
A Full Key Recovery Attack on
HMAC-AURORA-512

Yu Sasaki

NTT Information Sharing Platform Laboratories, NTT Corporation
3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan

sasaki.yu@lab.ntt.co.jp

Abstract. In this note, we present a full key recovery attack on HMAC-
AURORA-512 when 512-bit secret keys are used and the MAC length
is 512-bit long. Our attack requires 2257 queries and the off-line com-
plexity is 2259 AURORA-512 operations, which is significantly less than
the complexity of the exhaustive search for a 512-bit key. The attack
can be carried out with a negligible amount of memory. Our attack can
also recover the inner-key of HMAC-AURORA-384 with almost the same
complexity as in HMAC-AURORA-512. This attack does not recover the
outer-key of HMAC-AURORA-384, but universal forgery is possible by
combining the inner-key recovery and 2nd-preimage attacks. Our attack
exploits some weaknesses in the mode of operation.

keywords: AURORA, DMMD, HMAC, Key recovery attack

1 Description

1.1 Mode of operation for AURORA-512

We briefly describe the specification of AURORA-512. Please refer to Ref. [2] for
details. An input message is padded to be a multiple of 512 bits by the standard
MD message padding, then, the padded message is divided into 512-bit message
blocks (M0,M1, . . . , MN−1).

In AURORA-512, compression functions Fk : {0, 1}256×{0, 1}512 → {0, 1}256
and Gk : {0, 1}256 × {0, 1}512 → {0, 1}256, two functions MF : {0, 1}512 →
{0, 1}512 and MFF : {0, 1}512 → {0, 1}512, and two initial 256-bit chaining
values HU

0 and HD
0 are defined1.

The algorithm to compute a hash value is as follows.

1. for k=0 to N − 1 {
2. HU

k+1 ← Fk(HU
k ,Mk).

3. HD
k+1 ← Gk(HD

k ,Mk).
4. if(0 < k < N − 1) ∧ (k mod 8 = 7) {
5. temp ← HU

k+1‖HD
k+1

1 Fk and Fk′ are identical if k ≡ k′mod 8. Gk and Gk′ also follow the same rule.

6. HU
k+1‖HD

k+1 ← MF (temp).
7. }
8. }
9. Output MFF (HU

N‖HD
N).

1.2 HMAC

HMAC [7] is an algorithm to compute MACs when a key and a message are
input. According to Ref. [3], the minimal recommended length for the secret key
is L, where L is the size of the hash function output. Therefore, it is reasonable
to use 512-bit keys for HMAC with 512-bit output hash functions, and use 384-
bit keys for 384-bit output hash functions. The HMAC algorithm to compute
an output with a hash function H and an initial value H0 when a key K and a
message M are input is as follows.

K0 ← Pad(K), (1)
temp = H(H0, (K0 ⊕ ipad)‖M), (2)

HMAC−H(M) = H(H0, (K0 ⊕ opad)‖temp), (3)

where, ipad and opad are constant values defined in the specification of HMAC,
and Pad(·) is a padding process of K. In Pad(·), if the size of K is shorter than
the block length, zeros are appended to the end of K to make its length be the
block length, and use as K0. If the size of K and the block length are identical,
K is used as K0.

2 Full key recovery attack on HMAC-AURORA-512

According to the support document of AURORA [2], AURORA-512 can be used
for HMAC only to produce 512-bit MACs. Our attack is a full key recovery attack
on HMAC-AURORA-512 when the key size is 512 bits and the MAC length is 512
bits. Our attack does not recover the secret key K itself, but recover the values
of chaining variables after K ⊕ ipad is processed and K ⊕ opad is processed.
Recovering these values have the same effect as recovering K with respect to
forging MAC values. The number of queries in this attack is 2257 and the off-line
complexity is 2259 AURORA-512 operations. The attack can be carried out with
a negligible amount of memory.

The attack procedure is as follows. In this attack, we mainly ask 1-block
messages (including padding bits) as queries. The structure to process a 1-block
message in HMAC-AURORA-512 is illustrated in Fig. 1.

