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Abstract. We present two algorithms to compute the endomorphism ring

of an ordinary elliptic curve E defined over a finite field Fq . Under suitable

heuristic assumptions, both have subexponential complexity. We bound the
complexity of the first algorithm in terms of log q, while our bound for the

second algorithm depends primarily on log |DE |, where DE is the discriminant

of the order isomorphic to End(E). As a byproduct, our method yields a short
certificate that may be used to verify that the endomorphism ring is as claimed.

1. Introduction

Let E be an ordinary elliptic curve defined over a finite field Fq, and let π denote
the Frobenius endomorphism of E. We may view π as an element of norm q in the
integer ring of some imaginary quadratic field K = Q

(√
DK

)
:

(1) π =
t+ v

√
DK

2
with 4q = t2 − v2DK .

The trace of π may be computed as t = q + 1−#E. Applying Schoof’s algorithm
to count the points on E/Fq, this can be done in polynomial time [29]. The funda-
mental discriminant DK and the integer v are then obtained by factoring 4q − t2,
which can be accomplished probabilistically in subexponential time [25].

The endomorphism ring of E is isomorphic to an order O(E) of K. Once v and
DK are known, there are only finitely many possibilities for O(E), since

(2) Z [π] ⊆ O(E) ⊆ OK .
Here Z [π] denotes the order generated by π, with discriminant Dπ = v2DK , and
OK is the maximal order of K (its ring of integers), with discriminant DK . The
discriminant of O(E) is then of the form DE = u2DK , where the conductor u
divides v and uniquely determines O(E). We wish to compute u.

Recall that two elliptic curves over Fq are isogenous if and only if they have the
same trace [20, Ch. 13, Thm. 8.4]. Thus the set Ellt(Fq) of elliptic curves defined
over Fq with trace t constitutes an isogeny class. Each curve in Ellt(Fq) has an
endomorphism ring satisfying (2), and therefore a conductor dividing v.

In his seminal thesis, Kohel describes the structure of the graph of isogenies de-
fined on Ellt(Fq), and its relationship to the orders in OK . He applies this structure
to obtain a deterministic algorithm to compute u in time O(q1/3+ε), assuming the
generalized Riemann hypothesis (GRH) [21, Thm. 24].

Here we present two new methods to compute u that further exploit the relation-
ship between the isogeny graph and ideal class groups. Under heuristic assumptions
(including, but not limited to, the GRH), we achieve subexponential running times.
Both methods yield Las Vegas algorithms: probabilistic algorithms whose output
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is unconditionally correct. We rely on heuristic assumptions only to bound their
expected running times.

In practice we find the algorithms perform well, and are able to handle problem
sizes that were previously intractable. We give computational examples over finite
fields of cryptographic size where v is large and not smooth (the most difficult case).
Over a 200-bit field, for example, the total running time is typically under an hour
(see Section 5 for details).

To express our complexity bounds, we adopt the usual notation

L [α, c] (x) = exp
(

(c+ o(1)) (log x)α (log log x)1−α
)
.

Under the heuristic assumptions detailed in Section 4, we derive the bound

L
[
1/2,
√

3/2
]

(q)

for Algorithm 1 (Corollary 7), and the bound

L [1/2 + o(1), 1] (|DE |) + L [1/3, cf ] (q)

for Algorithm 2 (Proposition 10). The L [1/3, cf ] term reflects the heuristic com-
plexity of factoring 4q − t2 using the number field sieve [9]. Algorithm 2 is slower
than Algorithm 1 in general, but may be much faster when u� v.

In certain cryptographic applications the discriminant DE is an important se-
curity parameter (see [6] for one example), and it may be necessary for a third
party to independently verify its value. The algorithms we use to compute DE may
additionally generate a short certificate to aid this verification. Both certification
and verification have heuristically subexponential running times, and one may ex-
tend the certification phase in order to reduce the verification time, as discussed in
Section 4. Under the same heuristic assumptions used in our complexity bounds,
the size of the certificate is O(log2+ε q) (Corollary 8).

2. Preliminaries

Kohel’s algorithm treats each large prime power pk dividing v by computing the
kernel of a certain smooth isogeny of degree n. The prime factors of n are small
(polynomial in log v), but n itself is large (exponential in log v), and this leads to
an exponential running time (see [21, Lem. 29]). We replace this computation with
a walk in the isogeny graph using isogenies of low degree (heuristically, subexpo-
nential in log v). This walk computes the cardinality of a certain smooth relation,
and by performing similar computations in class groups of orders in OK we are
able to determine the power of p dividing u (via Corollary 4). We adapt an algo-
rithm of McCurley [26] to efficiently find smooth relations, achieving a heuristically
subexponential running time. First, we present some necessary background.

2.1. Theoretical background. Let us fix an ordinary elliptic curve E defined
over a finite field Fq, with t, DK , and v as in (1). We may verify that E is ordinary
by checking that t is nonzero modulo the characteristic of Fq [34, Prop. 4.31].

Recall that the j-invariant j(E) may be computed as a rational function of the
coefficients of E and, in particular, is an element of Fq. Over the algebraic closure
of Fq, the j-invariant uniquely identifies E up to isomorphism, but this is not true
over Fq. However, two ordinary elliptic curves with the same trace are isomorphic
over Fq if and only if they have the same j-invariant [12, Prop. 14.19]. Thus we
may explicitly represent the set Ellt(Fq) as a subset of Fq, namely, the j-invariants
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of all elliptic curves over Fq with trace t, and view each element of Ellt(Fq) as a
particular elliptic curve representing its isomorphism class.

