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Abstract. Let Ln denote the length of the longest common subsequence of two
sequences of length n. We draw one of the sequences i.i.d., but the other is non-
random and periodic. We prove that VAR[Ln] = Θ(n). For such setup, our result

rejects the Chvatal-Sankoff conjecture (1975) that VAR[Ln] = o(n
2
3 ) and answers

to Waterman’s question (1994), whether the linear bound on VAR[Ln] can be im-
proved.

1. Introduction

Let {Xi}i∈N and {Yi}i∈N be two ergodic processes independent of each other.
We assume that the variables Xi and Yi have a common state space. Let X :=
X1X2 . . . Xn and Y := Y1Y2 . . . Yn. A common subsequence of X and Y is a sub-
sequence that is contained in X and in Y . Formally, a common subsequence of X
and Y consists of two subsets of indices {i1, . . . , ik}, {j1, . . . , jk} ⊂ {1, . . . , n} such
that

Xi1 = Yi1 , Xi2 = Yi2 , . . . , Xik
= Yik

.

The length of such a common subsequence is k. The longest common subsequence
(LCS) of X and Y is any common subsequence that has the longest possible length,
denoted by Ln. The random variable Ln is the main object of the paper.
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The investigation of the longest common subsequences (LCS) of two finite words
is one of the main problems in the theory of pattern matching. The LCS-problem
plays a role for DNA- and Protein-alignments, file-comparison, speech-recognition
and so forth. The random variable Ln and several of its variants have been stud-
ied intensively by probabilists, computer-scientists and mathematical biologists;
for applications of LCS-algorithms as well as their generalizations in biology see
Waterman (1984); Waterman and Vingron (1994). In all applications, when two
strings have a relatively long common subsequence, then they are considered to be
somehow related. On the other hand, it is clear that also two independent ran-
dom strings have a longest common subsequence with length Ln. To be able to
distinguish the related pairs from a random match, the asymptotic behavior of Ln

should be studied. For that reason the random variable Ln has been attracted the
interests already for many decades. However, despite the relatively long history, its
behavior is to large extent still unknown. In their pioneering paper (1975), Chvatal
and Sankoff prove that the limit

γ := lim
n→∞

ELn

n
(1.1)

exists. In 1994, Alexander investigated the rate of the convergence in (1.1) and

showed that for i.i.d Bernoulli sequences, ELn − nγ = O(
√

n lnn). Moreover, by
subadditivity argument,

Ln

n
→ γ a.s and in L1. (1.2)

(see, e.g. Alexander 1994; Waterman and Vingron 1994). The constant γ is called
the Chvatal-Sankoff constant and its value is unknown for even as simple cases as
i.i.d. Bernoulli sequences. In this case, the value of γ obviously depends on the
Bernoulli parameter p. When p = 0.5, the various bounds indicate that γ ≈ 0.81
(Steele, 1986; Kiwi et al., 2003; Baeza-Yates et al., 1999). Upper and lower bounds
are also found by Dancik and Paterson in 1995; 1994. A MonteCarlo based method
to find an upper bound on a certain confidence level has been found by Hauser,
Martinez and Matzinger (2006). For a smaller p, γ is even bigger. Thus the propor-
tion of a common subsequence for two independent Bernoulli sequences is relatively
big and, hence, to do some inferences, the information about the variance VAR[Ln]
is essential. Unfortunately, not much is known about VAR[Ln] and its asymptotic
order of the fluctuation is one of the main long standing open problems concerning
LCS. Monte-Carlo simulations lead Chvatal and Sankoff in 1975 to their famous con-
jecture that for i.i.d. Bernoulli sequences VAR[Ln] = o(n

2
3 ). Using an Efron-Stein

type of inequality, Steele (1986) proved that in this case, VAR[Ln] ≤ P (X1 6= Y1)n.
In 1994, Waterman asks whether the linear bound can be improved. He performs
several simulations which indicate that this is not the case and VAR[Ln] grows lin-
early in n, indeed. Boutet de Monvel (1999) interprets his simulation in that way
too. On the other hand, for a closely related Bernoulli matching model, Majumdar

and Nechaev (2004) obtained faster rate O(n
2
3 ).

In a series of papers, we investigate the asymptotic behavior of VAR[Ln] in
various setup and in various models. Every model might capture one aspect of this
complicated problem. Our goal is to answer to the Waterman’s question and show
that for independent i.i.d. Bernoulli sequences with parameter p, the linear bound
cannot be improved. More precisely, we conjecture the existence of a constant k > 0
such that nP(X1 6= Y1) ≥ VAR[Ln] ≥ kn. This is written VAR[Ln] = Θ(n). The
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simulations (Bonetto and Matzinger, 2004) indicate that except maybe for p very
close to 1/2, the conjecture holds true. In 2006, Bonetto and Matzinger consider
the asymmetric case where the random variables in X are Bernoulli with 1/2, but
the ones in Y can take 3 symbols. They prove that in this case VAR[Ln] = Θ(n),
i.e the conjecture holds as well. In a forthcoming paper, we prove that the order
of variance is Θ(n) also for two i.i.d. Bernoulli sequences with small parameter
p. However, the case for p close to 1/2 is still open. The present paper, when we
consider the case when X is i.i.d. Bernoulli random variables with parameter 1/2
and Y is a non-random periodic binary sequence, gives us a reason to believe that
the linear growth of the variance also holds p = 1/2. The reasoning is as follows.
Regarding Ln as a function of two random strings X and Y , by conditioning on
Y , one obtains that VAR[Ln(X, Y )] ≥ E

(

VAR[Ln(X, Y )|Y ]
)

. So, to show that
there exists a constant k > 0 such that VAR[Ln] ≥ kn, it suffices to show that
VAR[Ln(X, Y )|Y ] ≥ kn holds for every possible outcome of Y . Suppose now that X
is iid Bernoulli with parameter p. If Y consists of ones, only, then Ln is the number
of ones in X and VAR[Ln] = p(1 − p)n. If Y is such that Y1 = · · · = Yn

2
= 1 and

Yn
2
+1 = · · · = Yn = 0, then it is intuitively clear that a longest common subsequence

basically matches the ones in the first half of X and zeros in the second half and
therefore the growth of VAR[Ln(X, Y )|Y ] is linear as well. Here the reason of the
linear growth of the variation is that, though Y has fifty percent ones, they are
all gathered together so that Y has long unicolor blocks. A periodic Y has totally
opposite nature – the ones and zeros are mixed as much as possible. In this paper,
we show that also for periodic Y the desired constant k still exists: The main result
of the present paper states that for a periodic Y and iid Bernoulli X , there exists
constants 0 < k < K < ∞ such that kn ≤ VAR[Ln] ≤ Kn, i.e. VAR[Ln] = Θ(n).
Of course, for a i.i.d Bernoulli Y , all considered realizations are highly untypical.
But since they represent, in some sense, the extreme cases, it is believable that the
linear growth of variance also holds for a typical realization of Y . So, although at
the first sight the setup of the present paper might seem rather specific, it is actually
very insightful and the obtained result is a step forward to the understanding of
the fluctuation of Ln for two independent random sequences.

2. Main result

Let X1, X2, . . . be an i.i.d. sequence of Bernoulli variable with parameter 1/2. Let
Y1, Y2, . . . be a non-random periodic sequence with period p, that is fixed throughout
the paper. This means that p > 1 is the smallest natural number such that:
Yp+n = Yn for all n ∈ N. Let Ln be the length of the longest common subsequence
of the two finite sequences, X1, X2, . . . , Xn and Y1, Y2, . . . , Yn. A similar argument
as in Chvatal and Sankoff (1975) implies that

Ln

n
→ γY , a.s.,

where γY is an unknown constant. Of course, γY depends on the periodic scenery
Y . In this paper, we study the asymptotic deviation from the mean of the random
variable Ln.
Let Dn be defined as follows:

Dn :=
Ln − E[Ln]√

n
(2.1)
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The main result of this paper is Theorem 2.3, which states that Ln − E[Ln] is
typically of order

√
n. To prove theorem 2.3, we show in Lemma 2.2 that the

standard deviation of Ln is of order
√

n.
We need the following large deviation result, which is similar to a result of Arratia
and Waterman (1994):

Lemma 2.1. There exists a constant b > 0 not depending on n and ∆ > 0 such
that for all n large enough, we have:

P (|Ln − ELn| ≥ n∆) ≤ e−bn∆2

(2.2)

Proof: The inequality (2.2) is a straightforward application of the McDiarmid
inequality: Let X1, . . . , Xn independent A-valued random variables. Let f : An 7→
R be a function that satisfies

supx1,...,xn,x′

i
∈A|f(x1, . . . , xn) − f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)| ≤ ci, i = 1, . . . , n.

Then for any ∆ > 0

P
(

|f(X1, . . . , Xn) − Ef(X1, . . . , Xn)| ≥ ∆
)

≤ 2 exp
[

− 2∆2

∑n
i=1 c2

i

]

. (2.3)

Take f : {0, 1}n → R to be the length of the longest common subsequence be-
tween i.i.d. random variables X1, . . . , Xn and non-random Y1, . . . , Yn. So Ln =
f(X1, . . . , Xn). Clearly the following holds: by changing an element in a binary
sequence (x1, . . . , xn) ∈ {0, 1}n, the length of a longest common subsequence of
x1, . . . , xn and Y1, . . . , Yn changes at most by one. Thus, the assumptions of McDi-
armid inequality are satisfied with ci = 1, i = 1, . . . , n. Hence, the inequality (2.3)
holds, and (2.2) trivially follows. �

Our main result about the variance is the following.

Lemma 2.2. There exist 0 < k < K < ∞ not depending on n, such that for all n
large enough:

Kn ≥ VAR [Ln] ≥ kn.

The proof of Lemma 2.2 is presented at the end of Section 3.
Our main theorem studies the sequence {Dn} as defined in (2.1).

Theorem 2.3. The sequence {Dn} is tight. Moreover, the limit of any weakly
convergent subsequence of {Dn} is not a Dirac measure.

Proof: For s > 0, the inequality (2.2) with ∆ = s√
n

implies

P (|Dn| ≥ s) = P (|Dn| ≥
√

n
s√
n

) ≤ exp[−cn
s2

n
] = exp[−cs2].

The last inequality implies that for any r ≥ 1, the sequence {Dn} is uniformly
bounded in Lr, i.e.

supnE|Dn|r = supn

∫ ∞

0

P (|Dn|r ≥ s)ds ≤
∫ ∞

0

exp[−cs
2
r ]ds < ∞. (2.4)

Hence, the sequence {Dn} is uniformly integrable and, therefore, tight.
Let Dni

⇒ Q be a weakly converging subsequence of {Dn}. Suppose Q = δc, for a
c ∈ (−∞,∞). By the continuous mapping theorem, D2

ni
⇒ δc2 or, equivalently, the

sequence D2
ni

converges to the constant c2 in probability. Since supnE|Dn|3 < ∞,

the sequence {D2
n} is uniformly integrable, as well. Hence, the weak convergence

implies that: ED2
ni

= VARDni
→ 0, which contradicts Lemma 2.2. �
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3. Proof of Lemma 2.2

This section is dedicated to the proof of Lemma 2.2.