1. Prepare 2257 different messages that are the same length but shorter than 448
bits so that the length of padded messages does not exceed 1-block. Let M i

be prepared messages. Ask all M i to the oracle, and obtain corresponding
HMACK(M i).

2

�

��

��

��

��

��
�

��
�

��	
�

��	
�

���

���

� ����

���

���

���

��
�

��
�

���	���	

��

�
��� 	��� �

���

�

��

��

��

��

��
�

��
�

�
��
�

�
��
�

�
���

�
�

�
�

��

�
 ������

��

��

�
�

�
�

	��
����
�

Fig. 1. Structure to process a 1-block message in HMAC-AURORA-512

2. Find message pairs (M j ,M j′) in which HMACK(M j) and HMACK(M j′)
are a collision. Due to the computation structure, a pair of messages have
the following five possibilities to be a collision.
Case 1: HU

2 s collide and HD
2 s collide.

Case 2: Case 1 does not occur and H∗
2 s collide.

Case 3: Case 1, 2 do not occur and hU
2 s collide and hD

2 s collide.
Case 4: Case 1, 2, 3 do not occur and hU

3 s collide and hD
3 s collide.

Case 5: Case 1, 2, 3, 4 do not occur and HMAC values collide.
Therefore, we expect to obtain several collisions in this Step.

3. To detect a collision of Case 1 in Step 2, ask M j‖Padin‖x and M j′‖Padin‖x
for any x to the oracle, and check whether HMACK(M j‖Padin‖x) and
HMACK(M j′‖Padin‖x) are a collision or not. If they are a collision, (M j ,M j′)
is a desired pair with a negligible error probability.

4. Let (M j1, M j1′) be a colliding pair of Case 1 in Step 2. First, we exhaustively
search for KU

in by computing F1(KU
in,M j1) and F1(KU

in,M j1′) for all 2256

KU
in and check whether the computed values are a collision or not. If they are

a collision, the corresponding KU
in is the correct value. Similarly, we detect

KD
in by computing G1(KD

in,M j1) and G1(KD
in,M j1′) for all 2256 KD

in and
check whether the computed values are a collision or not.

5. For all HMAC collision pairs (M j ,M j′) obtained in Step 2, we compute
values of H∗

2 and H∗′
2 with recovered KU

in and KD
in. If H∗

2 and H∗′
2 are a

3

collision, we discard that pair. Note, each of the remaining collision pairs are
one of Cases 3, 4 or 5 in Step 2.

6. Take a collision pair (M j2,M j2′) from all remaining collision pairs, and as-
sume this pair is a collision of Case 3. We then recover KU

out and KD
out by

the same method as Step 4. Namely, we exhaustively search for KU
out such

that F1(KU
out, H

∗j2
2) = F1(KU

out,H
∗j2′
2) and KD

out such that G1(KD
out,H

∗j2
2) =

G1(KD
out,H

∗j2′
2).

7. With recovered Kin and Kout, compute HMACK(M) for any M that are
already asked to the oracle, and check whether its HMAC value match with
the one obtained from the oracle. If matched, that Kout is the correct value.
Otherwise, discard the pair (M j2, M j2′) and go back to Step 6. Repeat the
attack by choosing a different collision pair until Kout is recovered.

2.1 Complexity and success probability

At Step 1, we ask 2257 queries to the oracle. At Step 2, the probability that the
collision of each case is obtained can be considered as independent. According
to [8, Theorem 3.2], the probability of obtaining a collision for log2 N -bit output
hash function, with trying θ ·N1/2 different messages is as follows.