As noted above, each curve in Ellt(Fq) has an associated u dividing v that iden-
tifies its endomorphism ring, and we may partition Ellt(Fq) into subsets Ellt,u(Fq)
accordingly. We aim to distinguish the particular subset containing E by identifying
relations that hold in some Ellt,u(Fq) but not others.

Our main tool is the action of the ideal class group cl(u2DK) of O(u2DK) (the
order of K with conductor u) on the set Ellt,u(Fq). Here we rely on standard results
from the theory of complex multiplication, and the Deuring lifting theorem.

Theorem 1. With q, t, v, and DK as in (1), let u be a divisor of v and a an ideal
of O(u2DK) with prime norm `. Then a acts on the set Ellt,u(Fq) via an isogeny
of degree `, and this defines a faithful group action by cl(u2DK).

For a proof, see Theorems 10.5, 13.12, and 13.14 in [23], or Chapter 3 of [21].
For additional background, we also recommend [12] and [31, Ch. II].

Theorem 1 implies that the cardinality of Ellt,u(Fq) is a multiple of the class
number h(u2DK), and in fact these values are equal [30]. In general, the curves
`-isogenous to E need not belong to Ellt,u(Fq). However, when ` does not divide v,
we have the following result of Kohel [21, Prop. 23]:

Theorem 2. Let ` be a prime not dividing v. There are exactly 1 + (DE | `)
isogenies of degree ` starting from E, and they all lead to curves with endomorphism
ring isomorphic to O(E).

The notation (DE | `) is the Kronecker symbol. Note that (DE | `) = (DK | `),
so we can compute it without knowing DE . We are primarily interested in the
case (DE | `) = 1, where the prime ` splits into distinct prime ideals of norm ` in
O(E), and these ideals lie in inverse ideal classes α and α−1 in cl(DE) (if ` splits
into principal ideals, then α = α−1 = 1). By Theorem 1, the orbit of E under the
action of α corresponds to a cycle of `-isogenies whose length is equal to the order
of α in cl(DE). Additional details on the structure of the isogeny graph can be
found in [21] and, in a more concise way, in [15].

2.2. Explicit computation. We implement class group computations using bi-
nary quadratic forms. For a negative discriminant D, the ideals in O(D) correspond
to primitive, positive-definite, binary quadratic forms ax2 + bxy + cy2 (commonly
noted (a, b, c)) with discriminant D = b2 − 4ac. The integer a corresponds to the
norm of the ideal. Ideal classes in cl(D) are uniquely represented by reduced forms.
As typically implemented, the group operation has complexity O(log2 |D|) [5].1

To navigate the isogeny graph, we rely on the classical modular polynomial
Φ`(X,Y ), which parametrizes pairs of `-isogenous elliptic curves. This is a sym-
metric polynomial with integer coefficients. For a prime ` not dividing q, two elliptic
curves E1 and E2 defined over Fq are connected by an isogeny of degree ` if and
only if Φ`(j(E1), j(E2)) = 0 [34, Thm. 19].2

The polynomial Φ` has sizeO(`3 log `) [11], and may be computed in timeO(`3+ε)
[14]. When ` is small we use precomputed Φ` ∈ Z[X,Y ], but for larger ` we compute
Φ`/Fq, that is, the integer polynomial Φ` reduced modulo the characteristic of Fq.
This can be accomplished in time O(`3+ε log q) and space O(`2+ε log q) using the

1The algorithm of [28] has complexity O(log1+ε |D|), but we do not make use of it.
2This isogeny is necessarily cyclic, since it has prime degree.
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CRT method described in [7]. In practice one may consider alternative modular
polynomials that are sparser and have smaller coefficients than Φ`.

To find the curves that are `-isogenous to E, we compute the roots of the uni-
variate polynomial f(X) = Φ`(X, j(E)) in Fq. We may restrict ourselves to primes
` - v with (DE | `) = 1, so that f(X) has exactly two roots, by Theorem 2. We find
these roots by computing gcd(f,Xq−X) and solving the resulting quadratic, using
an expected O(M(`) log q) operations in Fq (this is the time to compute Xq mod f).
Given Φ`/Fq, we use O(`2) operations in Fq to construct f(X) = Φ`(X, j(E)). For
`� log q this dominates the time to find the roots of f(X) and bounds the cost of
taking a single step in the `-isogeny graph.

2.3. Relations. Let us suppose that α ∈ cl(DE) contains an ideal of prime norm
` - v, and has order e = |α|. In this situation we say that the relation αe = 1 holds
in cl(DE). We cannot actually compute αe in cl(DE), since we do not yet know
DE , but we may apply Theorem 1 to compute the action of either αe or α−e on E
by walking a distance e along the cycle of `-isogenies, starting from j = j(E).

Algorithm WalkCycle(j, `, e):
1. Set j0 ← j.
2. Let j1 be one of the two roots of Φ`(X, j0).
3. For s from 1 to e− 1:
4. Let js+1 be the root of Φ`(X, js)/(X − js−1).
5. Return je.

The roots of Φ`(X, js) are typically distinct (exceptions require |DE | 6 4`2, by
[15, Thm. 2.2]), but the algorithm applies in any case.

