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Route de Narbonne, 31000 Toulouse, France.
E-mail address: loubes@math.ups-tlse.fr

URL: http://www.math.univ-montp2.fr/ loubes

Abstract. In this paper, we build an estimator of the Hurst exponent of a frac-
tional Lévy motion. The stochastic process is observed with random noise errors in
the following framework: continuous time and discrete observation times. In both
cases, we prove consistency of our wavelet type estimator. Moreover we perform
some simulations in order to study numerically the asymptotic behaviour of this
estimate.

1. Introduction

In this paper we present results on an asymptotic analysis of a wavelet type
estimator of the self-similarity (Hurst) parameter of a Real Harmonizable Fractional
Lévy Motion (RHFLM). In particular, we show consistency of this estimate in a
noisy regression framework. This enables to detect RHFLM in noisy data and to
use it in practical settings.

It is well known that standard Brownian Motion fails in explaining certain statis-
tical time series arising from finance and turbulence theory. Hence Mandelbrot and
Van Ness, in 1968, introduced a stochastic motion of a quite different nature, the
Fractional Brownian Motion (in short FBM). The FBM of index H is the only cen-
tered Gaussian field, vanishing at zero, with stationary increments and self-similar
with index H . Its Hurst exponent governs its properties. The main difference
between both processes is that, now the increments are not independent and the
process can model short or long range dependent data.
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Nevertheless, in image modeling, in finance or in biology, the processes are rarely
Gaussian, which prevents the use of Gaussian fields. Hence, Benassi et al., in 2002,
introduce Real Harmonizable Fractional Lévy Motions (in short RHFLM) to model
such processes. Let us recall that a RHFLM XH of index H (0 < H < 1) is defined
as the stochastic integral

XH(x) =

∫

Rd

e−ix·ξ − 1

‖ξ‖H+d/2
L(dξ), x ∈ R

d, (1.1)

where ‖ · ‖ is the Euclidean norm and L(dξ) is a Lévy random measure in the sense
of Benassi et al. (2002).

Such processes are non Gaussian, locally asymptotically self-similar with Hurst
exponent H and are well fitted to mimic most of the irregular phenomena that can
be observed in turbulence experiments, provided the parameter H is well chosen.

So, estimating the Hurst exponent of a RHFLM is the key issue in order to ana-
lyze data and to model real observations by such a process. More precisely, we want
to be able to estimate the Hurst exponent of a RHFLM observed only at discrete
times in a white noise framework. In their work, Benassi et al. (2002) propose
an estimator of Hurst exponent based on some generalized quadratic variation of
the process. This estimator has first been introduced by Istas and Lang (1997) in
a Gaussian framework. Such estimators have also been studied in Benassi et al.
(1998b) in the case of some self-similar Gaussian random fields or by Benassi et al.
(1998a), Benassi et al. (2000), Ayache and Lévy Véhel (2004), Ayache et al. (2005)
and Lacaux (2004a) in the case of multifractional random fields.

However, such estimation techniques are unable to handle noisy observations and
to estimate this exponent when data are blurred by a Gaussian white noise, as we
will see later in this paper. Our purpose is hence to construct a robust estimator
and to detect RHFLM in noisy data.

For this, we consider wavelet analysis of this stochastic process. Work on prop-
erties of wavelet coefficients of fractional Brownian motion was pioneered in the
papers by Flandrin and Abry (1999) or Flandrin (2000). Statistical properties of
wavelet type estimators for Hurst exponent were studied in Delbeke and Van Assche
(1998) or Bardet (2002) in the case of FBM. Such estimators have also been intro-
duced in the case of linear fractional stable motion in Delbeke and Abry (2000),
Stoev et al. (2002) and Pipiras et al.. In Abry et al. (2003) are highlighted the
properties of wavelet coefficients for self-similar processes or long-range dependent
processes. For multifractal processes, such estimators are studied in Jaffard (2000),
Gamboa and Loubes (2005a) or Gamboa and Loubes (2005b) for example. They
are based on a regression of the log-variance of the wavelet coefficients versus scale.
Other authors study also this issue, for instance in Kurchenko (2002) or Hall et al.
(2000).

The aim of this paper is to introduce an estimator of the Hurst exponent based on
wavelet type coefficients and prove its asymptotic behaviour in the case of RHFLMs.
Contrary to other work, the coefficients of a RHFLM are not Gaussian neither
independent. Hence we are facing a difficult issue since work in this direction
either relies on independence of the coefficients or its Gaussian properties to prove
consistency of the estimator, see for instance the work by Morales and Kolaczyk.
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Indeed, in such papers, the authors often generalize Gaussian type limit theorems
to the case of weak dependent random variables using results in Doukhan (2003)
for instance. In Pipiras et al., the asymptotic normality of the estimator relies on
properties of stable moving average sequence.