3.1. Main idea and numerical example. Lemma 2.2 states that the variance of Ln

is of order n. To prove this, we show that Ln can be written as the sum of two

independent parts: Z~T
and L

~T
n (see 3.7). The variance of Z~T

is of order n, and so
is the variance of Ln.
Let us present a simple numerical example: Let the periodic sequence Y have period
2, such that:

Y1Y2Y3Y4Y5Y6 . . . = 010101 . . .

Let l ∈ 16N. ( Here the number 16 corresponds to 4p2). Assume that in the
neighborhood of l, the sequence X is equal to the periodic sequence Y (except
possibly in l). More precisely, assume that we observe:

Yl−16Yl−15Yl−14 . . . Yl+13Yl+14Yl+15 = 0101010101010101a1010101010101010,

where a can be equal to either zero or one. A point l satisfying the last equality
above is called a replica point. If a coincides with the periodic pattern, we say that
the replica point l matches. In our example, this would happen if a = 0. We call
[l− 4p2, l + 4p2 − 1] the interval of the replica point l. The main combinatorial idea
in this article is contained in Lemma 3.2. It states that for a replica point l, the
score Ln is increased by one when l matches. Furthermore, this not influenced by
the sequence X outside the interval of the replica point l. This fact is intuitively
clear and it is simple to find a heuristic proof. However, the formal proof of Lemma
3.2 is difficult. The whole Section 4 is dedicated to it.
The variable Z~T

is defined to be the number of replica points that mach (among
the first cn replica points, where c > 0 is a constant not depending on n). From
Lemma 3.2, it follows directly that Ln can be written as a sum of Z~T

and a term
which depends only on the sequence X “outside the replica points intervals”. This

leads directly to the independence Z~T
and L

~T
n .

3.2. Replica points. We can assume without restriction that Y0 = 1. For l ∈ N we
define the integer interval:

Jl := [l − 4p2, l + 4p2 − 1].

Let Il designate Jl minus its center:

Il := Jl − {l}.
Definition 3.1. Let l ∈ N, with l > 4p2. We say that l is a replica point if the
following condition holds:

Yz = Xz, ∀z ∈ Il.

If l is a replica point and Xl = Yl, then we say that the replica point l matches.

We need some more notation. We denote by Al the event that l is a replica point
and denote by Zl the Bernoulli variable which is equal to one if and only if l is a
replica point which matches. Thus, Zl = 1 if Al and Xl = Yl both hold, otherwise
Zl = 0.
We denote by X|l the finite sequence obtained from X1, . . . , Xn by removing Xl,
i.e.

X|l := (X1, X2, . . . , Xl−2, Xl−1, Xl+1, Xl+2, . . . , Xn).
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We denote by Σl the σ-algebra generated by X|l, i.e.

Σl := σ(Xi|1 ≤ i ≤ n, i 6= l).

Let Ll
n designate the length of the longest common subsequence of X|l and Y1,. . . ,Yn.

The next Lemma is the fundamental combinatorial idea for replica points. It says
that when l is a replica point, then the length of the longest common subsequence
can be decomposed as Ln = Zl +Ll

n, where Zl comes from the replica point and Ll
n

depends on X|l, only. Such a decomposition is useful, because Al ∈ Σl, i.e. whether
l is a replica point or not does not depend on Xl. The proof of Lemma 3.2 is given
in Section 4.

Lemma 3.2. Let l ∈ N so that 4p2 < l ≤ n − 4p2 − 1. If Al holds, then

Ln = Zl + Ll
n. (3.1)

3.3. Several replica points. In the following, c > 0 is a constant not depending on
n such that cn ∈ N. (We choose c > 0 to be small enough, so that with high
probability there are at least cn replica points in [0, n]. By Lemma 3.5, it is enough

to take c such that: 0 < c < (0.5)8p2−1.) Let Kn ⊂ N
cn designate the set of all

integer vectors
~k = (k1, k2, . . . , kcn)

such that ki + 8p2 ≤ ki+1,∀i = 1, . . . , cn − 1 and 4p2 < k1 and kcn < n − 4p2.

Let ~k = (k1, k2, . . . , kcn) ∈ Kn. We define the σ-algebra:

Σ~k
:= σ (Xi| i ∈ [0, n] and i 6= kj , ∀j ∈ [1, cn]) .

We denote by A~k
the event that ki is a replica point for all i = 1, . . . , cn. Clearly

A~k
∈ Σ~k

.
Suppose A~k

holds. Let Z~k
designate the number of replica points among k1,. . .,kcn

which are matches. So, if A~k
holds, and ~k = (k1, . . . , kcn) ∈ Kn, then

Z~k
:=

cn
∑

i=1

Zki
.

Let X|~k designate the finite sequence one obtains by removing from X the bits

Xki
, i = 1, . . . , cn. Hence, for ~k = (k1, . . . , kcn) ∈ Kn,

X|~k := {Xi| i ∈ [0, n] and i 6= kj , ∀j ∈ [1, cn]} .

Finally, let L
~k
n designate the length of the longest common subsequence of X|~k and

Y .

Lemma 3.3. Let ~k ∈ Kn. When A~k
holds, then

Ln = Z~k
+ L

~k
n. (3.2)

Proof: The proof follows from Lemma 3.2 by induction.

Let cn = 2, i.e. ~k = (l1, l2). Let Zi = Zli , i = 1, 2. Let us show that

Ln = L
~k
n + Z1 + Z2. (3.3)

Let L1+
n be length of the longest common subsequence of X |l1 and Y1, . . . , Yn pro-

vided that Z2 = 1. Let L1−
n be length of the longest common subsequence of X |l1

and Y1, . . . , Yn provided that Z2 = 0. Finally, let L1
n := Ll1

n , so L1
n is either L1+

n or
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L1−
n .

At first note,

L1−
n + 1 = L1+

n . (3.4)

Let L+
n and L−

n denote the length of the longest common subsequence of X1, . . . , Xn

and Y1, . . . , Yn provided that Z2 = 1 and Z2 = 0, respectively. From Lemma 3.2
follows that L+

n = L−
n + 1 as well as L1+

n + Z1 = L+
n and L1−

n + Z1 = L−
n . Hence,

(3.4) holds.

Clearly, L1
n ≥ L

~k
n ≥ L1

n − 1. Hence, L
~k
n is equal to L1+

n or L1+
n − 1 = L1−

n . If L
~k
n =

L1+
n , we would have that L

~k
n > L1−

n , a contradiction. Hence L
~k
n = L1+

n − 1 = L1−
n .

Suppose Z2 = 1. Then Ln = L+
n = L1+

n + Z1, so

L
~k
n + Z1 + Z2 = L

~k
n + Z1 + 1 = L1+

n + Z1 = L+
n = Ln.

Suppose Z2 = 0. Then Ln = L−
n = L1−

n + Z1, so

L
~k
n + Z1 + Z2 = L

~k
n + Z1 = L1−

n + Z1 = L−
n = Ln.

Let cn = m+1, i.e. ~k = (l1, l2, . . . , lm+1). Let ~m := (l1, l2, . . . , lm), Zm =
∑m

i=1 Zli ,
Zm+1 := Zlm+1

. Suppose (3.2) holds for cn = m, i.e.

Ln = L~m
n + Zm. (3.5)

Let us show that

Ln = L
~k
n + Zm + Zm+1.

The argument is similar to the case m = 2. Let Lm+
n be equal to L~m

n provided that
Zm+1 = 1. Let Lm−

n be equal to L~m
n provided that Zm+1 = 0. At the first, we

prove that

Lm−
n + 1 = Lm+

n . (3.6)

Let L+
n and L−

n denote the length of the longest common subsequence of X1, . . . , Xn

and Y1, . . . , Yn provided that Zm+1 = 1 and Zm+1 = 0, respectively. From Lemma
3.2 follows that L+

n = L−
n +1. From (3.5) follows Lm+

n +Zm = L+
n and Lm−

n +Zm =
L−

n = L+
n − 1. Hence, (3.6) holds.

Clearly, L~m
n ≥ L

~k
n ≥ L~m

n − 1. Hence, L
~k
n is equal to Lm+

n or Lm+
n − 1 = Lm−

n . If

L
~k
n = Lm+

n , we would have that L
~k
n > Lm−

n , a contradiction. Hence L
~k
n = Lm+

n −1 =
Lm−

n .
Suppose Zm+1 = 1. Then by (3.5), Ln = L+

n = Lm+
n + Zm, so

L
~k
n + Zm + Zm+1 = L

~k
n + Zm + 1 = Lm+

n + Zm = L+
n = Ln.

Suppose Zm+1 = 0. Then by (3.5), Ln = L−
n = Lm−

n + Zm, so

L
~k
n + Zm + Zm+1 = L

~k
n + Zm = Lm−

n + Zm = L−
n = Ln.

�

3.4. Intervals. Let Ui, i = 1, 2, . . . be the disjoint consecutive intervals with length
8p2, i.e. (recall the definition of Jl)

Ui := Ji4p2+1 = [(i − 1)8p2 + 1, i8p2], i = 1, 2, . . . .

Let ui := i4p2 + 1. Whether ui is a replica point or not, depends on {Xz : z ∈
Ui, z 6= ui}.
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Let Ti designate the i-th replica point. Formally, we define Ti by induction on
i. For i = 1, we put:

T1 := min{uj |uj is a replica point, j > 0}.
Once, Ti is defined, we define Ti+1 in the following way:

Ti+1 := min{uj > Ti|uj is a replica point , j > 0}.
Let c > 0 be a constant not depending on n. We define the event

En := {Tcn ≤ n}
which guarantees that there are at least cn replica points in [0, n].

Let

~T :=

{

(T1, T2, . . . , Tcn), if En holds,

0, otherwise
,

X|~T :=

{

X|~k, if ~T = ~k,

X, if ~T = 0.
Z~T

:=

{

Z~k
, if ~T = ~k.

0, if ~T = 0.

In other words, when En holds, X|~T is the sequence obtained by removing the bits

XT1
, XT2

, . . . , XTcn
from the sequence X and Z~T

is the number of matching replica

points in ~T .
With L0

n := Ln, we obviously have

Ln = Z~T
+ L

~T
n . (3.7)

Finally, let

Σ := σ(~T , X|~T ).

Clearly, L
~T
n is Σ-measurable and En ∈ Σ.

Lemma 3.4. Conditional on Σ and En, Z~T
has binomial distribution with param-

eters 1/2 and cn:

L
(

Z~T

∣

∣~T = ~k, X|~k
)

= B(1/2, cn),

for all ~k ∈ Kn.

Proof: By interval construction, it holds that {~T = ~k} ∈ σ(X|~k). The vector

~Z := (Zk1
, . . . Zkcn

) is σ(Xk1
, . . . , Xkcn

)-measurable. Those σ-algebras are inde-

pendent, hence ~Z is independent of σ(X|~k). By interval-construction, ~Z consists of

independent components. Since Xi is a Bernoulli 1/2-random variable, the state-
ment holds. �

The next Lemma shows that we can choose c > 0 so that for big n, there are
typically at least cn replica points in [0, n].