The choice of j1 in Step 2 is arbitrary, it may correspond to the action of either
α or α−1. Nevertheless, since e = |α| = |α−1|, we have je = j0 in either case. A
difficulty arises when we consider a relation that is not unary, say αe11 α

e2
2 = 1, where

αi contains an ideal of prime norm `i with `1 6= `2. Starting from j(E), we walk e1
steps along the `1-isogeny cycle, then walk e2 steps along the `2-isogeny cycle. We
must make two arbitrary choices and may compute the action of αe11 α

e2
2 , αe11 α

−e2
2 ,

α−e11 αe22 or α−e11 α−e22 . The actions of these four elements are almost certainly not
identical; even if αe11 α

e2
2 = 1 in cl(DE), it is unlikely that αe11 α

−e2
2 will fix j(E).

To address this situation, we formally define a relation R as a pair of vectors
(`1, . . . , `k) and (e1, . . . , ek), where each `i is prime, `i - v and (DK | `i) = 1, and
each ei is a positive integer.3 The integer k is the arity of the relation. Given a
discriminant D = u2DK with u | v, choose ideal classes α1, . . . , αk ∈ cl(D) so that
αi contains an ideal of norm `i. This ideal need not be the reduced representative
of αi, and may be principal (implying αi = 1), this depends on D. We now define

(3) #R/D := #

{
τ ∈ {±1}{1,...,k} :

k∏
i=1

ατiei
i = 1

}
,

as the cardinality of the relation R in cl(D). When #R/D > 0, we say R holds in
cl(D). The integer #R/D is independent of the choice of the αi. It has even parity,
since if τ belongs to the set in (3), so does −τ .

To compute #R/DE , we enumerate the 2k possible walks we may take in the
isogeny graph, starting from j(E), considering all possible sign vectors τ (these

3In practice, we may wish to relax the constraint `i - v when `i is very small (e.g. 2), see [33].
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walks typically form a tree in which each path from root to leaf has k binary
branch points). By the symmetry noted above, we may fix τ1 = 1.

Algorithm CountRelation(E,R):
1. Compute j ←WalkCycle(j(E), `1, e1) and let J be the list (j).
2. For i from 2 to k:
3. Set J ′ ← J and then set J to the empty list.
4. For j ∈ J ′:
5. Set j0, j′0 ← j and let j1 and j′1 be the two roots of Φ`i (X, j0).
6. For s from 1 to ei − 1:
7. Let js+1 be the root of f(X) = Φ`i (X, js) /(X − js−1).
8. Let j′s+1 be the root of f(X) = Φ`i (X, j′s) /(X − j′s−1).
9. Append jei

and j′ei
to J .

10. Return 2n, where n counts the occurrences of j(E) in J .

Given Φ`/Fq, the complexity of Algorithm CountRelation is dominated by

(4)
k∑
i=1

2i−1eiT (`i),

where T (`) is the time to take a single step in the `-isogeny graph, which for large
` is bounded by O(`2) operations in Fq, as noted above. Our algorithms rely on
smooth relations in which k, `i, and ei are all rather small: in the first example of
Section 5 we have k = 10, `i 6 500, and ei 6 3000. As a practical optimization, we
order the couples (`i, ei) to minimize (4), using an estimate of T (`).

Computing #R/D in cl(D) (where D is known) is straightforward: one computes
the set in (3) by evaluating products of powers in cl(D). A total of O(2k+

∑
log ei)

operations in the class group suffice (independent of the `i).

2.4. Probing class groups. We now consider how we may distinguish class groups
of orders in K by computing the cardinality of suitable relations. We rely on the
following lemma.

Lemma 3. Suppose O(D1) ⊆ O(D2). Then for every relation R we have

#R/D1 6 #R/D2.

Proof. Let a be an O(D1)-ideal with norm prime to the conductor of D1. The map

a 7→ aO(D2)

induces a natural morphism of class groups. It preserves norms (see [12, Prop. 7.20]
for a proof in the case D2 is fundamental, from which one easily derives the general
case) and therefore transports relations from cl(D1) to cl(D2). �

Corollary 4. Let pk be a prime power dividing v, and let D1 = (v/pj)2DK and
D2 = p2kDK , where j = νp(v)−k+1. Suppose #R/D1 > #R/D2 for some relation
R, and let D = u2DK where u | v. Then pk | u if and only if #R/D < #R/D1.

Provided we have a suitable relation R for each prime-power pk dividing v, we
can apply the corollary to D = DE to determine the prime-power factorization
of u, and hence the endomorphism ring of E. The computations of #R/D1 and
#R/D2 are performed in the class groups cl(D1) and cl(D2), but the computation
of #R/DE takes place in the isogeny graph via the CountRelation algorithm.
Notice that we may replace v in the corollary by any multiple of u dividing v.
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Proposition 5. For all primes p > 3, there are infinitely many relations satisfying
the assumptions of Corollary 4.

Proof. Consider unary relations with e1 = 1 and `1 = `, and denote them R`. The
relation R` holds in cl(D) precisely when ` splits into principal ideals in O(D). For
i ∈ {1, 2}, let Si be the set of primes ` such that R` holds in cl(Di). We now show
S1 \ S2 is infinite, referring to material from [12, Ch. 8,9].

The set Si is equal to the set of primes that split completely in the ring class
field Li of O(Di), and recall that Li is a Galois extension of Q [12, Lem. 9.3]. The
Chebotarev density theorem asserts that S1 and S2 are infinite, and S1 \S2 is finite
if and only if L1 ⊆ L2 [12, Thm. 8.19].