Unfortunately, in the case of coefficients of a RHFLM, we are not in such cases
and do not have powerfull probabilistic tools at hand. Hence we rely directly on
the properties of RHFLM to get asymptotic results. Nevertheless, we prove almost
sure consistency of the moment type estimator in the presence of Gaussian noise.
This enables us to compute the estimator and analyze its performance for simulated
data.

The paper falls into the following parts. Section 2 is devoted to a wavelet type
representation of RHFLM. In Section 3, we construct estimators of the Hurst ex-
ponent of a RHFLM. Then, in Section 4, we provide an estimator of the Hurst
exponent in a regression framework. Section 5 deals with a numerical study of our
estimators for simulated data.

2. RHFLM and wavelet bases

RHFLM is one of the canonical example of fractional non Gaussian process, with
a large presence in both the theoretical literature and applications. Wavelets have
become a standard tool for the modeling and analysis of such signals.

Let us first recall the definition and the properties of a RHFLM.

RHFLM:

Benassi et al. (2002) have defined RHFLMs by substituting in the harmonizable
representation of the FBM to the Wiener measure W (dξ) a Lévy random mea-
sure L(dξ). Heuristically, a Lévy random measure is linked with the increments
of a Lévy process. Also, the non-Brownian part of a Lévy random measure is de-
fined thanks to a Poisson random measure. We first recall the definition of a Lévy
random measure L(dξ) in the sense of Benassi et al. (2002).

The non-Brownian part M(dξ) of the Lévy random measure L(dξ) is represented
by a Poisson random measure N(dξ, dz) on R×C whose mean measure n(dξ, dz) =
dξ ν(dz) is such that ν({0}) = 0 and

∀ p > 2,

∫

C

|z|p ν(dz) < +∞.

Here, ν(dz) is a non vanishing rotationally invariant measure, i.e.

P (ν(dz)) = dθ νρ(dρ), (2.1)

where dθ is the uniform measure on [0, 2π) and P
(
ρeiθ

)
= (θ, ρ) ∈ [0, 2π) × R+

∗ .
The random measure M(dξ) is defined by

∫

R

f(ξ)M(dξ) =

∫

R×C

[f(ξ)z + f(−ξ)z̄] (N − n)(dξ, dz),

where f ∈ L2(Rd). If f(ξ) = f(−ξ), then
∫

R
f(ξ)M(dξ) is a real-valued symmetric

infinitely divisible random variable and for every u ∈ R

E

[
eiu

R

f(ξ) M(dξ)
]
=exp

[∫

Rd×C

[
e2iu<(f(ξ)z) − 1 − 2iu< (f (ξ) z)

]
dξ ν(dz)

]
. (2.2)
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Here, M(dξ) is only the non-Brownian part of the Lévy random measure L(dξ).
Finally,

L(dξ) = aM(dξ) + bW (dξ),

where (a, b) ∈ R2 and W (dξ) is a Wiener measure independent of M(dξ). Taking
L(dξ) = W (dξ), the field XH defined by (1.1) is a FBM. The Wiener measure
W (dξ) is a complex random measure which ensures that XH is a real-valued field,
see Samorodnitsky and Taqqu (1994); Cohen (1999) for reference on complex Gauss-

ian random measure. If f ∈ L2(R) and f(ξ) = f(−ξ),
∫
f(ξ)L(dξ) is a symmetric

real-valued random variable,

E

[
eiu

R

f(ξ) L(dξ)
]
=exp

(
−b

2u2 ‖f‖2
2

2

)
E

[
eiau

R

f(ξ) M(dξ)
]
, u ∈ R (2.3)

and

E

[∣∣∣∣
∫

R

f(ξ)L(dξ)

∣∣∣∣
2
]

= A‖f‖2
L2(R), (2.4)

with A = a2
∫

C
|z|2 ν(dz) + b2. The isometry property (2.4) allows us to evaluate

the second order moment of the wavelet type coefficients of a RHFLM.
In the following, we assume that L(dξ) is a non vanishing measure, i.e. (a, b) 6=
(0, 0).

A RHFLM with index H , defined by

XH(x) =

∫

R

e−ixξ − 1

|ξ|H+1/2
L(dξ), x ∈ R,

has stationary increments and the same structure of covariance as a FBM. Note
that the Brownian part of XH is a FBM with index H independent from its non-
Brownian part.

In addition, as in the case of FBM, RHFLMs have locally Hölder sample paths
and their pointwise Hölder at point x is equal almost surely to H . Whereas a FBM
is self-similar with index H , in general, a RHFLM is only locally self-similar and
looks like locally a FBM with index H . An important difference between RHFLM
and FBM is that as soon the RHFLM is non-Gaussian, it does not have moment
of every order. However, as noticed in the following, the wavelet type coefficients
of a RHFLM have moments of every order. This key property allows us to study,
in Section 3, moment type estimators based on the wavelet type coefficients of a
RHFLM.

