = Pr[b=1N A wins |+ Pr[b =0N A loses ]
= Pr[A wms]b = 1] Pr[b = 1] 4 Pr[A loses|b = 0] Pr[b = 0]

_ 1! + +
“2\27 "¢ .
1 n €E— UV
T2 2
Since € is non-negligible, and v is negligible, D breaks the one-way property of f. O

This result is perhaps surprising, since [BHY09] showed a black-box separation between most known
cryptographic primitives and Perfectly Binding IND-SO-COM secure commitments.

10



11 Selective Opening Secure Encryption

11.1 Preliminaries

The notions of security against a Selective Decryption Adversary apply naturally to the encryption setting
as well (this was originally formalized in [BHY09]). The security real and ideal security games are defined
as in the case of commitments (see Section 10.1), except that in the opening phase, the challenger responds
with the decryptions and the randomness used instead of the decommitments and randomness.

Definition 3. (Indistinguishability under selective openings/IND-SO-ENC).

Let (G, E, D) be a Public Key Cryptosystem (PKC), we say that (G, E, D) is indistinguishable un-
der selective openings (IND-SO-ENC secure) if for every PPT message distribution M and every PPT
adversary A, we have that

Pr [Aind—so—real _ 1] — Pr [Aind—so—ideal _ 1} ‘ <y

for some negligible function v, and where the games ind-so-real and ind-so-ideal are defined as follows

IND-SO-ENC (Real) IND-SO-ENC (Ideal)

e (my,...,myp) — M e (my,...,mp) — M

® ry,...,ry «— coins(E) ® ri,...,ry < coins(E)

o [ — A((E(my,7i),...,E(my,m)) o I — A((E(my,7i),...,E(my,m))

o b— A(((mi,r3))ier, (M, ..., mn)) o (mh,....,my) — M[M;

o b— A((mj,m3))ier, (mly,...,m,))

More explicitly, in the real game,
e The challenger samples messages (my,...,my,) < M, from the joint message distribution.
e The challenger generates randomness 71, ..., 7, < coins(FE).

e The challenger sends (E(mi,71),..., E(my,, ) to A.

e The adversary A responds with a subset I C {1,...,n}, with |I| = n/2.

e The challenger reveals both m; and r; for i € I.

e The challenger sends (myq,...,m,) to the adversary.

e The adversary outputs a bit b.

In the ideal game,

e The challenger samples messages (my,...,my,) < M, from the joint message distribution.
e The challenger generates randomness 71, ..., 7, < coins(E).

e The challenger sends (E(mqy,7r1),..., E(my,rm,)) to A.

The adversary A responds with a subset I C {1,...,n}, with |I| = n/2.

The challenger reveals both m; and r; for ¢ € I.
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e The challenger samples a new vector m’ < M|M;j, from M conditioned on the fact that m; = m;
for ¢ € I, and sends M’ to A.

e The adversary outputs a bit b.

We emphasize that the challenger reveals both the messages m; and the randomness r; for the selected
messages. If the challenger only revealed the messages m;, this type of security would follow immediately
from IND-CPA security.

12 Lossy Encryption

In [PVWO08], Peikert, Vaikuntanathan and Waters defined Dual-Mode Encryption, a type of cryptosystem
with two types public-keys, injective keys on which the cryptosystem behaves normally and “lossy” or
“messy” keys on which the system loses information about the plaintext. In particular they require that
the encryptions of any two plaintexts under a lossy key yield distributions that are statistically close, yet
injective and lossy keys remain computationally indistinguishable.

In [BHY09] Bellare, Hofheinz and Yilek define Lossy Encryption, expanding on the definitions of
Dual-Mode Encryption in [PVWO08], and Meaningful/Meaningless Encryption in [KNO8]. At a high level,
a ‘lossy’ (or ‘messy’ in the terminology of [PVWO08]) cryptosystem is one which has two types of public
keys which specify two different modes of operation. In the normal mode, encryption is injective, while
in the lossy (or ‘messy’) mode, the ciphertexts generated by the encryption algorithm are independent
of the plaintext. We also require that no efficient adversary can distinguish normal keys from lossy keys.
In [BHY09], they also require openability, which basically allows the decryptor to decrypt a ciphertext
generated from a lossy key to any plaintext.