Lemma 3.5. If c < (0.5)8p2−1, then limn→+∞ P (En) = 1.

Proof: Let ξi be a Bernoulli random variable that is 1 if and only if ui is a replica

point. Clearly, P (ξi = 1) = (0.5)8p2−1 =: q and

En =
{

n
∑

i=1

ξi ≥ cn
}

.
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Then, by Hoeffding inequality,

P (Ec
n) = P

(

n
∑

i=1

ξi < cn
)

= P
(

n
∑

i=1

ξi − qn < (c − q)n
)

≤ exp[−2(c − q)2n] → 0.

�

3.5. Proof of Lemma 2.2. From (2.4) it follows: ∃K < ∞ such that

supnED2
n = supn

VAR[Ln]

n
< K.

We now prove the existence of k > 0.
Clearly

VAR[Ln] = E ( VAR[Ln|Σ] ) + VAR ( E[Ln|Σ] ) ≥ E ( VAR[Ln|Σ] ) .

By (3.7), Ln = Z~T
+ L

~T
n . Since L

~T
n is Σ-measurable, it holds that:

VAR[Ln|Σ] = VAR[Z~T
|Σ]. (3.8)

By Lemma 3.4, on En = {T 6= 0}, the conditional distribution of Z~T
is binomial.

On Ec
n, Z~T

= 0 and hence E(IEc
n
VAR[Z~T

|Σ]) = 0. Therefore:

E(VAR[Ln|Σ]) = E(VAR[Z~T
|Σ])

= E(IEn
VAR[Z~T

|Σ]) + E(IEc
n
VAR[Z~T

|Σ]) = 0.25cn · P (En).

By Lemma 3.5, for all n large enough we have:

0.25cn · P (En) ≥ kn,

for any k > 0 not depending on n, such that k < 0.25c.

4. Combinatorics

The rest of this paper is devoted to the proof of Lemma 3.2. The present section
is organized as follows. In the next subsection, we introduce some basic notions
related to the common subsequences. In Subsection 4.2, we consider the special
case p = 2. In this case, a periodic sequence is ..0101010... . The proof of Lemma
3.2 in this special case is relatively easy, since most of the combinatorics in this
case is trivial. To help the reader to understand the whole proof, we present it in
this easy case, pointing also out what causes the difficulties in the general case.
Therefore, Subsection 4.2 is an introduction to the rest of the section, where we
prove Lemma 3.2 for general p.

4.1. Preliminaries.

4.1.1. Blocks. We need to introduce some necessary formalism. In the present
Section, we consider the non-random sequences, only. At first, we formalize the
common subsequence.

Let x1, . . . , xn and y1, . . . , ym be two fixed finite sequences. A common subse-
quence of x1, . . . , xn and y1, . . . , ym is a strictly increasing mapping

v : {1, . . . , n} ↪→ {1, . . . , m}. (4.1)

Notation (4.1) means: There exists I ⊂ {1, . . . , n} and a mapping

v : I → {1, . . . , m}
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such that

yv(i) = xi, ∀i ∈ I

and v is strictly increasing: v(i2) > v(i1), if i2 > i1.
Let x1, . . . , xn and y1, . . . , ym be two sequences and let v be a common sub-

sequence. Since v is defined as a mapping (4.1), in what follows, we would like
to distinguish the sequence on which v is defined from the image sequence of v.
Therefore, we say: v is a common subsequence between x1, . . . , xn and y1, . . . , ym,
implying that v is defined as (4.1), i.e. from the sequence x1, . . . , xn into y1, . . . , ym.

The set I in (4.1) shall be denoted by

Dom(v).

The length of v, denoted as |v|, is |Dom(v)|.
With J ⊂ {1, . . . , n}, we denote by v|J the restriction of v to J . The restriction

as a subsequence of the common sequence v is defined even when J is not a subset
of Dom(v).

For a ∈ {1, . . . , n}, we define

v(a) = v(max{i ∈ Dom(v) : i < a}) + 1, v̄(a) = v(min{i ∈ Dom(v) : i > a}) − 1.

Our analysis is based on the optimality principle: If v is a longest common subse-
quence, then for any [a, b] ⊂ {1, . . . , n}, the subsequences:

v|[1,a−1] : {1, . . . , a − 1} ↪→ {1, . . . , v̄(a − 1)}
v|[a,b] : {a, . . . , b} ↪→ {v(a), . . . , v̄(b)}

v|[b+1,n] : {b + 1, . . . , n} ↪→ {v(b + 1), . . . , m}
are all with the longest possible length.

Note: [v(a), v̄(b)] can also be empty. Moreover, the intervals [1, v̄(a − 1)] and
[v(a), v̄(b)] as well as [v(a), v̄(b)] and [v(b + 1), m] can be overlapping, but the
overlapping region does not contain any elements of common subsequence v.

Let v be a common subsequence, i.e. a mapping satisfying (4.1). Let {A1, . . . , Al}
be a partition of Dom(v) that satisfies:

i): Ai is an integer interval for every i, i.e. Ai = {j, j + 1, . . . , j + s} for some
s ≥ 0.

ii): v is linear on Ai, i.e.

v(j + 1) = v(j) + 1, for every j ∈ Ai such that j + 1 ∈ Ai.

Clearly there exists at least one partition that satisfies i) and ii): the partition,
where Ai = {i} for every i ∈ Dom(v). This is the maximal partition. Let B∗(v) =
B∗ = {B1, · · · , Br} be the minimal partition that satisfies i) and ii), i.e. every
other partition is a subpartition of B∗. Clearly B∗ exists and is unique. We call
the elements of B∗ the blocks of v. By i), every block B ∈ B∗ is an interval, the
length of a block B is the number of the elements in B.

Proposition 4.1. Let {B1, . . . , Br} be the blocks of

v : {1, . . . , n} ↪→ {1, . . . , m}.
Then

max{n, m} ≥ br − 1

2
c +

r
∑

i

|Bi| = br − 1

2
c + |Dom(v)|. (4.2)
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Proof: Let nj := maxBj , j = 1, 2, . . . , r. From the definition of blocks, it follows:
n2 ≥ |B1|+ |B2|+ 1 or v(n2) ≥ |B1|+ |B2|+ 1, i.e by changing the block, v ”loses”
an element either in the set on which v is defined or in the image set of v. Similarly,
n4 ≥ |B1| + |B2| + 2 or v(n4) ≥ |B1| + |B2| + 2. Hence, for an even r,

max{nr, v(nr)} ≥
r

∑

i

|Bi| +
r

2
.

Since max{n, m} ≥ max{nr, v(nr)}, (4.2) follows. �

4.1.2. The blocks between two subsequences of a periodic sequence. In the following,
we investigate common subsequences between finite periodic sequences. We start
with a simple but yet useful observation, proved in the Appendix.

Proposition 4.2. Let x1, x2, . . . be a periodic sequence with period p. If k ≤ p is
a nonnegative integer such that

xj = xk+j , ∀j = 1, . . . , p, (4.3)

then k = p.

Assume now that x1, . . . , xn and xm+1, . . . , xm+n are two subsequences of a
periodic sequence {xn} with period p. Let v be a common subsequence of x1, . . . , xn

and y1, . . . , yn = xm+1, . . . , xm+n, i.e.

v : {1, . . . , n} ↪→ {1, . . . , n}.
Let B be a block of v. The difference v(i) + m − i, where i ∈ B is called the bias
of B.

What is the meaning of the bias? Suppose v is a common subsequence, B =
{j, . . . , j + s} is a block of v with the bias 2. This means that the common
subsequence v includes the elements xj , . . . , xj+s of x1, . . . , xn. We also know,
how these elements are matched with the elements of y1, . . . , yn: xj = yj+2−m,
xj+1 = yj+3−m, . . . , xj+s = yj+s+2−m. Since yj = xj+m, we get xj = xj+2,
xj+1 = xj+3, . . . , xj+s = xj+s+2. Moreover, for xj−1 (xj+m+1), it holds: xj−1

(xj+m+1) either does not belong to the common subsequence or it is matched with
an element not equal to xj+1 (xj+m+3).
Hence, the bias 0 means that every element of B is matched with itself – the identity
matching. By periodicity, the bias np means essentially the same. We say that B
is unbiased, if the bias of B is np for a n ∈ N. Otherwise B is biased. Proposition
4.2 can be restated:

Proposition 4.3. Let B be a biased block. Then the length of B is at most p− 1.

Example 4.4. Let us give a numerical example. Let

(x1, . . . , x20) = (00111001110011100111),

(y1, . . . , y20) := (x2, . . . , x21) = (01110011100111001110).

So, we consider the subsequences of a periodic sequence with the period p = 5. Let

v : {1, . . . , 20} ↪→ {1, . . . , 20},
with

v(1) = 1, v(3) = 3, v(4) = 4, v(5) = 7, v(6) = 10, v(7) = 11, v(8) = 12

v(14) = 13, v(15) = 14, v(16) = 15, v(17) = 16, v(18) = 17, v(19) = 18
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be a common subsequence. Obviously,

Dom(v) = {1, 3, 4, 5, 6, 7, 8, 14, 15, 16, 17, 18, 19}
and v has 5 blocks:

B1 = {1}, B2 = {3, 4}, B3 = {5}, B4 = {6, 7, 8}, B5 = {14, 15, 16, 17, 18, 19}.
Since m = 1, the corresponding biases are

b(B1) = 1 − 1 + 1 = 1, b(B2) = 1, b(B3) = 7 − 5 + 1 = 3, b(B4) = 5, b(B5) = 0.

Hence, the blocks B4 and B5 are unbiased. The lengths of the blocks are, respec-
tively, 1,2,1,3,6. The length of v, is |v| = |B1| + |B2| + |B3| + |B4| + |B5| =
1 + 2 + 1 + 3 + 6 = 13.

Sometimes we regard v as a subsequence between

(x1, . . . , x20) = (00111001110011100111),

(x2, . . . , x21) = (01110011100111001110),

i.e. v is a mapping
v : {1, . . . , 20} ↪→ {2, . . . , 21}.

with

v(1) = 2, v(3) = 4, v(4) = 5, v(5) = 8, v(6) = 11, v(7) = 12, v(8) = 13

v(14) = 14, v(15) = 15, v(16) = 16, v(17) = 17, v(18) = 18, v(19) = 19.

With this notation, the blocks and their biases remain unchanged, the bias of a block
B = {i, . . . , j} is just defined as v(i) − i.

4.2. The case p = 2. To help the reader to understand the rest of the section, we
start with a special case p = 2. In this case, a periodic sequence is ..010101... and
the combinatorics is relatively easy. We follow the steps of the general proof.