But L1 cannot be contained in L2, for O(D1) is not contained in O(D2). Indeed,
pk divides the conductor of O(D2) but not that of O(D1), which implies that pk

divides the conductor of L2 but not that of L1 (see [12, Ex. 9.20–9.23]). �

In practice, of course, there are many other relations satisfying the requirements
of Corollary 4. Empirically, relations R holding in cl(D1) satisfy #R/D1 > #R/D2

with probability converging to 1 as p grows. We will not attempt to prove this
statement, but as a heuristic assume that this probability is at least bounded above
zero, and furthermore that this applies to relations that are smooth (as defined
in Section 4). Note that, independent of this assumption, the above proposition
guarantees that our algorithms are always able to terminate.

3. Algorithms

3.1. Computing O(E) from above. We now describe our first algorithm to com-
pute u, the conductor of the order O(E) isomorphic to End(E). We rely on Al-
gorithm FindRelation(D1, D2), described in Section 3.4, to obtain relations to
which Corollary 4 may be applied.

For small primes p dividing v, say all p 6 B for some B, we can efficiently
determine the largest prime power pk dividing u by isogeny climbing, as described
in [21, Sec. 4.2] and [33, Sec. 4.1]. This yields an isogenous curve E′ for which the
conductor of O(E′) is u′ = u/pk, using O(kp2 log q) operations in Fq (given Φp/Fq).

For simplicity, the algorithm below assumes that v is not divisible by the square
of a prime larger than B. The modification to handle large primes whose square
divides v is straightforward but unlikely to be needed in practice.

Algorithm 1 (E/Fq):
1. Let Schoof’s algorithm compute the trace t of E, then determine DK , v,

and the prime factors of v, by factoring 4q − t2 = −v2DK .
2. Select a bound B and set u← 1.
3. For each prime p 6 B dividing v:
4. Determine the largest power of p dividing u by isogeny climbing,

then set E ← E′, remove all powers of p from v, and update u.
5. For each prime p > B that divides v:
6. Set R← FindRelation(D1, D2) with D1 = (v2/p2)DK , D2 = p2DK .
7. Determine whether p divides u by checking if #R/DE < #R/D1,

then update u appropriately.
8. Return u.
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The correctness of Algorithm 1 follows from Corollary 4. Its running time de-
pends on B and the complexity of FindRelation. Using B = L

[
1/2, 1/

√
12
]

(q),
we obtain in Section 4 (Corollary 7) a heuristic bound of

L
[
1/2,
√

3/2
]

(q)

on the expected running time of Algorithm 1, using L
[
1/2, 1/

√
3
]

(q) space.
Note that the relations computed in Algorithm 1 only depend on the Frobenius

trace t of E, not its endomorphism ring, hence they may be reused to compute the
endomorphism ring of any curve in the same isogeny class. These relations also
provide a means to subsequently verify the computation of u, but for this purpose
we may wish to specialize the relations to u, a task we now consider.

3.2. Certifying u. Let us suppose that a particular value u is claimed as the
conductor of O(E). This may arise in a situation where u is actually known, either
via Algorithm 1 or from the construction of E (say, by the CM method), but
may also occur when one wishes to test a provisional value of u, as we will do in
Algorithm 2. We first give an algorithm to construct a certificate that may be used
to efficiently check whether a given curve with trace t in fact has endomorphism
ring O(E) with conductor u (equivalently, it allows one to test whether an element
of Ellt(Fq) lies in Ellt,u(Fq)).

The construction of this certificate depends only on u, v, and DK and does not
require an elliptic curve as input. Small prime factors of u and v may be removed
by isogeny climbing prior to calling Certify.

Algorithm Certify(u, v,DK):
1. For each prime factor p of v/u:
2. Set Rp ← FindRelation(D1, D2) with D1 = u2DK and D2 = p2DK .
3. For each prime factor p of u:
4. Set Rp ← FindRelation(D1, D2) with D1 = (u2/p2)DK , D2 = u2DK .
5. Return C = (u, v,DK , {Rp}p|v).

The relations computed in Step 2 may verify that the actual value of u divides
the claimed value, whereas the relations computed in Step 4 may verify that the
claimed value of u is not a proper divisor of u, as shown by Algorithm Verify.

Algorithm Verify(E/Fq, C):
1. For each prime factor p of v/u, verify that #Rp/E > #Rp/p2DK .
2. For each prime factor p of u, verify that #Rp/(u2/p2)DK > #Rp/E.
3. Return true if all verifications succeed and false otherwise.

In addition to the verification of u above, one may also wish to verify that v
and DK are correct. This may be accomplished in polynomial time if the trace
t and the factorizations of v and DK are included in the certificate. One may
additionally wish to certify the primes in these factorizations [2], or the verifier
may apply a polynomial-time primality test [1]. Assuming these values are correct,
the conductor of O(E) is equal to u if and only if Verify(E,C) returns true. This
statement does not depend on any unproven hypotheses.

The size of the certificate is unconditionally bounded by O(log3 q), and under
heuristic assumptions we obtain an O(log2+ε q) bound (Corollary 8). Within this
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bound, certificates for primes dividing v or DK can be included, as each certificate
requires O(log1+ε q) space and there are O(log q) such primes.

The expected running times of Certify and Verify depend on a smoothness
parameter µ used by FindRelation. This parameter may be chosen to balance
the cost of certification and verification, as in Algorithm 2 below, or one may reduce
the verification time by increasing the certification time. See Proposition 9 and the
discussion following for an analysis of this trade-off.

3.3. Computing O(E) from below. We now present a second algorithm to com-
pute u, which may be much faster than Algorithm 1 if u is small compared to v,
and is in general only slightly slower. Our basic strategy is to examine each of the
divisors ui of v in order, attempting to prove that u = ui is the conductor of O(E),
by constructing a certificate and verifying it. This only requires finding relations in
class groups with discriminants whose absolute value is at most |u2Dk|.