1− e−
θ2
2 (4)

Eq. 4 becomes approximately 0.86 when θ = 2. Therefore, we expect to obtain a
collision of each case with a probability of 0.86. To successfully recover Kin and
Kout, we need to obtain a collision of Case 1 and a collision of Case 3. By 2257

queries, the probability of obtaining these two collisions is (0.86)2 ≈ 0.75. This is
higher than the probability of obtaining a single collision with 2256 queries, which
is approximately 0.39. For simplicity, we assume that five collisions in total, a
single collision in each case, are obtained. At Step 3, we need two queries for
each collision. Hence, if we obtained five collisions, we need eight queries in
the worst case, which is negligible compared to Step 1. At Step 4, we compute
F1 2 · 2256 times to recover KU

in. For each guess of KU
in, the probability that

F1(KU
in,M j1) = F1(KU

in,M j1′) is expected to be 2−256. Hence, we can expect
that only one KU

in is chosen as the correct guess. Similarly we compute G1 2 ·2256

times to recover KD
in. As a result, the time complexity for this Step is 2 · 2256

F1-operations + 2 · 2256 G1-operations ≈ 2257 AURORA-512 operations. Step 5
costs negligible time. In our assumption, three collisions, one for each of Cases
3, 4, and 5, will remain. Step 6 costs the same complexity as Step 4, which
is 2257 AURORA-512 operations, and this is repeated three times in the worst
case due to Step 7. Therefore, the time complexity for Steps 6 and 7 is 3 · 2257

AURORA-512 operations. Finally, the total time complexity is 2257 AURORA-
512 operations for Step 4 and 3 ·2257 AURORA-512 operations for Step 6, which
is 2259 AURORA-512 operations.

This attack can be easily carried out if we have a large amount of memory.
Moreover, if we apply the memoryless collision search for Step 2, all Steps can
be carried out with a negligible amount of memory. To apply the memoryless

4

collision search, we use the HMAC values obtained from the oracle as the next
query. Therefore, Step 1 becomes adaptive. The memoryless collision search of
our attack needs the message space of 512 bits2. Hence, we use 2-block messages
as queries. Due to the increment of the message block, at Step 2, a message pair
has 6 possibilities to be a collision. However, since this collision is filtered out
at Step 3 with additional two queries, this does not impact on the total attack
complexity.

3 Universal forgery on HMAC-AURORA-384

3.1 Inner key recovery attack

AURORA-384 is supporting HMAC for 384-bit MAC length. The computation
for AURORA-384 is the same as AURORA-512 but for truncating the last 512-
bit value to 384 bits. The structure to process a 1-block message in HMAC-
AURORA-384 is illustrated in Fig. 2. The inner key recovery procedure for

�
���

� �

� �

� �

���	�

����

��
 ���

�
 �

�����

�����

��� �����
�����

�����

�����

�����

� �

�! " �#����$
 �

� �

� �

� �

� �

���	�

����

��%�&	' �

��%�&	'

�)(*���$�

+ � �

+ �

� �

,.-0/�1�2�3 �54

� �	6 7 8#7�$�$%�&�'

�����

�
���

9�:�;Trunc.

Trunc.

� �	< � �	6

+ �	<

Fig. 2. Structure to process a 1-block message in HMAC-AURORA-384

2 If message space is much smaller than 512 bits, for example 447 bits, the randomness
for the memoryless collision search will collide after 2223.5 trials and we cannot make
2257 different queries.

5

HMAC-AURORA-384 is almost the same as that of HMAC-AURORA-512. For
HMAC-AURORA-384, at Step 2 of the attack procedure, a pair of messages
have the following 6 possibilities to be a collision.

Case 1: HU
2 s collide and HD

2 s collide.
Case 2: Case 1 does not occur and H∗

2 s collide.
Case 3: Case 1, 2 do not occur and HT

2 s collide.
Case 4: Case 1, 2, 3 do not occur and hU

2 s collide and hD
2 s collide.

Case 5: Case 1, 2, 3, 4 do not occur and h∗2s collide.
Case 6: Case 1, 2, 3, 4, 5 do not occur and HMAC values collide.

Remember that HT
2 and HMAC values are 384-bit values. By asking 2257 queries,

we will obtain a single collision pair of Cases 1, 2, 4, 5, and 2128 collision pairs
of Cases 3 and 6, hence, we will expect to obtain 2129 + 4 collisions in total. To
recover the inner-key, we need to detect the collision pair of Case 1. At Step 3
of the attack procedure, this can be achieved by asking additional two queries
M j‖padin‖x and M j′‖padin‖x for each collision pair (M j ,M j′). The inner-key
recovery procedure at Step 4 is exactly the same, in which we need the time
complexity of 2257 AURORA-384 operations.