Definition 4. Formally, an lossy public-key encryption scheme is a tuple (Ginj, Glossy, F£, D) of polynomial-
time algorithms such that

° G;nj(l)‘) outputs keys (pk, sk), keys generated by Gin; are called injective keys.
° G|Ossy(1)‘) outputs keys (pkiossy, SKiossy), keys generated by Glossy are called lossy keys.
Additionally, the algorithms must satisfy the following properties:

1. Correctness on injective keys. For all x € X,

Pr [(pk, sk) « Ginj(1%); 7 « coins(E) : D(sk, E(pk,z,r)) = x] =1

2. Indistinguishability of keys. This basically says that the the pk in lossy mode and injective mode
are computationally indistinguishable. Specifically, if proj : (pk, sk) — pk is the projection map,
then the two distributions

{proj(Gin(1M))} ~c {proj(Giessy (1*))}

3. Lossiness of lossy keys. If (pkiossy; SKiossy) < Glossy, then for all zg,z1 € X, the two distributions
E(pk|ossy, zo, R) and E(pkiossy, T1, R) are statistically close, i.e. the statistical distance is negligible
in A

4. Openability. If (pkiossy, Skiossy) < Glossy, and r « coins(E), then for all zg,z; € X with all but
negligible probability, there exists an 7’ € coins(E), such that E(pkiossy, ©0,7) = E(pkiossy, T1,7").
While this is a statistical property that follows immediately from property (3), it is convenient,
to state it explicitly, and to rephrase it in terms of an algorithm. We require that with all but
negligible probability there is an (unbounded) algorithm opener that can open a lossy ciphertext to
any plaintext.
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Although the Openability property is implied by property (3), it is useful to include it explicitly
because it simplifies the exposition somewhat. It also generalizes nicely, and in [BHY09] they show that
if the algorithm opener is efficient, then the encryption scheme is actually SEM-SO-ENC secure (instead
of only IND-SO-ENC).

We do not explicitly assume, that the scheme is IND-CPA secure, and in fact, the semantic security
of the scheme follows from the indistinguishability of keys and the lossiness of the lossy keys, since for
any xg,r1 € X,

E(T['(Ginj(l)‘)),wg,R) X E(T['(Gk,ssy(l)‘)),wo,R)) g E(W(Gbssy(l)\)),xl,R) e E(W(G;nj(l’\)),xl,R).

In [BHY09] it was shown that Lossy Encryption can be constructed in a straightforward manner from
Lossy-Trapdoor Functions, in fact, they simply observe that the CPA-secure system given in [PWO08§] is
a Lossy Encryption.

Next, they showed

Theorem 2. Lossy Encryption is IND-SO-ENC secure.

Proof. This is proven in [BHY09).
The proof follows the same structure as the proof of Theorem 1. O

Thus to create IND-SO-ENC secure encryptions, it suffices to construct Lossy Encryption.

12.1 Re-randomizable Encryption Implies Lossy Encryption

To create Lossy Encryption from re-randomizable encryption, we parallel the construction of commit-
ments in §9. As before, we let (G, E, D) be a re-randomizable public-key cryptosystem, and we create
Lossy Encryption (Ginj, Glessy, £, D) as follows:

° C_?inj(lk) runs G(1*), generating a pair (pk, sk). Then Ginj picks 79,71 < coins(E), and generates
eo = E(pk,0,70), e1 = E(pk,1,r1). Ginj returns (pk, sk) = ((pk, eo, €1), sk).

° Cﬁossy(l)‘) runs G(1*), generating a pair (pk, sk). Then Giossy picks 1o, 71 coins(E), and generates
eo = E(pk,0,70), e1 = E(pk,0,71). Glossy returns (pk, sk) = ((pk, eo, 1), sk).

e E(pk,b,7") = ReRand(pk, ey, ') for b € {0,1}.
e D(sk,c), simply outputs D(sk,c).

To see that this is a lossy encryption we notice that under an injective key it is clearly injective by the
correctness of the decryption algorithm D, while in lossy mode, it is statistically lossy by the properties
of the ReRand function. The proof that this Lossy Encryption is straightforward and we check the details
here.

1. Correctness on injective keys. This follows immediately from the correctness of E.
2. Indistinguishability of keys. This follows immediately from the IND-CPA security of (G, E, D).