Typically v has few divisors (almost always O(loglog 2 v) [19, p. 265]), in which
case this basic strategy is quite effective. However, in order to improve performance
in the worst case, we apply isogeny climbing to effectively remove prime factors from
v as we go, thereby reducing the number of u’s we must consider. As above, we
suppose v is square-free for the sake of presentation.

Algorithm 2 (E/Fq):
1. Let Schoof’s algorithm compute the trace t of E, then determine DK , v,

and the prime factors of v by factoring v2DK = 4q − t2.
2. Set x← 0.
3. Set w ← max(1/3, x/2 + 1/ log q).
4. For primes p < exp(logw v):
5. Test whether p | u by isogeny climbing, then set E ← E′ and v ← v/p.
6. For divisors u of v less than exp(log2w v):
7. If Verify(E,Certify(u, v,Dk)) returns true:

Return the product of u and the primes determined in Step 5.
8. Set x← 2w and go to Step 3.

The variable w is used to bound the complexity of isogeny climbing using a
known lower bound for u that increases as the algorithm proceeds. Initially we
have no information about u so we use the cost of the factorization computed in
Step 1 to select w.

The running time of Algorithm 2 is analyzed in Section 4, where the bound

L [1/2 + o(1), 1] (|DE |) + L [1/3, cf ] (q)

is obtained under suitable heuristic assumptions. The same assumptions yield an
L [1/2 + o(1), 2/3] (|DE |) log q space bound.

3.4. Finding Relations. Given negative discriminants D1 and D2, we seek a rela-
tion R satisfying #R/D1 > #R/D2. We find such an R by searching for a relation
that holds in cl(D1) and then testing this inequality. As noted at the end of Sec-
tion 2, this test almost always succeeds, but if not we search for another relation.

To find relations that hold in cl(D1), we adapt an algorithm of McCurley [18, 26].
Fix a smoothness bound B, and for each prime ` 6 B with (D1 | `) 6= −1, let f`
denote the primeform with norm `. By this we mean the binary quadratic form
(`, b`, c`) of discriminant D1 with b` > 0, which may be constructed via [8, Alg. 3.3].
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We then generate random reduced forms by computing the product

(5) (a, b, c) =
∏
`

fx`

` ,

where the x` are suitably constrained (and mostly zero). If the prime factors of a
are bounded by B, say a =

∏
` `
y` , then we may decompose (a, b, c) as

(6) (a, b, c) =
∏
`

fτ`y`

` ,

where for nonzero y`, τ` = ±1 is defined by b = τ`b` mod 2`.
Recall that n =

√
|D1|/3 is an upper bound on the norm of a reduced imaginary

quadratic form [13, Ex. 5.14]. Provided that
∏
` `
|x`| > n, the decompositions in

(5) and (6) must be different, since a 6 n. This yields a non-trivial relation with
exponents e` = x` − τ`y`.

In order to minimize the cost of computing #R/DE (via CountRelation) for
the relations we obtain, in addition to bounding the primes `, we must also bound
the exponents e`, and especially the number of nonzero e`, which determines the
arity k of R. To achieve this we require all but a constant number k0 of the x` to be
zero (we use k0 = 3), and note that if we assume a is a random B-smooth integer in
[1, n], then we expect it to have approximately 2 log n/ logB distinct prime factors.
In the unlikely event that k significantly exceeds this expected value, we seek a
different relation.

Having bounded k, the complexity of CountRelation then depends on the
products e`T (`) appearing in (4). For large ` we have T (`) = O(`2) operations
in Fq. To make the products e`T (`) approximately equal we may use the bound
|x`| 6 (B/`)2. In practice we use a bound

|x`| 6 (B/`)ω,

that better reflects the cost of T (`) for moderate values of ` (we typically use
ω ≈ 1.6); this has no impact on our asymptotic analysis.

The Canfield–Erdős–Pomerance theorem [10, Thm. 3.1] implies that if we sam-
ple uniformly random integers from the interval [1, n] until we find one that is
L [1/2, µ] (n)-smooth, our expected sample size is L [1/2, 1/(2µ)] (n), where the im-
plied constants can all be made explicit. This allows us to compute a lower bound
m(B,n) on the number of random integers we must sample from [1, n] in order to
have a better than 50% chance of finding one that is B-smooth.

We initially set B = L [1/2, µ] (n), for a suitably chosen µ, and compute m(B,n)
on the heuristic assumption that the norms of the forms we generate are about as
likely to be B-smooth as random integers in the interval [1, n].4 In practice we find
this to be the case, however, to account for the possibility that none of the elements
generated according to our constraints have B-smooth norms (or that none of the
relations we find are suitable), we increase the smoothness bound by a constant
factor r slightly greater than 1, if we fail to find a suitable relation after testing
2m(B,n) elements.

4This is true for random forms, see [8, Prop. 11.4.3].
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Algorithm FindRelation(D1, D2):
1. Set B = L [1/2, µ] (n), where n =

√
|D1|/3.

2. Compute primeforms f` for ` 6 B.
3. Repeat 2m(B,n) times:
4. Pick random integers x` with |x`| 6 (B/`)ω such that at most k0

of the x` are nonzero and
∏
` `
|x`| > n.

5. Compute the reduced form (a, b, c) =
∏
` f

x`

` .
6. If a is B-smooth:
7. Let R be the relation with e` = |x` − τ`y`| where a =

∏
` `
y` ,

and let k be the arity of R.
8. If k < (2/µ) log1/2 n and #R/D1 > #R/D2, then return R.
9. Set B ← rB and go to Step 2.