Finally the inner-key is recovered with a query complexity of 2257 +2 ·(2129 +
4) ≈ 2257 and the time complexity of 2257 AURORA-384 operations. This attack
can be performed with a negligible amount of memory.

3.2 Universal forgery by combining 2nd-preimage attack

Although our attack cannot recover the outer-key, we can perform the universal
forgery on HMAC-AURORA-384 by using the recovered inner-key and applying
the 2nd-preimage attack on AURORA-384/-512 [4, 1].

In the universal forgery attack, the attacker has the access to the oracle
which returns HMACk(·). For any given message M , our attack can find the
value of HMACk(M) without asking M to the oracle. After revealing the inner
key, the query complexity of this attack is 1 and the off-line complexity and
memory complexity are the same as that of 2nd-preimage attack on AURORA-
512, which are 2290 AURORA-512 operations and 2288 × 512 bits of memory in
[4] and 2291 AURORA-512 operations and 231.5 message blocks of memory in
[1]. The attack procedure is as follows.

Target:
0. Receive M .

Preparation:
1. Recover the inner-key Kin with the attack explained in Section 3.1.

Universal forgery:
2. For the given M , find a 2nd-preimage M ′ s.t. AURORA−384(Kin,M) =

AURORA−384(Kin, M ′) by using the 2nd-preimage attack.
3. Ask M ′ to the oracle, and receive HMACk(M ′).
4. HMACk(M ′) is the HMAC value of M .

6

4 Conclusion

In this note, we presented a full key recovery attack on HMAC-AURORA-512
with 512-bit secret keys and 512-bit output values. Our attack exploits the weak-
nesses in the mode of operation and recovers Kin and Kout with 2257 queries,
2259 off-line computations, and a negligible amount of memory. This attack can
also recover the inner-key of HMAC-AURORA-384. Moreover, by combining the
inner-key recovery attack and the 2nd-preimage attack, universal forgery can be
performed on HMAC-AURORA-384.

Lastly, we emphasize that this attack does not make any impact on security
of AURORA-512 as a SHA-3 candidate because, as the security of hash func-
tions used in HMAC, NIST requires only the resistance against distinguishing
attack whose query complexity is much less than 2n/2 and off-line complexity is
significantly less than 2n [6].

Note, collision attacks on AURORA-512 are also presented at Ref. [5, 1].

References

1. Niels Ferguson and Stefan Lucks. Attacks on AURORA-512 and the Double-Mix
Merkle-Damgaard transform. Cryptology ePrint Archive, Report 2009/113, 2009.
http://eprint.iacr.org/2009/113.

2. Tetsu Iwata, Kyoji Shibutani, Taizo Shirai, Shiho Moriai, and Toru Akishita. AU-
RORA: A Cryptographic Hash Algorithm Family. AURORA home page http:

//www.sony.net/Products/cryptography/aurora/index.html, (Also available at
NIST home page: http://csrc.nist.gov/groups/ST/hash/sha-3/index.html).

3. H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message
Authentication. The Internet Engineering Task Force, 1997. http://www.ietf.

org/rfc/rfc2104.txt.
4. Yu Sasaki. A 2nd-preimage attack on AURORA-512. Cryptology ePrint Archive,

Report 2009/112, 2009. http://eprint.iacr.org/2009/112.
5. Yu Sasaki. A collision attack on AURORA-512. Cryptology ePrint Archive, Report

2009/106, 2009. http://eprint.iacr.org/2009/106.
6. U.S. Department of Commerce, National Institute of Standards and Technology.

Federal Register /Vol. 72, No. 212/Friday, November 2, 2007/Notices, 2007. (http:
//csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf).

7. U.S. Department of Commerce, National Institute of Standards and Technology. The
Keyed-Hash Message Authentication Code (HMAC) (Federal Information Process-
ing Standards Publication 198), July 2008. (http://csrc.nist.gov/publications/
fips/fips198-1/FIPS-198-1_final.pdf).

8. Serge Vaudenay. A Classical Introduction to Cryptography: Applications for Com-
munications Security. Springer, 2006.

7