3. Lossiness of lossy keys. Notice that under a lossy public-key pk, ey and e; are both encryptions of
zero, so E(pk, b, r) will also be an encryption of zero for b € {0,1}. By the properties of ReRand, we
have that the distributions {E(pk,0,7)} and {E(pk,1,7)} are statistically close, which is exactly
what is required for a key to be “lossy”.

4. Openability. Under a lossy public-key, E(pk, b, ') = ReRand(E(pk,0,r3),7'). Since 7’ is chosen uni-
formly from coins(ReRand), the properties of ReRand guarantee that the distributions ReRand(E(pk, 0, ), r')
and ReRand(E(pk,0,71_p, ")) are statistically close. That there exists an r”” such that ReRand(FE(pk, 0,74),7") =
ReRand(E(pk,0,71-p),7") then follows from lemma 3.
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Lemma 3. If R is a random variable, and f: R — X, g: R — Y and

Z Prir—R: f(r)=z]—Pr[r— R:g(r) =z =v,
zeXUY

then
Pr[r — R:Ar' € R such that f(r) = g(+')] <v.

Proof. 1t suffices to notice that

v= Z Prir—R: f(r)=z]—Pr[r— R:g(r) =2
zeXUY

> Z Prir—R:f(r)=2z—-Prir— R:g(r) =z
zeX\Y

=Pr[r— R:Ar € R such that f(r) = g(r')]

13 A Simulation-Based Definition of Security

While we have focused on an indistinguishability-based definition of security for commitments and en-
cryptions, it is also possible to give a simulation-based definition. Roughly, this says that anything an
adversary can learn by playing the Selective Opening game with the challenger can be efficiently simulated
by a simulator that sees only I and (m;);er, and never sees the ciphertexts at all. This is called SEM-
SO-ENC security. While it appears that the simulation-based definition offers a stronger form of security
than the indistinguishability-based definition, in fact, this remains unknown. It does seem, however, that
protocols satisfying SEM-SO-ENC security are harder to construct.

In [BHY09] it was shown that if a lossy encryption scheme has an efficient algorithm opener that can
“open” a lossy ciphertext to a desired plaintext, then the scheme is already SEM-SO-ENC secure. Since
our constructions of Re-randomizable encryptions give rise to lossy encryptions, to create SEM-SO-ENC
security from known assumptions, it suffices to check which re-randomizable encryptions have an efficient
opener algorithm.

When we instantiate our encryption scheme with the Paillier Cryptosystem, or the Goldwasser-Micali
cryptosystem, the factorization of the modulus N allows us to devise an efficient opening algorithm.
That the Goldwasser-Micali scheme is SEM-SO-ENC secure was already recognized in [BHY09], however
instantiating our re-randomizable encryption with the Paillier Cryptosystem gives rise to the first SEM-
SO-ENC secure cryptosystem under the Decisional Composite Residuosity (DCR) assumption.

13.1 Simulation-Based Security

While we have mostly focused on an indistinguishability-based notion of security under selecting openings,
in [BHY09], Hofheinz et al. also formalized a simulation-based notion of security under selective openings.
Their simulation-based definition of security intuitively seems stronger than the indistinguishability-based
definition, however, it remains unknown whether SEM-SO-ENC implies IND-SO-ENC.

Definition 5. (Semantic Security under selective openings/SEM-SO-ENC).

Let Enc be a Public Key Cryptosystem (PKC), we say that Enc is simulatable under selective openings
(SEM-SO-ENC secure) if for every PPT message distribution M, every PPT adversary A, and every PPT
relation R, there exists an efficient simulator S = (S1,.S2) such that we have that

‘Pr [Asem—so—real _ 1] _Pr [Asem-so—ideal _ 1} ‘ <y
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for some negligible function v, and where the games sem-so-real and sem-so-ideal are defined as follows

-

SEM-SO-ENC (Real) ( SEM-SO-ENC (Ideal) |
o (my,...,mp) — M o (my,...,my) «— M.
® 71,...,1ry < coins(E) o (I,st) « Si(17).
o I — A((E(ma,7i), ..., E(my, 1)) o w < Sa(st, {miticr)-

w — A(((mi,74))ier)

Output R(m,w).

Output R(m,w).

More explicitly, in the real game,
e The challenger samples messages (mq,...,m;,) < M, from the joint message distribution.
e The challenger generates randomness 71, ..., 7, < coins(E).

The challenger sends (E(my,7r1),. .., E(my, ) to A.