Weakness of quadratic variation estimator:

Consider the following standard regression model with N + 1 observations. We
observe at discrete times l/N, l = 0, . . . , N a noisy RHFLM

YH

(
l

N

)
= XH

(
l

N

)
+ σNεl, l = 0, . . . , N, (2.5)

where εl are an i.i.d sample of Gaussian random variables N (0, 1) independent from
XH and σN is the noise level.

In their work, Benassi et al. (2002) consider for K > 0 and a sequence ak, k =
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0, . . . ,K the quadratic variation

VN =
1

N −K + 1

N−K∑

p=0

[
K∑

k=0

akXH

(
k + p

N

)]2

=
1

N −K + 1

N−K∑

p=0

[∆Xp,N ]
2
.

If observed without observation errors, this technique enables to build a weakly
consistent estimate of Hurst exponent. When observed in practice with Gaussian
errors, let us apply such method and define the noisy quadratic variation as

WN =
1

N −K + 1

N−K∑

p=0

[∆Yp,N ]
2

(2.6)

=
1

N −K + 1

N−K∑

p=0

[
∆Xp,N + σN

K∑

k=0

akεk+p

]2

.

Write ξp =
∑K

k=0 akεk+p ∼ N (0,
∑K

k=0 a
2
k). Now, if we consider the expectancy of

(2.6), we get that

E(WN ) = E(VN ) + σ2
NE(ξ21)

= N−2Hc(H) + σ2
N

K∑

k=0

a2
k,

where c(H) > 0 only depends on H .
As a result, in order to get consistency of the noisy quadratic variation, we need

to ensure that

σ2
NN = O(N1−2H ),

which implies that σN = O(1/NH), 0 < H < 1. In a standard regression framework,
when the RHFLM is observed at equispaced times, the noise level is of order σN =
O(1/

√
N). Hence the method described in Benassi et al. (2002) does not provide

a consistent estimator of the Hurst exponent when H > 1/2 in the regression
framework. Moreover, when estimating Hurst exponent, we can not consider a
method depending on the values of the parameter of interest. As a result we pay
attention in the next section to wavelet type estimators.

Wavelet bases:

Let ψ(·) be a function with compact support, continuous derivative and r vanishing
moments, i.e.

∀m = 0, . . . , r − 1,

∫
tmψ(t) dt = 0.

We assume that ψ 6= 0, i.e. that its support suppψ 6= ∅. Define the rescaled
function at scale j and location k as ψjk(t) = 2j/2ψ(2jt− k). Then given a process
(Y (t))t∈R

observed at continuous time, the corresponding wavelet type coefficients
of the process are defined by

wjk =

∫
Y (t)ψjk(t)dt = 2−j/2

∫
Y

(
u+ k

2j

)
ψ(u)du. (2.7)
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When we observe Y at discrete times, the coefficients wjk are not known. In
this case, we will approximate them thanks to a discretization of the integral (2.7).
For ease of writing, we assume that the compact support of ψ is included in [0, 1]
and that we observe Y at discrete times l/N , l = 0 . . .N . However, as in Bardet
(2002), up to change the discretization, all the following results can be stated for ψ a
wavelet function with compact support. We refer to Mallat (1998) and Daubechies
(1992) for general references about wavelet bases and their properties. In this
framework, we will replace the coefficients wjk by the corresponding coefficients of
the discretized process defined by

wn
jk =

1

2j/2n

n∑

p=1

Y

(
p+ nk

2jn

)
ψ(
p

n
). (2.8)

Remark that wn
jk is a discretization of constant step of the integral (2.7). The

parameter n will be chosen such that wn
jk can be computed knowing Y at times

l/N , l = 0, . . . , N .

Let us first assume that we observe a RHFLM in continous time. Some key
properties of its wavelet type coefficients are given in the following lemma. As
in the case of LFSM (Delbeke and Van Assche, 1998), these coefficients can be
rewritten as stochastic integral with respect to the Lévy random measure L(dξ).
The coefficients of a LFSM are stable random variables and then do not have
a finite second order moment. In our frawemork, wjk is an infinitely divisible
random variable with moments of every order. Since a RHFLM XH has stationary
increments, its coefficients wjk are stationary in k for each fixed j according to
Abry et al. (2003). We provide here a direct proof of this result. Note that our
framework is not studied in Abry et al. (2003) since XH is not (in general) a self-
similar process. Then, contrary to Abry et al. (2003), wjk is not a self-similar
process in j. However, we can establish the asymptotics of wjk as j → +∞.

Lemma 2.1 (wavelet type coefficient of RHFLM). Let (XH(t))t∈R
be a RHFLM

with Hurst exponent H. Define

wjk = 2j/2

∫
XH(t)ψ(2jt− k)dt, (2.9)

where the function ψ has r ≥ 2 vanishing moments. We have the following proper-
ties:

(1) wjk =

∫

R

ψ̂jk(ξ)

|ξ|H+1/2
L(dξ) a.s. where f̂(ξ) =

∫
R

exp(itξ)f(t)dt.