In Subsection 4.3.1, we consider the periodic pieces of length 8p2 that are slightly
shifted. Formally, we consider the sequences x1, . . . , x8p2 and xm+1, . . . , xm+8p2 ,
where 0 < m ≤ p

2 . For p = 2, this means that we consider the periodic pieces:

xm+1, . . . , xm+8p2 : 0101010101010101

x1, . . . , x8p2 : 1010101010101010.

Figure 1. Periodic pieces with equal length and matched replica point (bold) for p = 2.

The results of this section state that the length of the longest common subse-
quence between the pieces is 8p2−m (Proposition 4.5) and any longest common sub-
sequence has a large unbiased block that contains the elements xmp+1, . . . , x8p2−mp

(Proposition 4.6). In particular, the replica point (marked as bold in the picture)
4p2 + 1 is always contained in the longest common subsequence.
For p = 2, all these statements are trivial. Indeed, the length of the longest common
subsequence is 8p2 − 1. Moreover, there is only 2 longest common subsequences,
and both of them consist of one large unbiased block.
For general p, the aim of the subsection is to show that every longest common sub-
sequence contains a large unbiased block in the middle. It is rather easy to prove
that, just like in the case p = 2, that there exists a longest common subsequence
consisting of one unbiased block (Proposition 4.5), and for such a longest common
subsequence everything is fine. For p = 2, there are no more longest common sub-
sequences. However, for p > 2 there might be longest common subsequences that
have some biased blocks in the beginning as well as in the end. This makes the
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situation more complicated and Proposition 4.6 deals with those cases. Let us also
mention that the length 8p2 is chosen to ensure that the statements hold for any
p. For p = 2, they surely hold for smaller pieces as well.

In Subsection 4.3.2, the periodic pieces of unequal length are considered. The
length of one of the pieces is exactly 8p2, the other can be shorter or longer but
they can be aligned so that the difference of the starting points and ending points
is at most p − 1. In the case p = 2, thus, besides the pair considered in Figure 1,
the following pairs are considered:

x−m1+1, . . . , x8p2+m2
: 10101010101010101 01010101010101010 010101010101010101

x1, . . . , x8p2 : 1010101010101010 1010101010101010 1010101010101010

xm1+1, . . . , x8p2
−m2

: 101010101010101 010101010101010 01010101010101

x1, . . . , x8p2 : 1010101010101010 1010101010101010 1010101010101010.

Figure 2. Periodic pieces with unequal length and matched replica point (bold) for

p = 2.

Proposition 4.7 considers first three pairs, and Proposition 4.8 deals with the last
three pairs. These propositions state that for all pairs, the length of the longest
common subsequence equals to the length of the shortest one, and every longest
common subsequence includes an unbiased block that contains x4p2+1. This triv-
ially holds, because for every pair, there is only one longest common subsequence
consisting of one unbiased block. So, for p = 2, the propositions 4.7 and 4.8 are
really trivial. The reason is that in this special case, the shortest subsequence is
fully contained in the longest one. However, for a general p, this property need not
hold, because the sequences can be shifted. Then the longest common subsequence
need not be unique, and since, again, the statement should hold for every longest
common subsequence, all possibilities should be carefully analyzed.

In Subsection 4.3.3, we consider the same pairs as in the previous two sections,
the only difference is that the element x4p2+1 has been changed. We call them the
pairs with mismatch. For p = 2, thus, we consider the following eight pairs:

0101010101010101 10101010101010101 01010101010101010 010101010101010101

1010101000101010 1010101000101010 1010101000101010 1010101000101010

0101010101010101 101010101010101 010101010101010 01010101010101

1010101000101010 1010101000101010 1010101000101010 1010101000101010.

Figure 3. Periodic pieces with mismatch for p = 2.

Propositions 4.9 and 4.10 state that the length of the longest common subse-
quence of a pair with mismatch equals to that one of the same pair without mis-
match minus 1. In other words, changing the element x4p2+1 reduces the length of
the longest common subsequence by one. Again, for p = 2, this statement is trivial
to check, but for general p, it needs some more care.

In Section 4.4, we consider the sequences X = x1, . . . , xn and Y = y1, . . . , yn

macroscopically. In Subsection 4.4.1, we consider the case, where Y is periodic and
X has a periodic piece of length 8p2: ∃k ≤ n − 8p2 such that xk+1 = yk+1, xk+2 =
yk+2, . . . , xk+8p2 = yk+8p2 . Propositions 4.11 and 4.12 state that any longest com-
mon subsequence v between X and Y matches the periodic piece of X with a piece
of Y having approximately the same length. More precisely, we consider the piece
[v(k + 1), v(k + 8p2)], which (recall the definition) is the piece of Y obtained in the
following way:
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• remove the elements y1, y2, . . . , yv(k∗), where
k∗ := max{i ≤ k : xi is connected by v};

• remove the elements yv(l∗), . . . , yn, where

l∗ := min{i > k + 8p2 : xi is connected by v}.

The following example shows the construction of [v(k + 1), v(k + 8p2)] for p = 2:

y1 y2 , . . . , y8 y9 y10 y11 , . . . , y26 y27 y28 y29 y30, . . . , yn−1 yn

0 1 , . . . , 0 1 0 1 , . . . , 0 1 0 1 0, . . . , 1 0

1 0 , . . . , 0 0 0 1 , . . . , 0 0 1 , . . . , , . . . , 1 1

x1 x2 , . . . , xk−2 xk−1 xk xk+1, . . . , xk+16 xk+17 xk+18 , . . . , , . . . , xn−1 xn.

Figure 4. The underlined part of the x-sequence is the periodic piece. The bold elements

are connected by v: v(1) = 2, . . . , v(k−2) = 8, v(k−1) = 10, . . . , v(k+17) = 30, . . . , v(n) =

n − 1. Hence k∗ = k − 1, v(k∗) = 10 and, therefore, v(k + 1) = 11. Similarly, l∗ = k + 17,

v(l∗) = 30 and, therefore, v(k + 8p2) = 29. The underlined piece of y-sequence is exactly

[v(k + 1), v(k + 8p2)].

Propositions 4.11 and 4.12 state that if v is the longest common subsequence,
then periodic piece of X and the piece [v(k + 1), v(k + 8p2)] of Y can be aligned so
that the difference of these two pieces does not contain p consecutive elements (full
period). Proposition 4.11 considers the case, when the interval [v(k+1), v(k+8p2)]
is not shorter as 8p2.

The proof is based on contradiction. Suppose the difference of the aligned pieces
is more than one period. This is exactly the case in the last example above. There
are two possibilities: either k + 1 > v(k + 1) (in example: k + 1 > 11) or k + 8p2 <
v(k + 8p2) (in example: k + 16 < 29). Without loss of generality, we can assume
the latter case (in the general proof, given in Appendix, the other case is assumed).
Define a new common subsequence w as follows: until xk and after xk+8p2+1, the
subsequence w is exactly as v. In our example, this means that, as previously,
w(1) = 2, . . . , w(k−2) = 8, w(k−1) = 10 and w(k +17) = 30, . . . , w(n) = n−1. In
periodic piece, define w by direct match, i.e. w(k + 1) is the beginning of the first
period in [v(k+1), v(k+8p2)], w(k+2) = w(k+1)+1, . . . , w(k+8p2) = w(k+1)+8p2.
In our example, this means that w(k + 1) = 11, . . . , w(k + 16) = 26.

Clearly the length of w cannot be smaller than the one of v; since v is longest
possible, they have the same length. After such an alignment, by our assumption, in
the end of the interval [v(k+1), v(k+8p2)], there is at least p unconnected elements.
In our example, the unconnected elements are y28, y29, y30. Since n − (k + 8p2) >
n−v(k+8p2), there must be at least one xj such that j > (k+8p2) that is not used
in w. Let xt be first of such elements. In our example, t = k +18. This means that
the elements xk+8p2 , . . . , xt−1 are all used in w, and w(xk+8p2 ) > v(k + 8p2). Now
define a subsequence w′ that differs from w only on the elements xk+8p2 , . . . , xt−1:
w′(k + 8p2) = w(k + 8p2) − p, . . . , w(t − 1) = w′(t − 1) − p. In other words, these
elements are connected with the elements that are one period earlier. Clearly w
and w′ have the same length. In our example, w and w′ differ on (k + 17) only,
w′(k+17) = 28. Doing so, the unused period from the interval [v(k+1), v(k+8p2)]
has been moved right.

Among p consecutive elements of a periodic sequence with period p, there must
be at least one 0 and one 1. This means, that the unused xt can now be connected
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without disturbing the already existed connections. In our example, after connect-
ing xk+17 to y28 instead of y30, we can connect xk+8 with y29. This increases the
common subsequence by 1, contradicting the optimality of v.

The argument above showed that if a common subsequence v is (or can be rear-
ranged) such that the periodic sequence Y has an unused period i.e. p consecutive
elements, then one more connection can be added, implying that v cannot be the
longest. Similar argument (with some additional details, see the proof of Propo-
sition 4.12) shows that if v is such that X has an unused p consecutive elements,
then it cannot be the longest possible. This is the proof of Proposition 4.12 that
considers the case when the interval [v(k + 1), v(k + 8p2)] is not longer as 8p2.

Subsection 4.4.2 considers the situation, where the periodic piece has mismatch.
The result of this section, Corollary 4.13, states that there exists at least one longest
common subsequence such that the claims of Proposition 4.11 and 4.12 hold (recall
that without mismatch, Propositions 4.11 and 4.12 apply for any longest common
subsequence). The proof of Corollary 4.13 follows the steps of Propositions 4.11
and 4.12 with one difference. Let v be a longest common subsequence. Suppose
[v(k+1), v(k+8p2)] is more than one full period longer than [k+1, k+8p2]. Define
w as in the proof of Proposition 4.11: as v outside the periodic piece and by direct
match on the periodic piece. Without mismatch, this construction guarantees that
|w| = |v|, but with mismatch, |w| = |v|−1. However, since w has one unused period
(by optimality, it cannot have more than one unused period), the lost connection
in the periodic part can be compensated by the new connection using xt. So,
we can define another subsequence v∗ so that |v∗| = |v| and, v∗|[k+1,k+8p2 ] =
w|[k+1,k+8p2 ]. Then v∗ is the required longest common subsequence. The other

case, when [v(k+1), v(k+8p2)] is more than one full period shorter as [k+1, k+8p2]
will be proved similarly.