The adversary A responds with a subset I C {1,...,n}, with |I| =n/2.
The challenger reveals both m; and r; for i € I.

The adversary outputs a string w.

The value of the game is R(m, w).

In the ideal game,

The challenger samples messages (my, ..., my,) < M, from the joint message distribution.
Without seeing any encryptions, the simulator chooses a subset I, and some state information st.

Without seeing any randomness, after seeing the messages {m;};cs, and the state information, the
simulator outputs a string w.

The value of the game is R(m, w).

In [BHYO09], Hofheinz, Bellare and Yilek, proved that a lossy encryption scheme, with an efficient
opener procedure are SEM-SO-ENC secure.

Definition 6. A lossy public-key encryption scheme with efficient opening is a tuple (Ginj, Glossy: E, D)
satisfying Definition 4, with the additional property that the algorithm opener is efficient, i.e.

Openability. There is an efficient algorithm opener, such that if (pkiossy; Skiossy) < Glossy, and 7 «
coins(E), then for all zg, ;1 € X with all but negligible probability, r’ < opener(pkiossy, E (Pkiossys 0, 7)),
and E(pkiossy, 1,7").

Theorem 3. Lossy Encryption with efficient opening is SEM-SO-ENC secure.

Proof. This is Theorem 2 in [BHY09]. The proof is straightforward, and we only sketch it here.
We proceed in a series of games.
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e (3 is the real SEM-SO-ENC experiment.
e (71 is the same as Gy, except the adversary is given a lossy public key, instead of a real public key.

e (39 instead of giving the adversary the real randomness {r;};cs, the Challenger uses the efficient
opener procedure to generate valid randomness.

e (33 instead of giving the adversary encryptions of m;, the adversary is given encryptions of a dummy
message 0, but the adversary is still given openings to actual messages {m;};c; obtained from the
opener procedure.

Now, the simulator can simulate G3 with the adversary. The simulator generates a lossy key pair, and
encrypts a sequence of dummy messages and forwards the encryptions to A. The adversary, A, replies
with a set I, which S forwards to the challenger. Then S uses the efficient opener procedure to open the
selected messages for A. At which point A outputs a string w, and S outputs the same string. Since
the outputs of A in Gy and G3 are computationally close, the outputs of S, and A in the real and ideal
experiments will also be computationally close. ]

13.2 Selective Opening Security From the Decisional Composite Residuosity As-
sumption

Here we give an overview of our construction when applied to the Paillier Cryptosystem (a review of the
details of the Paillier Cryptosystem can be found in Appendix A).

By defining ReRand(c,r) = c¢- E(pk,0,7) mod n?, we obtain IND-SO-COM secure commitments and
IND-SO-ENC secure encryptions through our general construction in §9.

It was already known how to build IND-SO-ENC from DCR, since Peikert and Waters [PW08], and
Boldyreva, Fehr and O’Neill showed how to build Lossy-Trapdoor Functions from DCR, and Bellare,
Hofheinz and Yilek showed that Lossy-Trapdoor Functions imply IND-SO secure encryptions. We note,
however, that our constructions are significantly more efficient than those that follow from [PWO08], and
somewhat more efficient than those that follow from [BFOO08].

While the results of [BHY09] imply that IND-SO-ENC secure encryptions follow from DCR, the
question of SEM-SO-ENC secure encryptions was left open, indeed, the only previous construction of
SEM-SO-ENC secure encryptions were given in [BHY09] and based off of the Quadratic Residuosity
Assumption (QR). By instantiating our scheme in 9 with the Paillier (or Damgard-Jurik) cryptosystem,
we observe that the function opener is efficient, and hence the results of [BHY09] show that the resulting
encryption scheme achieves SEM-SO-ENC security.

To see this, recall that E(pk,m,r) = ¢™r"Y mod N2, where c is an Nth power in lossy mode. Thus,
the algorithm opener, on input e = i and some target message m must find 7/ € Z/NZ such that
™ (r")N = e. If we write ¢ = r}’, then opener must find a solution to

So the efficiency of opener reduces to the efficiency of taking Nth roots modulo N2. But this is easily
done if the factorization of N is known, since we can set d = N~! mod ¢(N), and then taking Nth
roots, is equivalent to exponentiating modulo N, i.e.

(rN)? = N4 = mod N.