(2) (Stationarity) wjk ∼ wj0, for k = 0, . . . , 2j − 1, but the coefficients are not
independent.

(3) (Moments) Set N0 ∼ N (0,E(w2
00)). For all integer p > 0,

E(w2p+1
jk ) = 0

and as j → +∞, for each fixed k

2pj+2pHE(w2p
jk) → E(N2p

0 ).

(4) (Asymptotic Normality) As j → +∞,
√

2j(1+2H)wjk
(D)−→ N

(
0,E(w2

00)
)
.
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Proof . • In view of the definition of the process XH ,

wjk =

∫

R

ψjk(t)

(∫

R

e−itξ − 1

|ξ|H+1/2
L (dξ)

)
dt.

Since ψ(·) has r ≥ 2 vanishing moments,
∫

R

ψjk(t)dt = 0, (2.10)

and then the first statement is immediate provided we can exchange the
integral in ξ with the integral in t. However, this exchange is not trivial
since the stochastic integral in ξ is defined in a L2 framework. We first point

out that since ψ is a function with compact support, ψ̂jk is a C∞-function
which vanishes at infinity. Define

gjk(ξ) =
ψ̂jk(ξ)

|ξ|H+1/2
, ξ ∈ R\{0}.

Since ψ satisfies (2.10), g is a square integrable function and

αjk =

∫

R

ψ̂jk(ξ)

|ξ|H+1/2
L(dξ)

is well defined. Then, using the isometry property (2.4) and the indepen-
dence of the random measures M (dξ) and W (dξ), one easily proves owing
to the Fubini Theorem that

E

(
|wjk − αjk |2

)
= 0,

which leads to the first statement.
• By definition of ψjk ,

wjk = 2−j/2

∫

R

ψ̂(2−jξ)

|ξ|H+1/2
exp

(
2−jikξ

)
L(dξ).

Recall that the control measure ν(dz) is invariant by rotation. Then, (2.2)
and (2.3) gives

wjk
(D)
= 2−j/2

∫

R

ψ̂(2−jξ)

|ξ|H+1/2
L (dξ) = wj0.

• Since ψ has r ≥ 2 vanishing moments,
∫

R

tψ(t)dt = 0,

and then, as ξ → 0, ψ̂jk(ξ) = O
(
ξ2
)

and gjk ∈ Lp (R) for every p ≥ 2.
The wavelet type coefficient wjk has moments of every order in view of
Proposition 2.2 in Benassi et al. (2002). We first point out that by definition
of L (dξ), wjk is a real-valued symmetric random variable which implies

∀p ∈ N, E

(
w2p+1

jk

)
= 0.
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In order to obtain the asymptotic behaviour of E

(
w2p

jk

)
as j → +∞, we

apply Proposition 2.2 in Benassi et al. (2002) which links this moment to
the deterministic L2q-norms

‖gjk‖2q
2q =

∫

R

|gjk (ξ)|2q
dξ = 2j(1−2q−2qH)‖g00‖2q

2q .

Let us first assume that L(dξ) = M(dξ). Then Proposition 2.2 in Benassi
et al. (2002) leads to

E(w2p
jk) = 2−2pj−2pH

p∑

m=1

2jm(2π)m
∑

Lm

m∏

q=1

(2lq)!‖g00‖2lq
2lq

∫ +∞

0 ρ2lq νρ(dρ)

(lq !)2
,

where
∑

Lm
stands for the sum over the set of partitions Lm of {1, . . . , 2p} in

m subsets Kq such that the cardinality of Kq is 2lq with lq > 1. Therefore,
as j → +∞,

2pj+2pHE(w2p
jk) → (2π)p

∑

Lp

p∏

q=1

(2lq)!‖g00‖2lq
2lq

∫ +∞

0 ρ2lq νρ(dρ)

(lq !)2
. (2.11)

Note that by definition of
∑

Lp
, in (2.11), for each q, lq = 1, which leads to

2pj+2pHE(w2p
jk ) → (2π)p2p‖g00‖2p

2

(∫ +∞

0

ρ2 νρ(dρ)

)2p

card(Lp).

Hence, as j → +∞,

2pj+2pHE(w2p
jk) → card(Lp)

(
E
(
w2

00

))p
.

Since card(Lp) = (2p)!/(2pp!), as j → +∞,

2pj+2pHE(w2p
jk) → E

(
N2p

0

)
.

Therefore we have proved the third statement in the case where L(dξ) =
M(dξ). Note that this statement is evident when L(dξ) = W (dξ). Hence,
the independence between W (dξ) and M(dξ) gives the conclusion for any
Lévy random measure L(dξ) = aM(dξ) + bW (dξ).