We now combine all obtained results to prove Lemma 3.2. Let X be the sequence
with a periodic piece of length 8p2. Any common sequence v between X and Y can
be divided into 3 parts: up to the periodic piece of X , on the periodic piece of x and
after the periodic piece. If v is the longest possible and p = 2, then Propositions
4.11 and 4.12 state that on the periodic piece, the restriction of v is a common
subsequence between two periodic pieces that are either equal length as in Figure 1
or belong to one of the cases in Figure 2. By the optimality principle, the restriction
of v must be optimal as well, and so v must have an unbiased block containing
x4p2+1. Since this holds for any longest common subsequence, we conclude that by
removing the replica point x4p2+1, the length of the longest common subsequence
must decrease by 1, since otherwise there exists a longest common subsequence
between X and Y that does not contain x4p2+1. This is one half of Lemma 3.2.
The second half states that if the replica point does not match, then the length
of the longest common subsequence equals to that one with removed replica point.
Let Z be obtained from X by changing the replica point (i.e. in Z, the replica point
does not match), and let v∗ be a longest common subsequence between Z and Y
as promised in Corollary 4.13. By the optimality principle, the restriction of v∗ on
the periodic piece (with mismatch) is a longest common subsequence of two pieces
that are either equal length or belong to one of the cases in Figure 3. We know
that, for every pair in Figure 3, the longest common subsequence is by one shorter
than the length of the longest common subsequence of the corresponding pair in
Figure 1 or Figure 2, implying that |v∗| = |v| − 1 (Corollary 4.15). So, changing
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the replica point such that it does not match, reduces always the size of the longest
common subsequence by 1. The length of the longest common subsequence with
removed replica point can obviously be bigger than |v∗| and smaller than |v| − 1,
hence it has to be equal to |v∗|.

The formal proof of Corollary 4.13 and Lemma 3.2 is given in Subsection 4.5.
The rest of the proofs are given in Appendix.

4.3. The structure of a common subsequence between periodic subsequences.

4.3.1. The structure of a common subsequence between periodic subsequences with
length 8p2. In the present Subsection, we consider the subsequences of a peri-
odic sequence with length 8p2, i.e. we consider the sequences x1, . . . , x8p2 and
xm+1, . . . , xm+8p2 . We are interested in the length and the structure of (any)
longest common subsequence of these two subsequences. Of course, when m is
a multiple of p, then the longest common subsequence is just the identity match-
ing. Hence, we assume that m is not a multiple of p. Without loss of generality, we
assume that 0 < m < p. Moreover, it is easy to see that without loss of generality
we can (and we do) assume that

0 < m ≤ p

2
.

Obviously, there exists a common subsequence v with length 8p2 −m: the identity
matching. Such a v has only one block with bias 0.

Proposition 4.5. Let x1, . . . , x8p2 and xm+1, . . . , xm+8p2 be the subsequences of a
periodic sequence, 0 ≤ m ≤ p

2 . Then the length of the longest common subsequence

is 8p2 − m.

Proposition 4.6. Let v be a longest common subsequence between x1, . . . , x8p2 and
xm+1, . . . , xm+8p2 . Let Bj = {ij , . . . , ij+s} be the unbiased block of v. Let b ∈ {0, p}
be the bias of Bj . Then the integer interval [mp + 1− b

2 , 8p2 −m(p− 1)− b
2 ] ⊂ Bj .

In particular, [mp + 1, 8p2 − mp] ⊂ Bj .

Proposition 4.6 states that a certain neighborhood of (4p2 + 1) belongs to the
unbiased block. This means that, for every longest common subsequence, the ele-
ments

x(4p2+1)−p2 , x(4p2+1)−p2+1, . . . , x4p2+1, . . . , x(4p2+1)+p2

are included and directly matched. In particular, the element x4p2+1 belongs to
the same block and are directly matched. Similarly, x2p2+1+m is directly matched.
This implies that we can define x1, . . . , xn = xm+1, . . . , xm+n and y1, . . . , yn =
x1, . . . , xn. Then, for every longest common subsequence, the element x2p2+1 is
directly matched.

4.3.2. The structure of a common subsequence between periodic subsequences with
unequal length. In the previous subsection, we analyzed the longest common sub-
sequences of two periodic subsequences with length 8p2 in detail. We now consider
the longest common subsequences between two finite periodic subsequence with
unequal length. We study the case, when one sequence is still with length 8p2 and
length of the other sequence differs from 8p2 by at most 2(p − 1). Our aim is still
to show that any longest common subsequence contains a unbiased block that is
located in the center.
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Proposition 4.7. Let x1, . . . , x8p2 and xl−m1+1, . . . , xl+8p2+m2
be the subsequences

of a periodic sequence, with 0 ≤ m1 ≤ p − 1, −m1 ≤ m2 ≤ p − 1 and l = jp,
for a j ∈ Z. Let t1 = (p − m1) mod p, t2 = max{−m2, 0}. Then the length
of the longest common subsequence is 8p2 − min{t1, t2} and any longest common
subsequence between x1, . . . , x8p2 and xl−m1+1, . . . , xl+8p2−1 includes an unbiased
block which contains x4p2+1.

Proposition 4.8. Let x1, . . . , x8p2 and xl+m1+1, . . . , xl−m2+8p2 be the subsequences
of a periodic sequence, 0 ≤ m1 ≤ p − 1, −m1 ≤ m2 ≤ p − 1 and l = jp, for a
j ∈ Z. Let t1 = (p − m1) mod p, t2 = max{−m2, 0}. Then the length of the
longest common subsequence is 8p2 − m1 − m2, if m2 ≥ 0 and 8p2 − min{m1, p +
m2}, else. Moreover, any longest common subsequence between x1, . . . , x8p2 and
xl+m1+1, . . . , xl−m2+8p2 includes an unbiased block which contains x4p2+1.

4.3.3. The structure of a common subsequence between periodic subsequences with
mismatch. In the present Subsection, we consider the subsequences of a periodic
sequence with the length 8p2. The only difference is that sequence x1, . . . , x8p2 has
a mismatch : the element x4p2+1 has been changed. So, formally, we consider the
sequences z1, . . . , z8p2 and xm+1, . . . , xm+8p2 , where zi = xi, i = 1, . . . , 4p2, 4p2 +
2, . . . , 8p2 and z4p2+1 6= x4p2+1.

Proposition 4.9. Let z1, . . . , z8p2 and xl−m1+1, . . . , xl+8p2+m2
be the subsequences

of a periodic sequence with mismatch, where m1 ≤ p − 1, −m1 ≤ m2 ≤ p − 1 and
l = jp, for a j ∈ Z. Let t1 = (p−m1) mod p, t2 = max{−m2, 0}. Then the length
of the longest common subsequence is 8p2 − min{t1, t2} − 1.

Proposition 4.10. Let z1, . . . , z8p2 and xl+m1+1, . . . , xl−m2+8p2 be the subsequences
of a periodic sequence with mismatch, m1 ≤ p − 1, −m1 ≤ m2 ≤ p − 1 and
l = jp, for a j ∈ Z. Let t1 = (p − m1) mod p, t2 = max{−m2, 0}. Then the
length of the longest common subsequence is 8p2 − m1 − m2 − 1, if m2 ≥ 0 and
8p2 − min{m1, p + m2} − 1, else.

4.4. Sequences with periodic pieces.

4.4.1. Sequence with a periodic piece. Let y1, . . . , yn be a periodic sequence. Let
x1, . . . , xn be a sequence with property:

∃k ≤ n − 8p2 such that xk+1 = yk+1, xk+2 = yk+2, . . . , xk+8p2 = yk+8p2 . (4.4)

So, the sequence x1, . . . , xn contains a periodic piece of length 8p2.
Let v be a longest common subsequence between x1, . . . , xn and y1, . . . , yn. We
consider the integer interval [v(k + 1), v̄(k + 8p2)], and we show that the length of
[v(k +1), v̄(k +8p2)] is about 8p2. The proofs of the following two propositions can
be found in the Appendix.

Proposition 4.11. Suppose the length of [v(k + 1), v̄(k + 8p2)] is not smaller than
8p2. Then there exist integers l, m1, m2 such that

[v(k + 1), v̄(k + 8p2)] = [l + 1 − m1, l + 8p2 + m2], (4.5)

where |k−l| = jp, for a non-negative j ∈ N, 0 ≤ m1 ≤ p−1 and −m1 ≤ m2 ≤ p−1.
In particular, the length of [v(k + 1), v̄(k + 8p2)] is at most 8p2 + 2(p − 1).
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Proposition 4.12. Suppose the length of [v(k + 1), v̄(k + 8p2)] is not bigger than
8p2. Then there exist integers l, m1, m2 such that

[v(k + 1), v̄(k + 8p2)] = [l + 1 + m1, l + 8p2 − m2], (4.6)

where |k−l| = jp, for a non-negative j ∈ N and 0 ≤ m1 ≤ p−1, −m1 ≤ m1 ≤ p−1.
In particular, the length of [v(k + 1), v̄(k + 8p2)] is at least 8p2 − 2(p − 1).

4.4.2. Subsequence with a periodic piece and mismatch. Let y1, . . . , yn be a periodic
sequence. Let z1, . . . , zn be a sequence with property: ∃k ≤ n − 8p2 such that

zk+1 = yk+1, . . . , zk+4p2

= yk+4p2 , zk+4p2+1 6= yk+4p2+1, zk+4p2+2

= yk+4p2+2, . . . , zk+8p2 = yk+8p2 . (4.7)

Hence, the sequence z1, . . . , zn contains a periodic piece of length 8p2 with mis-
match. From the proofs of Propositions 4.11 and 4.12, the following corollaries can
be deduced.

Corollary 4.13. There exists a longest common subsequence v between z1, . . . , zn

and y1, . . . , yn such that either (4.5) or (4.6) holds.

4.5. Proof of Lemma 3.2.

Corollary 4.14. Let y1, . . . , yn be a periodic sequence. Let x1, . . . , xn be a sequence
with property (4.4). Then any longest common subsequence between x1, . . . , xn and
y1, . . . , yn has an unbiased block that contains the element xk+4p2+1.

Proof: Let v be a longest common subsequence between x1, . . . ,xn and y1, . . . ,yn.
We consider [v(k + 1), v̄(k + 8p2)]. By optimality principle,

v|[k+1,k+8p2 ] : {k + 1, . . . , k + 8p2} ↪→ {v(k + 1), . . . , v̄(k + 8p2)}
must be the longest common subsequence.
Suppose that the length of [v(k + 1), v̄(k + 8p2)] is bigger than 8p2. Then Proposi-
tion 4.11 and Proposition 4.7 apply.
Suppose that the length of [v(k + 1), v̄(k + 8p2)] is smaller than 8p2. Then Propo-
sition 4.12 and Proposition 4.8 apply. �

Corollary 4.15. Let Ln be the length of the longest common subsequence of a
periodic sequence y1, . . . , yn and a sequence x1, . . . , xn with the property (4.4). Let
z1, . . . , zn be a sequence with the property (4.7). Then the length of the longest
common subsequence of y1, . . . , yn and z1, . . . , zn is Ln − 1.

Proof: Let v be a longest common subsequence between z1, . . . , zn and y1, . . . , yn

that satisfies (4.5) ((4.6), resp.). By Corollary 4.13, such a v exists. Recall that
|Ln − |v|| ≥ 1. The length of v is the sum of the length of restrictions:

v|[1,k] :{1, . . . , k} ↪→ {1, . . . , v(k + 1) − 1}
v|[k+1,k+8p2 ] :{k + 1, . . . , k + 8p2} ↪→ {v(k + 1), . . . , v̄(k + 8p2)}
v|[k+8p2+1,n] :{k + 8p2 + 1, . . . , n} ↪→ {v(k + 8p2 + 1), . . . , v̄(n)}.