As a practical optimization, we may choose not to generate completely new
values for x` every time Step 4 is executed, instead changing just one bit in one of
the nonzero x`. This allows the form (a, b, c) to be computed in most cases with a
single composition/reduction using a precomputed set of binary powers of the f`.

To implement Step 6 one may use the elliptic curve factorization method (ECM)
to probabilistically identifyB-smooth integers in time L [1/2, 2] (B) = L [1/4, 2µ] (n),
which effectively makes the cost of smoothness testing negligible within the preci-
sion of our subexponential complexity bounds. A faster approach uses Bernstein’s
algorithm, which identifies the smooth numbers in a given list in essentially linear
time [4]. This does not change our complexity bounds and for the sake of simplicity
we use ECM in our analysis.

In practice, the bound B is quite small (under 1000 in both our examples), and
very little time is spent on smoothness testing. In our implementation we used a
combination of trial division and a restricted form of Bernstein’s algorithm.

4. Complexity Analysis

The complexity bounds derived below depend on the following heuristics:

(1) Small primes. We assume the GRH. The effective Chebotarev bounds of
Lagarias and Odlyzko then imply that for all x = Ω(log2+ε |DK |) there are
Ω(x/ log x) primes less than x that split in OK , where the implied constants
are all effectively computable [22, Thm. 1.1].

(2) Random norms. We assume that the norms of the reduced forms com-
puted in Step 4 of FindRelation have approximately the distribution of
random integers in [1, n]. Under this assumption, we apply the Canfield–
Erdős–Pomerance theorem to estimate the probability of generating a form
whose norm is B-smooth.

(3) Random relations. If D1 = u2
1DK and D2 = u2

2DK are sufficiently
large discriminants with u2 - u1, and R is a random relation for which
#R/D1 > 0, with `i and ei bounded as in FindRelation, then we assume
that #R/D1 > #R/D2 with probability bounded above zero.

(4) Integer factorization. We assume that ECM finds a prime factor p of an
integer n in expected time L [1/2, 2] (p) log2 n [24], and that the expected
running time of the number field sieve is L [1/3, cf ] (n) [9].
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In the propositions and corollaries that follow, we use the shorthand (H) to
indicate that we are assuming Heuristics 1–4 above.

Proposition 6. (H) FindRelation(D1, D2) has expected running time

L
[
1/2, 1/(

√
8µ)
]

(|D1|) + L [1/2, 0] (|D1|) log3 |D2|.

The output relation R has norms `i bounded by L
[
1/2, µ/

√
2
]

(|D1|), exponents ei
bounded by L

[
1/2,
√

2µ
]

(|D1|), and arity k < (2/µ) log1/2 |D1|.

Proof. Let B = L [1/2, µ] (n) = L
[
1/2, µ/

√
2
]

(|D1|), where n =
√
D1/3. By

Heuristic 1, for sufficiently large B there are Ω(logB) primes ` = O(log2B) with
(D1 | `) = 1. For these `, the value of |x`| may range up to Bω−δ, for any δ > 0.
Thus there are more than 2m(B,n) = L [1/2, 1/(2µ)] distinct elements that may be
generated in Step 4, and with high probability at least m(B,n) are. So Heuristic 2
applies, and with probability greater than 1/2 we generate at least one element
with B-smooth norm each time Step 3 is executed.

Under Heuristic 2, the expected number k of nonzero exponents ei is at most

k0 + 2 log n/ logB = k0 +
1
µ

log1/2 |D1|(log log |D1|)−1/2,

since we expect a random B-smooth integer in [1, n] to have (2 + o(1)) log n/ logB
distinct prime factors (this may be proven with the random bisection model of [3]).
This, together with Heuristic 3, ensures that when Step 8 is reached the algorithm
terminates, with some constant probability greater than zero. Thus we expect to
reach Step 9 just O(1) times, and the total number of forms (a, b, c) generated by
the algorithm during its execution is bounded by L [1/2, 1/(2µ)] (n).

For each form (a, b, c), the algorithm tests whether a is B-smooth in Step 6.
Applying ECM, under Heuristic 4 we identify a B-smooth integer (with high prob-
ability) in time L [1/2, 2] (B) = L

[
1/4,
√

2µ
]

(n) [24]. This yields

L [1/2, 1/(2µ)] (n) = L
[
1/2, 1/(

√
8µ)
]

(|D1|),

as a bound on the expected time spent finding relations.
The bounds on k, the `i, and the ei are immediate. We may bound the cost of

computing #R/Dj , for j = {1, 2}, by

O
(
2k log(max ei) log2 |Dj |

)
= O(2k log5/2+ε |Dj |) = L [1/2, 0] (|D1|) log3 |Dj |.

The proposition follows. �

Corollary 7. (H) Algorithm 1 has expected running time L
[
1/2,
√

3/2
]

(q).

Proof. We may compute t in polynomial time with Schoof’s algorithm, and under
Heuristic 4 we factor 4q − t2 = −v2DK in expected time L [1/3, cf ] (q).

We use B = L
[
1/2, 1/

√
12
]

(q) in Algorithm 1, and set µ = 1/
√

6 when call-
ing FindRelation. The cost of isogeny climbing, the calls to FindRelation,
and the calls to CountRelation to compute #R/DE all have expected complex-
ity L

[
1/2,
√

3/2
]

(q), including the cost of computing the required Φ`/Fq. Only
O(log q) iterations are required in Algorithm 1 (one for each p | v), which does not
change the complexity bound. �
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Corollary 8. (H) Let D1 = u2DK and D2 = v2DK . The expected running time
of Certify(u, v,DK) is within an O(log v) factor of the expected complexity of
FindRelation(D1, D2). The output certificate C has size O(log1+ε |D1| log v).