• By stationarity (see second statement), we can assume k = 0. Equa-
tions (2.2) and (2.3) gives the characteristic function of wj0. A simple
change of variable (λ = 2−jξ) and a dominated convergence argument leads
to the conclusion.

�

Hence a RHFLM is indexed by the single parameter H . It controls both the
correlation structure of the process and the smoothness of its sample paths. In
the two following sections, we define a moment based estimator and present main
results concerning its asymptotic behaviour in both cases where the random process
is observed directly or in a regression framework.
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3. Estimation procedure and properties without observation noise

The moment based estimator derives from the observation that the statistical
second order moment of the wavelet type coefficients wjk of a RHFLM obey a
certain scaling property. Namely, we get

E(w2
jk) = 2−j(1+2H)C2

H , (3.1)

where CH is given by

C2
H =

(
a2 + b2

∫

C

|z|2 ν (dz)

)∫

R

|ψ̂(λ)|2
|λ|1+2H

dλ

= A

∫

R

|ψ̂(λ)|2
|λ|1+2H

dλ 6= 0,

since ψ is a continous function with suppψ 6= ∅.
If we observe a continous path of the RHFLM, hence it is possible to compute

directly the true wavelet type coefficients of the random process. However, as in
Bardet (2002), we also tackle the case where the RHFLM is observed at discrete
times, which induces in the estimation, a discretization error. In both cases, we
construct a consistent estimator.

3.1. Continuous time observations without noise.

Suppose we observe the wavelet type coefficients of a RHFLM with unknown
Hurst exponent. The coefficients are defined as a growing array of random variables

wjk , k = 0, . . . , 2j − 1, j = 1, . . . , J,

where J is the maximum number of levels in the wavelet type expansion.

Theorem 3.1 (Consistency of moments wavelet type estimator). Consider the
Hurst exponent estimator of a RHFLM defined as

ĤJ =
−1

2J
log2




2J−1∑

k=0

w2
Jk


 . (3.2)

Provided ψ has r ≥ 2 vanishing moments, the following asymptotics holds

ĤJ
J→+∞−→ H, a.s.

Proof . Define for all J > 0

VJ =
2J−1∑

k=0

w2
Jk , ṼJ = 22JHVJ .

Hence,

E(VJ) = 2−2JHC2
H , E

(
ṼJ

)
= C2

H = E
(
w2

00

)
.
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Applying Formula 20 in Benassi et al. (2002),

Var(VJ ) = 2B2−J−4JH

∫ |ψ̂(λ)|4
|λ|2+4H

dλ

+2A22−J−4H
2J−1∑

l=−2J +1

(∫
eilλ|ψ̂(λ)|2
|λ|1+2H

dλ

)2

+2−2J−4JHB

2J−1∑

l=−2J+1

∫
e2ilλ|ψ̂(λ)|4
|λ|2+4H

dλ

= (I) + (II) + (III),

with A = 4a2
∫

C
|z|2 ν(dz) + b2 and B = 4a2

∫
C
|z|2 ν(dz). For the second term, we

first point out that ψ̂ is continuously differentiable. Then using that

lim
|λ|→+∞

ψ̂(λ) = 0

and ψ̂(0) = 0, partial integration yields that
∫
eilλ|ψ̂(λ)|2
|λ|1+2H

dλ =
−1

il

∫
eilλ d

dλ

(
|ψ̂(λ)|2
|λ|1+2H

)
dλ.

Hence we can conclude that∣∣∣∣∣

∫
eilλ|ψ̂(λ)|2
|λ|1+2H

dλ

∣∣∣∣∣

2

6
c

1 + l2
,

for c a given finite positive constant and every λ ∈ R.

Let us recall that
∫
tψ(t)dt = 0, so that ψ̂(ξ) = O

(
|ξ|2
)

as ξ → 0. The third

term is handled the same way (owing two integrations by parts), which enables us
to conclude that ∣∣∣∣∣

∫
e2ilλ|ψ̂(λ)|4
|λ|2+4H

dλ

∣∣∣∣∣ 6
c

1 + l2
, ∀l ∈ R.

Finally, we obtain that the order of the variance is given by the terms (I) and
(II) so

VarVJ ∼ DH2−J−4JH ,

with

0 < DH = 2B

∫

R

|ψ̂(λ)|4
|λ|2+4H

dλ+ 2A2
∞∑

l=−∞

(∫

R

eilλ|ψ̂(λ)|2
|λ|1+2H

dλ

)2

= 2B

∫

R

|ψ̂(λ)|4
|λ|2+4H

dλ+ 4A2
∞∑

l=1

(∫

R

cos (lλ)|ψ̂(λ)|2
|λ|1+2H

dλ

)2

+ 2C4
H < +∞.