Thus we immediately get a SEM-SO-COM secure encryption protocol from the DCR assumption.
Thus we arrive at

Corollary 6. Under the Decisional Composite Residuosity assumption (DCR), the system described in
§12.1 is SEM-SO-ENC secure.
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Since the Paillier cryptosystem (and the Damgard-Jurik extension, have smaller ciphertext expansion
than the Goldwasser-Micali cryptosystem (which only encrypts bits), we arrive at more efficient system
than the only known SEM-SO-ENC secure cryptosystem.

14 Chosen Ciphertext Security

14.1 Definition

We extend the notion of a Chosen Ciphertext Attack (CCA) ([NY90],[RS91],[DDNO91]) to the selective
opening setting.

We define two games, a real game (ind-cca2-real) and an ideal game (ind-cca2-ideal). In both games,
the challenger runs the key-generation algorithm to generate a public-key secret-key pair, and sends the
public-key to the adversary. The adversary is then allowed to adaptively make two types of queries.

e Selective Opening Query: The adversary A chooses a message distribution M, and sends a
description of M to the challenger. The challenger samples (my,...,m,) < M, and generates

(c1y...,cn) = (E(pk,my,r1), ..., E(pk,my,m)).

The challenger sends (cy, ..., c,) to the adversary, and the adversary chooses a subset I C [n], with
|I| = n/2, and sends I to the challenger. The challenger then sends {(m;,7;)}ier to the Adversary.
We call the ciphertexts cq,...,c, target ciphertexts.

— In the real game, the challenger then sends {m;} ;¢ to the adversary.

/

— In the ideal game, the challenger resamples (m/,...,m},

adversary.

«— M|y, and sends {m/.} .o to the
1 ] Jé

e Decryption Queries: The adversary A chooses a ciphertext ¢ that has never appeared as a target
ciphertext, and sends ¢ to the challenger. If ¢ is a valid ciphertext (i.e. D(c) # L) then the
challenger responds with m = D(c).

After adaptively making polynomially many queries, with at most one of them being a Selective
Opening Query, the adversary outputs a bit b.

Definition 7. (IND-SO-CCA2) A public key encryption scheme E is called IND-SO-CCA2 secure, if,
for all PPT adversaries A, A’s output in the real game is negligibly different from its output in the ideal
game, i.e.

Pr[Aind—cca2—rea| —1]- Pr[Aind—cca2—idea| =1 <.
For some negligible function v.

We remark that if the adversary is not allowed to make decryption queries, this reduces to IND-SO-
ENC security.

14.2 Non-Interactive Zero Knowledge

The most successful technique in constructing systems secure against an adaptive chosen ciphertext attack
has been the Naor-Yung paradigm [NY90]. Roughly, the idea is to encrypt the message twice and include
a Non-Interactive Zero Knowledge (NIZK) proof that both encryptions encrypt the same plaintext. The
proof of security then uses the simulator for the NIZK to simulate the proof for the challenge ciphertext.
This method has since been refined in [DDN91],[Sah99],[SCO*01], and [Lin06] (among others).

Our constructions of IND-SO-CCA2 encryption follow the general structure of the Naor-Yung paradigm
[NY90], however, the selective opening of the encryption query poses new challenges. In particular, if we
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naively try to follow the Naor-Yung paradigm, we immediately encounter difficulties because our chal-
lenger must reveal the messages and randomness for half of the ciphertexts in the challenge. This will
immediately reveal to the adversary that the proofs were simulated. It requires new ideas to overcome
this difficulty.

We now give a brief definition of the properties of a Non-Interactive Zero Knowledge Proof of Knowl-
edge with Honest Prover State-Reconstruction (originally defined and constructed in [GOS06]).

Let R be an efficiently computable binary relation and let L = {z : 3w such that (z,w) € R}. We
refer to L as a language, x as a statement, and w as a witness.

A Non-Interactive Proof System for L is a triple of PPT algorithms (CRSgen, Prover, Verifier) such
that

e o — CRSgen(1%).
Generates a Common Reference String.

e 71 «— Prover(CRS, z,w).
On inputs z, and a witness w for x, such that R(z,w) = 1, the Prover outputs a proof .

e b« Verifier(CRS, z,p).
On inputs = and a purported proof m, Verifier outputs a bit b.