Proof. Algorithm Certify makes fewer than O(log v) calls to FindRelation with
|D1| 6 |u2DK | and |D2| 6 |v2DK |. Applying the bounds of Proposition 6 for `i,
ei, and k, each relation has size O(log |D1| log log |D1|). �

Proposition 9. (H) Given a certificate C produced by Algorithm Certify with
parameter µ and an elliptic curve E/Fq, Algorithm Verify(E/Fq, C) has expected
running time

L
[
1/2, 3µ/

√
2
]

(|u2DK |) log5/2 q.

Proof. The expected time to compute Φ`/Fq is O(`3+ε log1+ε q) [7, 14]. By Propo-
sition 6, each relation in the certificate contains O(log1/2 |D1|) distinct `i, each
bounded by L

[
1/2, µ/

√
2
]

(|u2DK |). There are at most O(log q) relations in the
certificate, yielding a total time of

L
[
1/2, 3µ/

√
2
]

(|u2DK |) log5/2 q,

to compute all the Φ`/Fq needed for verification. The total cost of all calls to
CountRelation may be bounded by

L
[
1/2,
√

2µ
]

(|u2DK |) log2+ε q,

using fast multiplication in Fq, which is dominated by the bound above. �

To balance the costs of verification and certification, one uses µ = 1/
√

6. The
verification time may be reduced (and the certification time increased) by choosing a
smaller µ. For example, with µ = 1/

√
18 the verification time is L [1/2, 1/2] (|u2DK |)

and the certification time is L [1/2, 3/2] (|u2DK |), ignoring logarithmic factors in q.

Proposition 10. (H) Algorithm 2 has expected running time

L [1/2 + o(1), 1] (|DE |) + L [1/3, cf ] (q).

Proof. In Step 1 we compute t in polynomial time and factor −v2DK in expected
time L [1/3, cf ] (q), by Heuristic 4. Let µ = 1/

√
6 in all the calls to Certify, in

order to balance the cost of Verify. The cost of each certification/verification
performed in Step 7 is then bounded by L

[
1/2,
√

3/2
]

(|DE |) log5/2 q, according to
Proposition 9, since we never test a divisor of v that is greater than the conductor
u of DE . In Step 6, v can contain no prime factors less than exp(logw v). Thus the
number of divisors is bounded by(

log1−w v

log2w−w v

)
6
(
log1−w v

)logw v
= L [w, 1] (v) = L [1/2 + o(1), 1] (|DE |).

In the rightmost equality we have used

(7) log |DE | > log u > log2w−1/ log q v ⇒ log v 6 log1/(2w−1/ log q) |DE |
to express the bound in terms of |DE |, noting that

w/(2w − 1/ log q) = 1/2 + 1/(4w log q − 2),

where w > 1/3 and q →∞ as |DE | → ∞. The cost of Step 7 for all the divisors con-
sidered in a single execution of Step 6 is bounded by L [1/2 + o(1), 1] (|DE |) log5/2 q.
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The algorithm may repeat Step 6 up to log q times, but the cost of each iteration
dominates all prior ones, so we have bounded the total cost of Step 7.

The cost of isogeny climbing in Step 5 during the first iteration is bounded by

exp
(

(3 + o(1)) log1/3 v
)

log2+ε q = L [1/3, cf ] (q)

(for any cf ), and thereafter cannot exceed

exp ((3 + ε) logw v) log2+ε q = L [w, 1] (v) log3 q = L [1/2 + o(1), 1] (|DE |) log2+ε q.

Here we have again applied (7), and the choice of the constant 1 (or any constant)
is justified by the fact that 3/(log log |DE |)1−w → 0 as |DE | → ∞.

To complete the proof, we note that if L [1/2 + o(1), 1] (|DE |) log5/2 q exceeds
L [1/3, cf ] (q) we may incorporate the log5/2 q factor into the o(1) term. Otherwise,
the complexity is L [1/3, cf ] (q), and the proposition holds in either case. �

In both Algorithms 1 and 2, the space is dominated by the size of the polynomials
Φ`/Fq. As noted in Section 2.2, these can be computed in O(`2+ε log q) space [7].
Plugging in parameters from the complexity analysis above, and making the same
heuristic assumptions, we obtain an L

[
1/2, 1/

√
3
]

(q) space bound for Algorithm 1,
and an L [1/2 + o(1), 2/3] (|DE |) log q space bound for Algorithm 2.

5. Examples

The rough timings we give here were achieved by a simple implementation run-
ning on a single 2.4GHz Intel Q6600 core. The algorithm FindRelation was
implemented using the GNU C/C++ compiler [32] and the GMP library [16], and
for CountRelation we used a PARI/GP script [27]. We did not attempt to
maximize performance, our purpose was simply to demonstrate the practicality of
the algorithms on some large inputs. In a more careful implementation, constant
factors would be substantially improved and many steps could be parallelized.

5.1. First Example. We consider the elliptic curve E/Fq with Weierstrass equa-
tion Y 2 = X3 − 3X + cE , where

cE = 660897170071025494489036936911196131075522079970680898049528;
q = 1606938044258990275550812343206050075546550943415909014478299.