This implies after renormalization that

VarṼJ
+∞∼ DH2−J =>

+∞∑

J=1

VarṼJ < +∞.

The Borel Cantelli lemma yields that

22JHVJ
J→+∞−→ E(w2

00) 6= 0, a.s .
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Finally we obtain the result

−1

2J
log2(VJ )

J→+∞−→ H a.s .

�

3.2. Discretized version.

Suppose we observe XH(l/N), l = 0 . . .N . The size of data is then N + 1 and
the wavelet type coefficients wjk can not be evaluated. However, the discretized
coefficients

wn
jk =

1

2j/2n

n∑

p=1

XH

(
p+ nk

2jn

)
ψ(
p

n
) , k = 0 . . . 2j − 1 , j = 1 . . . J

can be computed taking n = n(j) such that 2−jN/n(j) ∈ N. Also, we replace wJk

by wn
Jk in (3.2) and then obtain a new estimator which can be computed. Next

theorem gives its consistency. Note that the parameter of discretization n depends
on j and that the minimal size of data we need is 2Jn(J) + 1. In the following, we
then take N = 2Jn(J).

Theorem 3.2. Consider the Hurst exponent estimator of a RHFLM defined as

ĤJ =
−1

2J
log2




2J−1∑

k=0

(wn
Jk)

2


 , (3.3)

with n = n(J) = 2J and with size of data N + 1 = 22J + 1. Provided ψ has r ≥ 2
vanishing moment, the following asymptotics holds

ĤJ
J→+∞−→ H, a.s.

Before proving Theorem 3.2, we state a result about the difference wjk −wn
jk in

norm L2. In particular, a rate of convergence of wn
jk in norm L2 is given for each

fixed j and k. Moreover, from the result established, we will deduced a comparison
between the estimators defined by (3.2) and (3.3) and how to link n and J in (3.3),
and then the size of data N +1 and J , in order to obtain the asymptotic behaviour
of (3.3).

Lemma 3.3. There exists a constant C > 0 such that for every (j, k, n), j ∈ N\{0},
k = 0 . . . 2j − 1, n ∈ N\{0},

22jHE
[(
wjk − wn

jk

)2] ≤ C

(
1

2jn2H
+

22jH

2jn2

)
.

Proof of Lemma 3.3. Let fH(x, ξ) =
e−ixξ − 1

|ξ|H+1/2
and

hn(k, ξ) =

∫ 1

0

fH(u+ k, ξ)ψ(u) du− 1

n

n∑

p=1

fH

( p
n

+ k, ξ
)
ψ
( p
n

)
.

Since

wjk − wn
jk = 2−j/2

∫

R

hn

(
k, 2−jξ

)
L(dξ),
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in view of (2.4),

E

[(
wjk − wn

jk

)2
]

= 2−jA

∫

R

∣∣hn

(
k, 2−jξ

)∣∣2 dξ

= 2−j−2jHA

∫

R

|hn(k, λ)|2 dξ.

Then let us write

hn(k, λ) =

n∑

p=1

hn,p(k, λ),

with

hn,p(k, λ) =

∫ p/n

(p−1)/n

(
fH(u+ k, λ)ψ(u) − fH

( p
n

+ k, λ
)
ψ
( p
n

))
du.

By the Minkowski inequality,

22jHE
[(
wjk − wn

jk

)2] ≤ 2−jA

(
n∑

p=1

‖hn,p(k, ·)‖L2(R)

)2

. (3.4)

Moreover, the Cauchy-Schwarz inequality implies that

|hn,p(k, λ)|2 ≤ 1

n

∫ p/n

(p−1)/n

∣∣∣fH(u+ k, λ)ψ(u) − fH

( p
n

+ k, λ
)
ψ
( p
n

)∣∣∣
2

du.

Therefore, applying the Minkowski inequality, we obtain:

‖hn,p(k, ·)‖L2(R) ≤ An,p(k) +Bn,p(k),

where

An,p(k) =
1√
n

(∫ p/n

(p−1)/n

∥∥∥f(u+ k, ·) − f
( p
n

+ k, ·
)∥∥∥

2

L2(R)
ψ2
( p
n

)
du

)1/2

and

Bn,p(k) =
1√
n

(∫ p/n

(p−1)/n

‖f(u+ k, ·)‖2
L2(R)

∣∣∣ψ(u) − ψ
( p
n

)∣∣∣
2

du

)1/2

.

Let us first point out that

∥∥f(u+ k, ·) − f
(

p
n + k, ·

)∥∥2

L2(R)
=

∥∥∥f
(
u− p

n
, ·
)∥∥∥

2

L2(R)

=
∣∣∣u− p

n

∣∣∣
2H

‖f(1, ·)‖2
L2(R).