In this case, Proposition 4.9 (Prop. 4.10 resp.) specifies the length of v|[k+1,k+8p2 ].
Proposition 4.7 (Proposition 4.8 resp.) states: if zk+1, . . . , zk+8p2 is replaced with
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xk+1, . . . , xk+8p2 , i.e. the mismatch has been removed, then there exists a common
subsequence

v′ : {k + 1, . . . , k + 8p2} ↪→ {v(k + 1), . . . , v̄(k + 8p2)}
with length |v|[k+1,k+8p2 ]| + 1. Hence, the sequence v∗ between x1, . . . , xn and
y1, . . . , yn, defined as

v∗|[1,k] = v|[1,k], v∗|[k+1,k+8p2 ] = v′, v∗|[k+8p2+1,n] = v|[k+8p2+1,n]

has length |v| + 1 and is, therefore, the longest common subsequence of x1, . . . , xn

and y1, . . . , yn. This proves the statement. �

Proof of Lemma 3.2. Let x1, . . . , xn be a realization of X1, . . . , Xn such that l
is a replica point. Recall that Ln is the length of the longest common subsequence of
x1, . . . , xn and y1, . . . , yn, and Ll

n is the length of the longest common subsequence
of x1, . . . , xl−1, xl+1, . . . xn and y1, . . . , yn. Recall

Ln − 1 ≤ Ll
n ≤ Ln. (4.8)

Assume that Al holds, i.e. l is a replica point. If the replica point matches,
then x1, . . . , xn is a sequence satisfying (4.4) with xk+4p2+1 = xl being the replica
point. Let L+

n be the length of the longest common subsequence of x1, . . . , xn and
y1, . . . , yn with matching replica point. Suppose L+

n = Ll
n. Then any longest com-

mon subsequence of s x1, . . . , xl−1, xl+1, . . . xn and y1, . . . , yn would also be a longest
common subsequence of x1, . . . , xn and y1, . . . , yn. This contradicts Corollary 4.14
which states that any longest common subsequence of x1, . . . , xn and y1, . . . , yn

contains xl. Hence, L+
n = Ll

n + 1 = Ll
n + Zn.

Suppose that the replica point does not match. Then x1, . . . , xn is a sequence as in
(4.7) with xk+4p2+1 = xl being the mismatching replica point. Let L−

n be the length
of the longest common subsequence of x1, . . . , xn and y1, . . . , yn with mismatching
replica point. By Corollary 4.15, L−

n = L+
n − 1. By (4.8), Ll

n ≤ L−
n = L+

n − 1 ≤ Ll
n,

i.e. L−
n = Ll

n.

5. Appendix

5.1. Proofs of subsection 4.4.1. Proof of Proposition 4.5. Let v be a longest
common subsequence, let {B1, . . . , Br} be the blocks of v. Note: if v has an unbiased
block, then the length of v is at most 8p2 − m. Indeed: suppose that the bias of
Bj = {ij , ij + 1, . . . , ij + s} s ≥ 0 is 0. Let nj−1 = maxBj−1. Since v(nj−1) ≤
v(ij)−1 = ij −1−m, we have that the length of v|B1∪···∪Bj−1

is at most v(nj−1) =

ij − m − 1. Similarly, the length of v|Bj+1∪···∪Br
is at most 8p2 − (ij + s). So the

length of v is at most (ij − m − 1) + (s + 1) + (8p2 − (ij + s)) = 8p2 − m.
If the bias of Bj is kp for a k ∈ N, k 6= 0 the same argument holds.
Hence, if the length of v is bigger than 8p2 −m, then all blocks {B1, . . . , Br} must
be biased. By Proposition 4.3, the length of a biased block is at most p− 1. Thus,

the number of blocks is bounded below r ≥ 8p2−m+1
p

and

br − 1

2
c ≥ b8p2 − m + 1 − p

2p
c ≥ b4p − m − 1

2p
− 1

2
c ≥ 4p − 1 > m + 1. (5.1)

From Proposition 4.1, it follows |Dom(v)| < 8p2 − m − 1 that contradicts the
assumption that the length of v is at least 8p2 − m + 1.
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Corollary 5.1. Let v be a longest common subsequence, and let {B1, . . . , Br} be
its blocks. Then there exists one and only one block Bj that is unbiased. Moreover,
the bias of Bj is 0 or p, and it can be p only, when m = p

2 .

Proof: From (5.1) follows that v has at least one unbiased block. Since v is
the longest, Proposition 4.1 implies that v has only one unbiased block, say Bj . If
m < p

2 , the argument used in the beginning of the proof of Proposition 4.5 yields
that the bias of Bj is 0. If m = p

2 , then the bias of Bj can be p as well. �

Corollary 5.2. Let v be a longest common subsequence, let {B1, . . . , Br} be its
blocks. Let Bj = {ij , . . . , ij + s} be its unbiased block. Let b ∈ {0, p} be the bias of

Bj . Then the length of v|B1∪···∪Bj−1
is ij −m−1+ b

2 and the length of v|Bj+1∪···∪Br

is 8p2 − (ij + s) − b
2 .

Proof of Proposition 4.6. Let us first consider the case b = 0. By Corollary
5.2, the length of v|B1∪···∪Bj−1

is ij − m − 1. Since

v|B1∪···∪Bj−1
: {1, . . . , ij − 1} ↪→ {1, . . . , ij − m − 1},

it holds that:

v|B1∪···∪Bj−1
({1, . . . , ij − 1}) = {1, . . . , ij − m − 1}.

This means that

v(nj−1) = ij − m − 1 = |B1| + · · · + |Bj−1|, (5.2)

where nj−1 = maxBj−1. Hence, by changing the blocks, v loses only the elements
on the set where it is defined. Up to the block Bj there are j − 1 changes. Hence,
v loses at least j − 1 elements, so that:

ij > |B1| + · · · + |Bj−1| + j − 1.

On the other hand, by (5.2):

ij = |B1| + · · · + |Bj−1| + (m + 1),

and thus j − 1 < m + 1 or j − 1 ≤ m. Since the blocks B1, . . . , Bj−1 are biased,
their length is at most p − 1. Therefore, ij ≤ m(p − 1) + (m + 1) = mp + 1.
By Corollary 5.2, the length of v|Bj+1∪···∪Br

is at most 8p2 − (ij + s). Since

v|Bj+1∪···∪Br
: {ij + s + 1, . . . , 8p2} ↪→ {ij + s − m + 1, . . . , 8p2},

it holds:

Dom(v|Bj+1∪···∪Br
) = {ij + s + 1, . . . , 8p2}.

The last equality implies that:

8p2 − (ij + s) = |Bj+1| + · · · + |Br|. (5.3)

Hence, after Bj , by changing the blocks, v loses the elements on the image set, only.
From Bj to Br there are r − j changes, so that:

v(ij + s) + (r − j) + |Bj+1| + · · · + |Br| ≤ 8p2.

Hence, with v(ij + s) = ij + s − m, we have that:

(r − j) ≤ 8p2 − (|Bj+1| + · · · + |Br|) − v(ij + s) = ij + s − v(ij + s) = m.

Therefore, (5.3) implies 8p2 − (ij + s) ≤ m(p − 1), so ij + s ≥ 8p2 − m(p − 1).
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Finally, let us consider the case b = p. This can happen only, when m = p
2 .

Then

v|B1∪···∪Bj−1
: {1, . . . , ij − 1} ↪→ {1, . . . , ij + m − 1},

v|Bj+1∪···∪Br
: {ij + s + 1, . . . , 8p2} ↪→ {ij + s + m + 1, . . . , 8p2}

and the arguments used before yield ij ≤ (p − 1)m + 1 and 8p2 − (ij + s) ≤ mp.

5.2. Proofs of subsection 4.3.2.

Proposition 5.3. Let x1, . . . , x8p2 and xt+1, . . . , xt+8p2+h be the subsequences of
a periodic sequence, 0 ≤ t ≤ p

2 , 0 ≤ h ≤ p − 2t. Then the length of the longest

common subsequence is 8p2 − t. Moreover, any longest common subsequence has
an unbiased block Bj that contains the integer-interval [tp + 1, 7p2] ⊂ Bj .

Proof: Since h ≤ p−2t, we have p− (t+h) ≥ t, so t is the minimal bias between
the two subsequences. In the proof of Proposition 4.5, replace the inequalities (5.1)
with

br − 1

2
c ≥ b8p2 − t + 1 − p

2p
c ≥ b4p − t − 1

2p
− 1

2
c ≥ 4p − 1 ≥ t + h, (5.4)

where the last inequality holds, because t ≤ p
2 and h ≤ p.

Let assume b = 0. Then the first half of the proof of Proposition 4.6 holds with
any changes. For the second half, replace 8p2 by 8p2 + h. Then 8p2 − (ij + s) ≤
(t + h)(p − 1) ≤ p(p − 1) implying (ij + s) ≤ 7p2 + p. For t = p

2 , h = 0. �

Proposition 5.4. Let x1, . . . , x8p2 and xm+1, . . . , xm+8p2−h be the subsequences of
a periodic sequence, 0 ≤ 2m ≤ p + h, 0 ≤ h ≤ m. Then the length of the longest
common subsequence is 8p2 − m. Moreover, any longest common subsequence has
an unbiased block Bj that contains the integer-interval [mp + 1, 8p2 − mp] ⊂ Bj .

Proof: By assumption, 2m ≤ p+h ≤ m+p, i.e., m ≤ p. It holds, p−m+h ≥ m,
i.e. m is the minimal bias between the two subsequences. But it might be that
m > p

2 . The proof of Proposition 4.5 holds without any changes. Since 0 ≤ h ≤ m,
Proposition 4.6 holds, the only formal change is

v|Bj+1∪···∪Br
: {ij + s + 1, . . . , 8p2} ↪→ {ij + s − m + 1, . . . , 8p2 − h}. (5.5)

�

Proposition 5.5. Let xm1+1, . . . , xm1+8p2 and x1, . . . , xm1+8p2+m2
be the subse-

quences of a periodic sequence, 0 ≤ m1, m2 ≤ p − 1. The length of the longest
common subsequence is 8p2 and each such subsequence of xm1+1, . . . , xm1+8p2 and
x1, . . . , xm1+8p2+m2

includes an unbiased block which contains the interval [p2, 7p2].