Its trace t = 212 is computed by the Schoof–Elkies–Atkin algorithm in a few seconds
and, factoring 4q − t2, it is nearly instantaneous to retrieve DK = −7 and

v = 2 · 127 · 524287︸ ︷︷ ︸
p1

· 7195777666870732918103︸ ︷︷ ︸
p2

.

Let us apply Algorithm 1 to compute the conductor u of O(E). First, we use
isogeny climbing to handle small prime factors p of v, those for which Φp can be
computed in reasonable time (or, more likely, have already been precomputed);
here, this means 2 and 127. It takes roughly 20 seconds to compute Φ127 and
isogeny climbing itself takes less than 2 seconds. We find none of these primes
divide u; hence E′ = E and we may now assume v = p1p2.

For p1 we set D1 = (v/p1)2DK and D2 = p2
1DK as in Corollary 4. To find a

relation satisfying this corollary, we use Algorithm FindRelation(D1, D2) with
the bound B = 500. Corollary 7 uses B = L

[
1/2, 1/

√
12
]

(q) ≈ 1900, but, taking
into account constant factors in the complexity estimates, we find experimentally
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that B = 500 better balances the expected running time of FindRelation with
that of computing #R/DE . The iteration bound 2m(B,n) = 6 · 107 has been
evaluated via m(B,n) = 1/ρ(u) with u = log n/ logB ≈ 8 using Table 1 of [17],
computed by Bernstein.

After about 20 minutes, FindRelation outputs the relation R with

(`ei
i ) = (22533, 11752, 292, 3747, 791, 1131, 1491, 1512, 3471, 4311),

for which #R/D1 = 2 and #R/D2 = 0. Note that, as suggested by Footnote 3, we
make use of ` = 2 even though it divides v (using the algorithm in [33, Sec. 4.2]).
Now, to evaluate #R/DE using Algorithm CountRelation(E,R), we need to
compute the required modular polynomials. We use precomputed Φ` for ` < 100,
and for ` > 100 apply the algorithm in [7]; Φ431 takes 5 minutes, Φ347 takes 3
minutes, and the others take less than a minute each. Finally, #R/DE = 0 is
evaluated in 6.5 minutes. Since #R/DE < #R/D1, we conclude from Corollary 4
that p1 is a factor of u.

We now turn to p2 and setD1 = (v/p2)2DK andD2 = p2
2DK accordingly. The re-

lation R = (223, 115, 431, 712) is found almost instantly by FindRelation(D1, D2),
and we have #R/D1 = 2 and #R/D2 = 0. CountRelation(E,R) computes
#R/DE = 2 in 1.5 seconds, proving that p2 - u (since #R/DE ≮ #R/D1).

All in all, we have found the conductor u = p1 of the elliptic curve E defined
over a 200-bit prime field in only slightly more than half an hour of computation.
The sizes of the primes p1 and p2 represents nearly a worst-case; if p2 was 5 or
6 bits larger the remaining part of v would be small enough that one could more
efficiently use a combination of isogeny climbing and Hilbert class polynomials to
determine u.

We note that, in this example, we could have used the invariant γ2 = j1/3 (or
other more favorable invariants [7, 14]) in place of j, allowing us to use modular
polynomials in place of Φ` that can be more quickly computed. Doing so would
let us increase the bound B (reducing the time to find relations), and lead to an
overall improvement in the running time.

5.2. Second Example. Consider now the elliptic curve E : Y 2 = X3 − 3X + cE
defined over the 255-bit prime field Fq where

cE = 14262957895783764742987524732821199570\
860243293007735537575027051453663494306;

q = 50272551883931021408091448710235646749\
904660980498576680086699865431843568847.

As above, we compute its trace t = 1200 via the SEA algorithm in about 10 seconds,
and an easy factorization yields DK = −7 and

v = 2 · 127 · 582509︸ ︷︷ ︸
p1

· 582511︸ ︷︷ ︸
p2

· 852857︸ ︷︷ ︸
p3

· 2305843009213693951︸ ︷︷ ︸
p4

.

Let us run Algorithm 2 to compute O(E). We start with w = 1/3, and first
remove the prime factors of v less than exp(log1/3 v) ≈ 85. As in Example 1, the
constant factors make this a slight underestimate, and we are happy to increase
this bound to include both 2 and 127, which we handle by isogeny climbing. We
find that neither of these divide u, and therefore E′ = E, so we now assume that
v = p1p2p3p4.
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We then reach Step 6 and consider divisors u of v less than exp(log2w v) ≈ 4 ·108,
namely p1, p2 and p3. Starting with u ← p1, the certificate C generated in Step 7
by Certify(u, v,DK) consists of

Rp4 = Rp3 = Rp2 = (241, 1131, 371) and Rp1 = (111),

and takes negligible time to compute. The call to Verify(E/Fq, C) takes one
second and returns false, proving that u 6= p1.

Turning to u = p2, Certify(u, v,DK) quickly outputs the certificate

Rp4 = Rp3 = Rp1 = (285, 112, 235, 293) and Rp2 = (111)

and Verify(E/Fq, C) returns false after 1.5 seconds of computation; so u 6= p2.
We next consider u = p3; the certificate used is

Rp4 = Rp2 = Rp1 = (2239, 111, 373) and Rp3 = (111).

Computing and verifying this certificate takes about a second, and in this case the
verification succeeds, proving that u = p3.

The total running time is less than 15 seconds, most of which is spent point-
counting. For comparison, it takes FindRelation(p2

2D, p
2
1D) nearly five minutes

to output a relation, followed by a twenty-minute computation to evaluate its car-
dinality, demonstrating the advantage of Algorithm 2 over Algorithm 1 in this
example.
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