As a result, there exists a finite constant M1 such that

An,p(k) =
M1

nH+1

∣∣∣ψ
( p
n

)∣∣∣,

for every n, p, j and k.
In addition,

Bn,p(k) =
1√
n
‖f(1, ·)‖L2(R)

(∫ p/n

(p−1)/n

|u+ k|2H
∣∣∣ψ(u) − ψ

( p
n

)∣∣∣
2

du

)1/2

.
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Then owing to a Taylor expansion, one proves that there exists a constant M2 such
that for every n, p, j and k,

Bn,p(k) ≤
M2 (k + 1)H

n2
sup

(p−1)/n≤x≤p/n

|ψ′(x)| ≤ 2jHM2

n2
sup

(p−1)/n≤x≤p/n

|ψ′(x)|.

Then, in view of (3.4),

2jH
E

[(
wjk − wn

jk

)2]

≤ 2−jA

(
M1

n1+H

n∑

p=1

∣∣∣ψ
( p
n

)∣∣∣+ 2jHM2

n2

n∑

p=1

sup
(p−1)/n≤x≤p/n

|ψ′(x)|
)2

.

We then point out that

lim
n→∞

1

n

n∑

p=1

∣∣∣ψ
( p
n

)∣∣∣ =
∫ 1

0

|ψ|(u) du < +∞

and

lim
n→∞

1

n

n∑

p=1

sup
(p−1)/n≤x≤p/n

|ψ′(x)| =

∫ 1

0

|ψ′|(u) du < +∞,

which concludes the proof. �

Let us now prove Theorem 3.2.

Proof of Theorem 3.2. Let

ṼJ,n = 22JH
2J−1∑

k=0

(wn
Jk)

2
.

We compare ṼJ,n to ṼJ defined in proof of Theorem 3.1. Define

D̃J,n =

√
ṼJ,n −

√
ṼJ .

Since
∣∣∣D̃J,n

∣∣∣
2

≤ 22JH
2J−1∑

k=0

(wJk − wn
Jk)

2
,

by lemma 3.3,

E

[∣∣∣D̃J,n

∣∣∣
2
]
≤ C

(
1

n2H
+

22JH

n2

)
,

where C is a finite constant. Taking n = n(J) = 2J , the Borel Cantelli lemma
yields that as J → +∞,

D̃J,2J → 0, a.s.

Recall that , as J → +∞,

ṼJ → E
(
w2

00

)
a.s.

Then,

ṼJ,2J → E
(
w2

00

)
a.s,

which leads to the convergence of ĤJ defined by (3.3). �
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4. Regression framework

Suppose we observe noisy data from a RHFLM XH

YH

(
l

N

)
= XH

(
l

N

)
+ σNεl, l = 0, . . . , N, (4.1)

where εl are an i.i.d sample of Gaussian random variables N (0, 1) and σN is the

noise level. We point out that σN = O(N− 1

2 ). This framework is the usual re-
gression setting well studied in statistics, which models natural observations of a
phenomenom, observed at discrete times.

The discretized coefficients wn
jk of XH can not be observed. However, the dis-

cretized coefficients of YH

dn
jk =

1

2j/2n

n∑

p=1

YH

(
p+ nk

2jn

)
ψ(
p

n
) , k = 0 . . . 2j − 1 , j = 1 . . . J ,

can be computed, taking N = 22J and n = n(j) such that 2−jN/n(j) ∈ N as in
Section 3.

Theorem 4.1. Consider the estimator of the Hurst coefficient of a RHFLM defined
as

ĤJ =
−1

2J
log2




2J−1∑

k=0

(dn
Jk)

2


 , (4.2)

with n = n(J) = 2J and N = 22J . Provided ψ has at least r ≥ 2 vanishing
moments, the following asymptotics holds

ĤJ
J→+∞−→ H, a.s.

Proof . We proceed as in the proof of Theorem 3.2. Let us recall that

ṼJ,n = 22JH
2J−1∑

k=0

(wn
Jk)

2

and define

W̃J,n = 22JH
2J−1∑

k=0

(dn
Jk)

2
.

Then,

E

(∣∣∣∣
√
W̃J,n −

√
ṼJ,n

∣∣∣∣
2
)

≤ 22JH
2J−1∑

k=0

E

[
(dn

Jk − wn
Jk)

2
]
.

By definition of YH ,

dn
Jk − wn

Jk =
1

2J/2n
σN

n∑

p=1

ψ
( p
n

)
εp+nk ∼ N

(
0,

σ2
N

2Jn2

n∑

p=1

ψ2
( p
n

))
.

Hence,

E

(∣∣∣∣
√
W̃J,n −

√
ṼJ,n

∣∣∣∣
2
)

≤ 22JHσ2
N

n2

n∑

p=1

ψ2
( p
n

)
.
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Since limn→+∞
1
n

∑n
p=1 ψ

2
(

p
n

)
=
∫

R
ψ2(u)du = 1, there exists a constant C ∈

(0,+∞) such that for every J and n,

E

(∣∣∣∣
√
W̃J,n −

√
ṼJ,n

∣∣∣∣
2
)

≤ 22JHCσ2
N

n
.