Definition 8. A triple of algorithms is called a Non-Interactive Zero Knowledge Proof of Knowledge if
e Completeness: For all adversaries A,
Pr [a — CRSgen(1Y); (z,w) « A(0); 7 — Prover(o, z,w) : Verifier(o, z,7) = 1 if (z,w) € R| > 1—v,
For some negligible function v.
e Soundness: For all adversaries A,

Pr [0 — CRSgen(1Y); (z,7) «— A(0) : Verifier(o,z,7) =0 if = & L] >1-vr.
e Knowledge Extraction: There exists an extractor Ext = (Ext;, Exty) such that for all adversaries

’Pr [a « CRSgen(1?) : A(0) = 1] —Pr [(a, 7) — Ext; (1) : A(o) = 1} ’ <v
and
Pr [(0, 7) — Ext; (1); (#,71) «— A(0);w — Exty(o, 7,2z, 7) : Verifier(o, z,7) = 0 or (z,w) € R} >1-v

For some negligible function v.

e Zero-Knowledge: There exists a simulator S = (51, S2), such that for all adversaries A,

Pr [0 — CRSgen(1*) : A7) (g) = 1] —Pr |:(0', 7) — S (1Y) : A5 @) (0) = 1} ‘ <v,
where S’ is defined

g Sa(o,7,x) i (x,w) € R,
] L otherwise.

e Honest-Prover State Reconstruction: There exists a simulator S = (S, S2,S2) such that for
all adversaries A

[Pr [ CRSgen(1); PR (0) = 1] = Pr [(0,7) « $1(1%) : AR () = 1” <,

where PR(o, x, w) samples r < coins(Prover), and sets m = Prover(o, z, w, ), and returns (, r), and
where SR samples r* « coins(S3), and sets 7’ = So(o, 7, z,7"), finally PR sets v’ « Ss(o, 7,2, w,r*)
and returns (7’,7’). Both oracles output L if (z,w) ¢ R.
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14.3 Strongly Unforgeable Signatures
A signature scheme is a triple of PPT algorithms (G, Sign, Ver) such that
e The algorithm G takes a security parameter A\, and returns a verification key and a signing key.
(vk, sk) — G(1*).
e The algorithm Sign takes a message m and the signing key, and produces a signature sig.
sig < Sign(m, sk).
e The algorithm Ver takes a verification key, a message, and a signature, and returns a bit b.

b — Ver(vk, m,sig).

We require

e Completeness: For all m

Pr [(vk, sk) < G;sig < Sign(m, sk); Ver(vk, m,sig) = 1] = 1.

e Strongly Unforgeable: For all PPT adversaries A,
Pr[(vk, sk) — G; (m,sig') — ASECSR) (y)
Ver(vk, m,sig’) = 1 and sig’ was never the output of Sign(-, sk)]

If we restrict A to make at most one oracle query to Sign(-, sk) we say that (G, Sign, Ver) is a
one-time strongly unforgeable signature scheme.

14.4 Unduplicatable Set Selection

Unduplicatable set selection was used implicitly in [NY90] and [CIO98], and formalized in [Sah99]. We
wish to create a mapping from g : {0,1}* — B such that for all distinct a!,...,a",a" ! € {0,1}*,

o) ¢ (J a(a).

In [Sah99], Sahai gives a simple general construction based on polynomials. Let ¢ = oflogs 2nk] g6 ¢ > 2nk,
and let Y = Fy x Fy, then to each a € {0, 1}’“. Now, we may associate a polynomial

folz) =ap+ a1z +--- ap_12" e Fy[x].

Then if we set
gla) = {(t, fa(t)) - t € Fy}.
Now, |g(a)| = ¢, and if a # @, we have |g(a) N g(a’)| < k — 1. Thus

n

s\ Jsla)

n

= |a(@")\ U g(a") Ng(a’)

i=1 i=1

n

> |g(@™™)| = |a(a" ™) — Ng(a’)]
=1

>0 —n(k-1)

14
> —.
-2

We call g an (n, k, ¢) unduplicatable set selector.
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14.5 An IND-SO-CCA2 Construction

Along with the NIZK Proofs of Knowledge with Honest Prover State Reconstruction, Our construction
relies on a number of common cryptographic tools. We will also require a strongly unforgeable one-time
signature scheme. In our game, a single encryption query is actually n separate encryptions, so we will
require an unduplicatable set selector g for sets of size n. Finally, we will require an IND-SO-ENC secure

cryptosystem.
Let (Gso, E, D) be an IND-SO-ENC secure cryptosystem. Let (G, Sign, Ver) be a strongly unforgeable
one-time signature scheme. Let g be an (n, ) unduplicatable set selector, and let ¢ = |g(0*)|, and

L =g({0,11).