Proof: Let v : [1, 8p2] ↪→ [1, 8p2 + m1 + m2] be a longest common subsequence,
the length of v is clearly 8p2. Let {B1, . . . , Br} be the blocks of v. Suppose that

all blocks are unbiased. Then r ≥ 8p2

p−1 . Since all the elements of the smallest

subsequence are included in the longest common subsequence, by changing the
blocks, v loses the elements on the bigger subsequence, only. Thus,

8p2 + (r − 1) =
r

∑

i

|Bi| + (r − 1) ≤ 8p2 + m1 + m2,



22 Matzinger et al.

implying that r − 1 ≤ m1 + m2 ≤ 2(p− 1). This contradicts the lower bound for r.
Hence, there exists one and only one unbiased block Bj = {ij , . . . , ij + s}. The
bias of Bj can only be 0. Before the unbiased block, there are at most m1 biased
blocks, implying: ij ≤ m1(p − 1) < p2. Similarly, ij + s ≥ 7p2. �

Proof of Proposition 4.7. Suppose t2 = 0. Then Proposition 5.5 applies.
If t1 = 0, then m1 = 0 and t2 = 0, Proposition 5.5 applies again.
Suppose t1 > 0, t2 > 0. Assume t1 ≤ t2. Note that t1 ≤ p

2 . If not, then m1 =
p − t1 ≤ p

2 , a contradiction with the assumption m1 ≥ t2.
Since l − m1 = (l − 1)p + t1 = l∗ + t1, we have

xl−m1+1, . . . , xl−m1+m1+8p2+m2
= xl∗+t1+1, . . . , xl∗+t1+8p2+m2+m1

.

Let h = m2+m1. Clearly, h = m2+m1 ≥ 0 and h = m2+m1 = p−t1−t2 ≤ p−2t1
since −t2 ≤ −t1. Hence Proposition 5.3 applies.
Assume t1 ≥ t2. Then t2 > 1

2 would imply that m1 > 1
2 and t1 ≥ 1

2 , a contradiction.
We reverse the sequences, i.e we define

x′
1 = x8p2 , x′

2 = x8p2−1, . . . , x
′
8p2 = x1.

Then x′
t2+1 =x′

8p2+m2
, x′

t2+2 =x′
8p2+m2−1, . . . , x

′
t2+8p2 = xm2+1, . . . , x

′
t2+8p2+m1−t2

= x−m1+1. Take h = m1 − t2 = m1 + m2 ≥ 0. It holds: p − 2t2 ≥ p − t1 − t2 =
m1 − t2 = h. Now apply Proposition 5.3 to the reversed sequences. The reversing
does not change the longest common subsequences (except reversing them). The
element x4p2+1 in the original sequence is the element x′

4p2 . By Proposition 5.3, it
belongs to the unbiased block of any longest common subsequence.

Proposition 5.6. Let x1, . . . , x8p2 and xm1+1, . . . , x8p2−m2
be the subsequences

of a periodic sequence, 0 ≤ m1, m2 ≤ p − 1. The length of a longest common
subsequence is 8p2 − (m1 + m2) and every such a subsequence of x1, . . . , x8p2 and
xm1+1, . . . , x8p2−m2

includes an unbiased block which contains the interval [p2, 7p2].

Proof: Let v be a longest common subsequence, the length of v is clearly 8p2 −
m1−m2. Let {B1, . . . , Br} be the blocks of v. Suppose that all blocks are unbiased.

Then r ≥ 8p2−2p
p−1 . Since all the elements of the smallest subsequence are included

in the longest common subsequence, by changing the blocks, v loses the elements
on the bigger subsequence, hence. Thus,

8p2 − (m1 + m2) + (r − 1) =

r
∑

i

|Bi| + (r − 1) ≤ 8p2,

implying that r − 1 ≤ m1 + m2 ≤ 2p. This contradicts with the lower bound of r.
So, there exists one and only one unbiased block Bj = {ij , . . . , ij + s}. The bias
of Bj is 0. Since before the unbiased block, there are at most t1 biased blocks, we
have: ij ≤ m1(p − 1) + m1 ≤ p2. Similarly, ij + s + m2(p − 1) + m2 ≥ 8p2, so
ij + s ≥ 7p2. �

Proof of Proposition 4.8. If t1 = 0 then m2 ≥ 0. If m2 ≥ 0, then apply
Proposition 5.6.
Let 0 < m1 ≤ p+m2. Define h = m1 +m2 ≥ 0. Since 2m1 ≤ p+m2 +m1 = p+h,
Proposition 5.4 applies.
Let 0 < m2 + p ≤ m1. Then reverse the sequences as in the proof of Proposition
4.7 and apply Proposition 5.4.
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5.3. Proofs of Subsection 4.3.3.

Proposition 5.7. Let z1, . . . , z8p2 and xt+1, . . . , xt+8p2+h be the subsequences of a
periodic sequence with mismatch, 0 ≤ t ≤ p

2 , 0 ≤ h ≤ p− 2t. Then the length of the

longest common subsequence is 8p2 − t − 1.

Proof: Let v be a longest common subsequence of

z1, . . . , z8p2 and xt+1, . . . , xt+8p2+h

The length of v is clearly at least 8p2 − m − 1.
Let us show that both subsequences v|[1,4p2] and v|[4p2+2,8p2] have an unbiased block.

By (5.1), v has at least one unbiased block Bj = {ij , . . . , nj}. Assume ij > 4p2 +1.
It holds that:

v|[1,ij−1] : {1, . . . , ij − 1} ↪→ {1, . . . , ij − 1 − m + b},
where b ∈ {0, 2t} is the bias of Bj . Clearly the length of v|[1,ij−1] is at least

ij − 1 − t + b
2 . Let B1, . . . , Br1

be the blocks of v|[1,ij−1]. Suppose they all are

biased. Then, with u = ij − (4p2 + 2), we find:

r1 − 1

2
≥ ij − 1 − (p − 1) − t + b

2

2(p − 1)
=

4p(p − 1) + 2 + 3p + u − t + b
2

2(p − 1)
> 2p.

By Proposition 4.1, ij − 1 + b
2 ≥ 2p + |v|[1,ij−1]| or |v|[1,ij−1]| ≤ ij − 1 + b

2 − 2p,
which is a contradiction. Since the argument holds for any u, the unbiased block
is contained in {1, . . . , 4p2}.
Hence, B1, . . . , Br1

contain at least one unbiased block.
Suppose the unbiased block Bj is contained in {1, . . . , 4p2}. It holds that:

v|[nj+1,8p2] : {nj + 1, . . . , 8p2} ↪→ {nj + 1 + b, . . . , t + 8p2 + h},

where h = 0, if b = 2t. Then |v|[nj+1,8p2]| ≥ 8p2 − nj − 1 − b
2 . Let C1, . . . , Cr2

be

the blocks of v|[nj+1,8p2]. Suppose they all are biased, hence, with u = 4p2 − nj ,

r2 − 1

2
≥ 4p(p − 1) + 3p + u − b

2

2(p − 1)
> 2p.

By Proposition 4.1,

h + t + 8p2 − nj − 1 ≥ |v|[nj+1,8p2]| + 2p ≥ 8p2 − nj − 1 + 2p − b

2
,

which is a contradiction. Since the argument holds for any u, the unbiased block
is contained in {4p2 + 1, . . . , 8p2}.

Let l > j and Bj ,Bl be unbiased blocks: Bi ⊂ {1, . . . , 4p2}, Bl ⊂ {4p2 +
2, . . . , 8p2}.
If t < p

2 , then the bias of both blocks is 0. Since v is the longest common subse-

quence, it follows that |v| = 8p2 − t − 1 and the blocks are consecutive: l = j + 1
and

Bj = {ij , . . . , 4p2}, Bl = Bj+1 = {4p2 + 2, . . . , 4p2 + s}. (5.6)

If t
2 , p > 2, then the bias of both blocks can be p as well. However, the length of v

is still 8p2 − t− 1 and (5.6) holds. In both cases, the element z4p2+1 is not included
in v.
Finally, if t = 1 and p = 2, it might be that the bias of Bj is 0, the bias of Bj+1 is
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2 and the element z4p2+1 is included in v. The length of v is still however equal to
8p2 − t − 1. �

Proposition 5.8. Let z1, . . . , z8p2 and xm+1, . . . , xm+8p2−h be the subsequences of
a periodic sequence with mismatch, 0 ≤ 2m ≤ p + h, 0 ≤ h ≤ m. Then the length
of the longest common subsequence is 8p2 − m − 1.

Proof: The proof of Proposition 5.7 holds without changes. �

Proposition 5.9. Let zm1+1, . . . , zm1+8p2 and m1, . . . , xm1+8p2+t2 be the subse-
quences of a periodic sequence with mismatch, 0 ≤ m1, m2 ≤ p − 1. The length of
the longest common subsequence is 8p2 − 1.

Proof: Let v be a longest common subsequence of zm1+1, . . . , zm1+8p2 and x1, . . .
. . . , xm1+8p2+m2

. By the argument used in the proof of Proposition 5.5, v has
at least one unbiased block. The same argument, applied again, yields that the
subsequences v|[1,4p2] and v|[4p2+1,8p2] both have an unbiased block. If p > 2, then
the bias of the unbiased blocks is 0, implying that the length of the longest common
subsequence is 8p2 − 1.

When p = 2, the statement is easy to see. �

Proposition 5.10. Let zm1+1, . . . , zm1+8p2 and x1, . . . , x8p2−m2
be the subsequences

of a periodic sequence with mismatch, 0 ≤ m1, m2 ≤ p−1. The length of the longest
common subsequence is 8p2 − 1 − (m1 + m2).

Proof: Let v be a longest common subsequence of zm1+1, . . . , zm1+8p2 and x1, . . .
. . . , xm1+8p2−m2

. By the argument used in the proof of Proposition 5.6, v has at
least one unbiased block, by the same argument, v|[1,4p2] and v|[4p2+1,8p2] both have
an unbiased block. If p > 2, then the bias of the unbiased blocks is 0, implying that
the length of the longest common subsequence is 8p2 − (m1 + m2) − 1.

When p = 2, the statement is easy to see. �

Proof of Proposition 4.9. Suppose t2 = 0, i.e. m2 ≥ 0. If t1 = 0, then m1 = 0
and t2 = 0. For m2 ≥ 0, Proposition 5.9 applies.
Suppose t1 > 0, t2 > 0. Assume t1 ≤ t2. Then t1 ≤ p

2 .
Since l − m1 = (l − 1)p + t1 = l∗ + t1, we have

xl−m1+1, . . . , xl−m1+m1+8p2+m2
= xl∗+t1+1, . . . , xl∗+t1+8p2+m2+m1

.

Let h = m2+m1. Clearly, h = m2+m1 ≥ 0 and h = m2+m1 = p−t1−t2 ≤ p−2t1
since −t2 ≤ −t1. Hence Proposition 5.7 applies.
Assume t1 ≥ t2. Then t2 ≤ 1

2 . Reverse the sequences as in the proof of Proposition
4.7, i.e. we define

z′1 = z8p2 , z′2 = z8p2−1, . . . , z
′
8p2 = z1.