Also, taking n = n(J) = 2J , the Borel Cantelli Lemma yields that
√
W̃J,2J −

√
ṼJ,2J

J→+∞−→ 0 a.s.,

as soon as σN = O(N−1/2) with N = 22J . Then, since (see proof of Theorem 3.2),

ṼJ,2J

J→+∞−→ E
(
w2

00

)
a.s.,

we finally obtain that

ĤJ = − 1

2J
log2

(
2−2JHW̃J,2J

)
J→+∞−→ H a.s.,

as soon as σN = O(N−1/2) with N = 2Jn(J) = 22J . �

As a result, we obtain consistency of the estimators in the practical case where
the RHFLM is observed at discrete times. This result can be used to build an
estimator of the Hurst exponent when studying the outcome of an experiment
though to behave like a RHFLM. Once this parameter is estimated it becomes
possible to try to model the data by a realization of a RHFLM. Hence, it should be
of interest to construct a test based on the estimator of the Hurst exponent. So the
asymptotic distribution of the estimator is needed. However, such a result is very
difficult to obtain. On the one hand, the nature of the observations prevents the
use of Central Limit type theorems. On the other hand, evaluating the distance
between the distribution of the coefficients of a RHFLM and a Gaussian distribution
is also far beyond the scope of this paper due since the calculations can only be
handled using (2.2), preventing the use of weak dependency theorems. Nevertheless
a consistency result is a first step in a modeling attempt with RHFLM.

5. Numerical study

In this section, consider the issue of estimating the Hurst exponent of a RHFLM
observed with a Gaussian white noise. In the simulations we present in Figure 5
and 5.2 simulated data in straight lines, obtained using the procedure described in
Lacaux (2004b), together with the noisy paths in dotted lines.

First we aim at studying the rate of convergence of the wavelet type estima-
tor. The estimator of the Hurst exponent is constructed using rescaled Daubechies
wavelet Db(4) with r = 4 vanishing moments. We construct the estimator of the
Hurst exponent for the two previous RHFLMs with the two different values of the
Hurst exponent H = .4 and H = .7. The data are dyadic N = 22J and we increase
the data from J = 2 to J = 7. For the noisy data, we perform 30 replications of the
estimation procedure and plot the boxplots for the absolute error for different val-
ues of J in Figure 5 and Figure 5.4. In both cases, we can see that the convergence
is achieved with N > 28 observations. Such study highlights consistency of the
estimate. But, due to the relative slowness of the rate of convergence together with
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the lack of an asymptotic distribution law, it is difficult to estimate the efficiency
of such an estimation procedure for real data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1

0

1

2

3

4

5

6

7

8

Figure 5.1. Raw and Noisy Data with H = .4

However we can compare the efficiency of our estimator with the estimator given
in Benassi et al. (2002). We compute this estimator and the estimator constructed
in Section 3, when H = .4 for two cases, whether or not the RHFLM is observed
with a Gaussian white noise. We take N = 210 observations and consider 30
replications. We plot the distribution of both estimators, first the distribution of
the wavelet type estimator and then the distribution of the quadratic variation
based estimator. We observe in Figure 5.5 that without noise, the two estimators
give the same kind of results. But, as expected, in a noisy setup, in Figure 6,
the estimator based on quadratic variation does not concentrate around the true
value of the Hurst parameter. This result is also highlighted by the boxplot of the
absolute error of the two estimators, in Figure 5.7. The absolute error of estimation
is important in the noisy setup for the quadratic type estimator.

Finally, we study the relative influence in the choice of the mother wavelet by
computing the distribution of the absolute estimation error of the estimation of
H = .4 with noisy data for 30 simulations and two different sets of coefficients,
obtained for a rescaled Daubechies wavelet with r = 4 and for r = 2. We can see
in Figures 5.8 and Figures 5.9 that the distribution are similar. So as expected and
as usual in estimation with wavelet type estimators, the choice of the wavelet does
not play a particular role in the estimation as long as the initial assumptions are
met.
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Figure 5.2. Raw and Noisy Data with H = .7
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Figure 5.3. Absolute Estimation Error for noisy data with H = .4
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Figure 5.4. Absolute Estimation Error for noisy data with H = .7
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Figure 5.5. Comparison of Estimators Distributions with true
observations (H = .4)
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Figure 5.6. Comparison of Estimators Distributions with noisy
observations (H = .4)
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Figure 5.7. Boxplot for quadratic variation estimator and wave-
let type estimator (H = .4)
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Figure 5.8. Distribution of Absolute Error for noisy data with
H = .4 using Db(4)
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Figure 5.9. Distribution of Absolute Error for noisy data with
H = .4 using Db(2)
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