Let (CRSgen, Prover, Verifier) be a Noninteractive Zero Knowledge Proof of Knowledge with Honest
Prover State Reconstruction for the language given by the relation ((eg,e1),(m,rg,71)) € R if eg =
E(m,rp) and e; = E(m,r1).

Our scheme works as follows

e KeyGen:
(pko, sko) — Gso(1Y), (pk1,sk1) < Gso(1Y), and (o, 7;) « Exty(1*) for i € L

Set,
pk = (vk,pko,pk1,{oi}ticr) and sk = (sko,ski,{7i}ticL)-

e Encryption: Pick

%9 — coins(Sign), 7o < coins(E), 71 « coins(E), r** — coins(Prover) for i =1,..., .

Generate keys for a one-time signature using randomness 9.
(vk, sk) = G(r*").
For a message m, calculate

eo = E(pko,m,r0), e1 = E(pki,m,r1)

set w = (m, 19, r1).
7T = (m1,...,m) = (Prover(oy, (e, €1), W))icq(vr)

using randomness r?”k in the ith iteration of Prover. set

sig = Sign(eq, €1,7),
output the ciphertext

c = (vk,eg,e1,T,sig)

e Decryption: Given a ciphertext
c = (vk,ep,e1,T,sig)

Check that
Ver(vk, (ep,e1,m)) =1,

otherwise return L. For ¢ € g(vk), check that
Verifier(oy, (e, €1),mi) = 1,
otherwise return L.

Pick a random i € g(vk) and use the Extractor Exts to recover the witness (m,rg,71), i.e.
(m,ro,m1) « Exta(0i, 7i, (€0, €1), i)

return m.
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Theorem 4. This scheme is IND-SO-CCAZ2 secure.

Proof. We consider a series of games

e Game 0: This is the ind-cca2-real game.

e Game 1: Pick the verification key ((vkeh@bl skchably (ykchabn gkchalny) to be used in the chal-
lenge ciphertexts during parameter generation.

e Game 2: Generate the Common Reference Strings by

o — Sy (1) if i € g(vke"abd) for some j € [n]
' 7| Exti(1")  otherwise.

In decryption, we now use i € g(g(vk)) to recover (m,rg,r1).

e Game 3: When generating the target ciphertexts, ignore the witness and generate the “proof”

™= {Wi}z‘eg(vk) = {52(01', Ti(607 61),Tf}ieg(vk)

when the adversary asks for the decryption and randomness of a subset of the target ciphertexts,
use the State Reconstructor to generate

Ty S3(Ui7 Tiy (607 61)7 (m7 To,T1, T:)),
and return these r; instead of the r] that were actually used.

Let W; be the event that the adversary wins game i. Clearly Wy = Wy, since from the adversary’s
point of view they are identical. To show that W; and W5 are only negligibly different, notice that by
the strong unforgeability of (G, Sign, Ver), the adversary can never ask for the decryption of a ciphertext
signed with vk, so by the unduplicatability of g, there will always be at least one valid proof generated
with an extractable CRS. Now, it’s easy to see that any PPT adversary that can distinguish between
Game 2 and Game 1 can be used to distinguish the CRS generated by the extraction simulator Ext;, and
Honest Prover Reconstruction simulator Sp (really nf such simulators), but if

’Pr |:(0', 7) — 51(1%) : ASEET) () = 1} —Pr [(a, ) — S (1M ASI(U’T"")(U) = 1” > €,
the either
‘Pr [0‘ — CRSgen(1*) : AP()(5) = 1} —Pr [(a, 7) — 51(1Y) : A5 (@7 (g) = 1” > %,

or

‘Pr [o  CRSgen(1*); APR(@)(5) = 1] _Pr [(a, 7) e S1(1Y) : ASRET) (5 = 1} ] > %

Since these are both negligible by the definition of our NIZK, the difference between Wy and Ws is
negligible.

To see that the difference between Wy and W3 is negligible, we notice that we can immediately
transform an adversary that distinguishes Game 2 from Game 3 into an adversary that breaks the
indistinguishability of the Honest Prover State Reconstruction simulator, losing a factor of n¢ (because
we are making nf comparisons).