Note that in the reversed sequence, the mismatching element is z ′
4p2 instead of

z′4p2+1. However, it is easy to see that the proof of Propositions 5.7 holds also in

this case.
Proof of Proposition 4.10. If t1 = 0 then m2 ≥ 0. If m2 ≥ 0, then apply

Proposition 5.10.
Let 0 < m1 ≤ p+m2. Define h = m1 +m2 ≥ 0. Since 2m1 ≤ p+m2 +m1 = p+h,
Proposition 5.7 applies.
Let 0 < m2 + p ≤ m1. Then reverse the sequences as in the proof of Proposition
4.9 and apply Proposition 5.7.
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5.4. Proofs of Subsection 4.3.1. Proof of Proposition 4.11. If |[v(k + 1), v̄(k +
8p2)]| = 8p2, the statement clearly holds. Suppose |[v(k + 1), v̄(k + 8p2)]| > 8p2.
Then it holds: either k + 1 > v(k + 1) or v̄(k + 8p2) > (k + 8p2). Without loss of
generality assume

v(k + 1) < k + 1. (5.7)

There ∃l ≥ 0 such that |k − l| = jp, for a non-negative j ∈ N and

v(k + 1) = l − ip − m1 + 1, v̄(k + 8p2) = l + 8p2 + m2,

where 0 ≤ m1 ≤ p− 1 and −m1 ≤ m2 ≤ p− 1, when i = 0 and 0 ≤ m1, m2 ≤ p− 1,
when i ≥ 1.
The proposition is proven, if we show that i = 0. Suppose not. Then 0 ≤ m1, m2 ≤
p − 1.
By the optimality principle, the subsequence

v|[k+1,k+8p2 ] : {k + 1, . . . , k + 8p2} ↪→ {l − ip − m1 + 1, . . . , l + 8p2 + m2}

is the longest possible and its length is therefore equal to 8p2. Let

v′ : {k + 1, . . . , k + 8p2} ↪→ {l + 1, . . . , l + 8p2}
be a common subsequence that consists of a direct match:

v′(k + 1) = l + 1, . . . , v′(k + 8p2) = l + 8p2.

The length of v′ is also 8p2.
Let

w : {1, . . . , n} ↪→ {1, . . . , n}
be a common subsequence of x1, . . . , xn and y1, . . . , yn that is defined as follows:

w|[1,k] = v|[1,k]

w|[k+1,k+8p2 ] = v′

w|[k+8p2+1,n] = v|[k+8p2+1,n]

Hence, w is a modification of v obtained by v|[k+1,k+8p2 ] replaced by a direct match-
ing v′. Of course, the length of w is the same as the length of v, hence, w is the
longest common subsequence.
The subsequence w has the following property: [1, w̄(k)] = [1, l], but

w(k + 1) = w(max{i ≤ k : i ∈ Dom(w)}) + 1

= v(max{i ≤ k : i ∈ Dom(v)}) + 1 = v(k + 1) = l − ip − m1 + 1.

Hence, the interval [l − ip − m1 + 1, l] does not contain any element of w. This
means that the subsequence

w|[1,k] : {1, . . . , k} ↪→ {1, . . . , l} (5.8)

is actually a subsequence

w|[1,k] : {1, . . . , k} ↪→ {1, . . . , l − ip− m1}.
We shall show that this property contradicts the optimality principle.
By (5.7), k > l − m1 − ip. Let

t = max{i ≤ k : i 6∈ Dom(v)}.
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We have: w(t + 1), . . . , w(k) ≤ l − ip− m1. Define w′ : {1, . . . , k} ↪→ {1, . . . , l},
w′|[1,t] = w|[1,t]

w′(t + 1) = w(t + 1) + p, . . . , w′(k) = w(k) + p.

Since w(k) ≤ l, the sequence w′ is well defined and has the length as (5.8). Let s
be the last element of w before t, i.e. s = max{i < t : i ∈ Dom(w)}. By definition
of w′, w′(t + 1) = w(t + 1) + p ≥ w′(s) + 1 + p, so the interval [w′(s) + 1, w′(s) + p]
does not contain any elements of w′. By periodicity, the interval [yw′(s)+1, yw′(s)+p]
contains at least one 0 and at least one 1. On the other hand, the unconnected
element xt is either 0 or 1. Therefore, we can connect the element xt with an
element of [yw′(s)+1, yw′(s)+p]. The possibility of such a connection shows that w′ is
not the longest common subsequence. This, in turn, implies that (5.8) can not be
the longest common subsequence. By the optimality principle, the latter implies
that w and, hence, v cannot be the longest common subsequences as well. This is
a contradiction. The reason for the contradiction is the assumption i ≥ 1.

Proof of Proposition 4.12. If |[v(k + 1), v̄(k + 8p2)]| = 8p2, the statement
clearly holds. Suppose |[v(k + 1), v̄(k + 8p2)]| < 8p2. Then it holds: either k + 1 <
v(k + 1) or v̄(k + 8p2) < (k + 8p2). Without loss of generality assume

v̄(k + 8p2) < (k + 8p2). (5.9)

There ∃l ≥ 0 such that |k − l| = jp, for a non-negative j ∈ N and

v(k + 1) = l + m1 + 1, v̄(k + 8p2) = l − ip + 8p2 − m2 =: ul,

where 0 ≤ m1 ≤ p − 1 and −m1 ≤ m2 ≤ p − 1, when i = 0, and 0 ≤ m ≤ p − 1,
when i ≥ 1. Proposition is proved, if we show that i = 0. Suppose i > 0. Then
0 ≤ m1 ≤ p − 1.
By the optimality principle, the subsequence

v|[k+1,k+8p2 ] : {k + 1, . . . , k + 8p2} ↪→ {l + m1 + 1, . . . , ul}
is the longest possible, the length of it is, therefore, L := 8p2 − (m1 +m2 + ip). Let

v′ : {k + 1, . . . , k + 8p2} ↪→ {l + m1 + 1, . . . , ul}
be a common subsequence that consists of a direct match:

v′(k + 1 + m1) = l + m1 + 1, . . . , v′(k + 8p2 − ip − m2) = l − ip + 8p2 − m2 = ul.

The length of v′ is also L.
Let

w : {1, . . . , n} ↪→ {1, . . . , n}
be a common subsequence of x1, . . . , xn and y1, . . . , yn that is defined as follows:

w|[1,k] = v|[1,k]

w|[k+1,k+8p2 ] = v′

w|[k+8p2+1,n] = v|[k+8p2+1,n]

Of course, the length of w is the same as the length of v, hence, w is the longest
common subsequence of x1, . . . , xn and y1, . . . , yn.
The subsequence w has the following property: uk := k +8p2− ip−m2 ∈ Dom(w),
and the next element in Dom(w) is not earlier as k + 8p2 + 1: min{i ≥ uk : i ∈
Dom(w)} ≥ k + 8p2 + 1. In particular, this implies: w(k + 8p2 + 1) = ul + 1 or

|w|[uk+1,n]| = |w|[k+8p2+1,n]|. (5.10)
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Note:

w|[k+8p2+1,n] : {k + 8p2 + 1, . . . , n} ↪→ {ul + 1, . . . , n}.

By (5.9), k + 8p2 + 1 < ul + 1, so there exists at least one element j ∈ [ul + 1, n]
such that yj does not belong to the subsequence w|[k+8p2+1,n]. Let

t = min{j ≥ ul + 1 : j 6∈ w([k + 8p2 + 1, n])}. (5.11)

By definition of t, the elements ul + i, i = 1, . . . , t − 1 − ul =: s are all connected
by w. Define rl + i := w−1(ul + i), i = 1, . . . , s. Now we rearrange the connections
as follows. Let

w′ : {uk + 1, rl + s − p} ↪→ {ul + 1, . . . , ul + s}

as follows

w′(uk + i) = ul + i, i = 1, . . . , p

w′(rl + i) = ul + p + i i = 1, . . . , s − p.

Note that w′ leaves the points xrl+s−p, xrl+s−p+1, . . . , xrl+s unconnected. Since
they were connected with p consecutive yul+s−p, . . . , yul+s, the points

xrl+s−p, xrl+s−p+1, . . . , xrl+s

contain at least one 1 and one 0. That means that one of them can be connected
with yt, and this means that one more connection can be added. This contradicts
the optimality of w.

5.5. Proof of Corollary 4.13. Let v be a longest common subsequence of z1, . . . , zn

and y1, . . . , yn. Suppose [v(k + 1), v̄(k + 1)] is bigger than 8p2 but does not satisfy
(4.5). Then there exists 0 ≤ m1, m2 ≤ p − 1, i > 0, such that

v|[k+1,k+8p2 ] : {k + 1, . . . , k + 8p2} ↪→ {l − ip − m1 + 1, . . . , l + 8p2 + m2}. (5.12)

As in the proof of Proposition 4.11, we can assume (5.7). Then v(k+1)+2 < k+1.
Suppose i ≥ 1. Then, by the optimality principle, the length of |v|[k+1,k+8p2 ]| is

8p2. Define the common subsequence w as in the proof of Proposition 4.11. Because
of the direct matching on the periodic part, the length of w is |v| − 1. Suppose
i ≥ 2. Then the length of the empty interval [l− ip−m1 + 1, l] is at least 2p. Since
there are at least two elements in [1, k], say t1 and t2, not included into Dom(v), by
rearranging the elements of w|[1,k] as in the proof of Proposition 4.11, both zt1 = xt1

and zt2 = xt2 can be matched with an empty period. So, the length of w|[1,k] can
be increased by 2. This contradicts the assumption that v is the longest common
subsequence.
This means that in (5.12), i = 1. Now, again, use the argument of Proposition 4.11:
rearrange the elements of w|[t,k] by defining w′(t + 1) = w(t + 1) + p, . . . , w′(k) =
w(k) + p = l− p−m1 + p = l −m1 and connect the element xt with some element
on [yw′(s)+1, yw′(s)+p]. Let

w∗ : {1, . . . , k} ↪→ {1, . . . , l − m1},
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be modification of w′ with connected xt so the length of w∗ is |w|[1,k]| + 1. Hence,
the sequence v∗ with

v∗|[1,k] = w∗

v∗|[k+1,k+8p2 ] = w

v∗|[k+8p2+1,n] = w|[k+8p2+1,n]

has length |w| + 1, which is the same as the length of v. Since v∗(k) = w∗(k) =
w′(k) = l − m1, the sequence v∗ satisfies (4.5).

Suppose [v(k+1), v̄(k+1)] is not bigger than 8p2 but does not satisfy (4.6). The
proof is similar: as in the proof of (4.5), define the subsequence w and note that the

length of w is |v| − 1. Then define t as in (5.11), and w
′

as in in the proof of (4.5).
With the help of w′, construct the common subsequence v∗ which has the same
length as v. Hence, v∗ is the longest common subsequence. By the construction, it
satisfies (4.6).

5.6. Proof of Proposition 4.2. Assume that there exists k < p such that (4.3) hold.
Then

xmk+j = xj ∀m ≥ 1, j = 1, . . . , p. (5.13)

The latter implies

xk+n = xn ∀n ≥ 1.

that contradicts the definition of p.
Let us proof (5.13). Use induction: For m = 1, (5.13) is equivalent to (4.3).
Suppose that (5.13) holds for m. Let k + j ≤ p. Then x(m+1)k+j = xmk+(k+j) =
xk+j = xj . If k + j > p, then x(m+1)k+j = xmk+(k+j) = xmk+k+j−p = xk+j−p =
xk+j = xj , To get the third inequality note that from j ≤ p follows k + j − p < p,
and use (5.13).
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