To complete the proof, we must show that |[W3 — %| is negligible. Towards a contradiction suppose
|W5 — %\ > €. We will transform the adversary A into an adversary that breaks the IND-SO-ENC security
of (Gso, E, D). To see this, notice that in Game 3, we never use the decryption keys for the underlying
IND-SO-ENC encryption, and we do not need the randomness used for the challenge ciphertext until
after the adversary has requested I. So given 2 public-keys for the underlying (Gs,, F, D), we break
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the IND-SO-ENC security as follows. We generate the corresponding NIZKs, OWTDPs and signatures
according to Game 3, and play the IND-SO-CCA2 game with the adversary. When the adversary makes
an encryption query, we forward the distribution M to the IND-SO-ENC challenger who responds with
two sets of ciphertexts (e}, ...,el) and (el,...,e}). Using the S simulator, we wrap these into a challenge
ciphertext in the CCA2 scheme and forward this to the adversary. When the adversary responds with
a set I, we forward this set I to the IND-SO-ENC challenger and receive decryptions and randomness.
Using the S simulator, we can use the witnesses provided by IND-SO-ENC challenger to generate the
necessary randomness for the NIZKs in the IND-SO-CCA2 challenge ciphertexts. Finally, when A outputs
a bit b, we output the same bit. Since A is correct with probability %+e, break the IND-SO-ENC security
of (Gso, E, D) with probability 3 + .

O

15 Conclusion

We have shown that re-randomizable encryption implies perfectly-binding IND-SO-COM secure com-
mitments, and IND-SO-ENC secure encryptions. In the process we have shown that re-randomizable
encryption implies Lossy Encryption, which is interesting in its own right. Both constructions are rel-
atively simple and retain the efficiency of the underlying re-randomizable encryption protocol. Our
constructions can be applied to known cryptosystems, and immediately yields simple and efficient IND-
SO-COM secure commitments and IND-SO-ENC secure encryptions from the Decisional Diffie-Hellman
(DDH), Decisional-Composite Residuosity (DCR) and Quadratic Residuosity (QR) assumptions.

We have shown a black-box construction of perfectly binding IND-SO-COM commitments from Re-
randomizable Encryption, perhaps a surprising result in light of the black box separations given in
[BHY09]. Our results can be applied to create efficient perfectly binding IND-SO-COM commitments
from the DDH, DCR and QR assumptions.

Applying our general construction to the Paillier Cryptosystem yields the first construction of SEM-
SO-ENC secure encryptions from the DCR assumption, and this construction is the most efficient that
is currently known.

We formalized Chosen Ciphertext security in the selective opening setting, and gave a general con-
struction based existing primitives.
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Appendix

A The Paillier Cryptosystem

We briefly review the Paillier Cryptosystem proposed by Pascal Paillier in [Pai99], and extended by
Damgard and Jurik in [DJO1].
The cryptosystem works in (Z/N2Z)*. From the Binomial Theorem, we have

(1+N)*=1+aN mod N?

so (1 + N) generates a cyclic subgroup of order N. In this group, we can take Discrete Logs efficiently
by L(z) = £, since
L(1+N)*)=L(1+aN) =a.

Now, if g generates (1 + N), and ¢ = g%, then as with traditional logs

Now, we are ready to describe Paillier’s Cryptosystem

e Parameter Generation:

— Generates primes p, ¢ of length A\/2 and sets N = pq.

— Generate g € Z/N?Z such that N divides the order of g.
This condition is easy to verify if you have the factorization of N.

The public parameters are pk = (N, g)
The secret key is sk = lem(p — 1,9 — 1).

e Encryption:

— r — Z/NZ,
(really you want to generate r € (Z/NZ)*, but the distributions are statistically close).

— For m € Z/NZ,
E(pk,m,r) = ¢ mod N2,

e Decryption:
Given a ciphertext ¢ € (Z/N*Z)*,

L(c**) mod N

mod N.
L(g**)

m =

This cryptosystem is IND-CPA secure under the Decisional Composite Residuosity Assumption
(DCR), which (informally) says

Assumption 1. Decisional Composite Residuosity/(DCR): If N is an A-bit RSA modulus, (i.e.
N = pq), then
{9 = Z/N?Z; 9} ~c {g — Z/N*Z; g"}.
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