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Abstract: As we know, Euclid’s algorithm, Guass’ elimination and Buchberger’s algorithm play 

important roles in algorithmic number theory, symbolic computation and cryptography even in 

science and engineering. The aim of this paper is to reveal again the relations of these three 

algorithms, and, simplify Buchberger’s algorithm without using multivariate division algorithm. 

We obtain an algorithm for computing the greatest common divisor of several positive integers, 

which can be regarded as the generalization of Euclid’s algorithm. This enables us to re-find the 

Guass’ elimination and further simplify Buchberger’s algorithm for computing Gröbner bases of 

polynomial ideals in modern Computational Algebraic Geometry.  
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1 An algorithm for computing the greatest common divisor of several positive integers  

It is well-known that Euclid began his number-theoretical work by introducing his algorithm (See 

[1]: BookⅦ, Propositions 1 and 2).  



Proposition 1 (Book Ⅶ): Two unequal numbers being set out, and the less being continually 

subtracted in turn from the greater, if the number which is left never measures the one before it 

until a unit is left, the original numbers will be prime to one another. 

Proposition 2 (Book Ⅶ): Given two numbers not prime to one another, to find their greatest 

common measure. 

Propositions 1 and 2 in Book Ⅶ of Elements are exactly the famous Euclidean algorithm for 

computing the greatest common divisor of two positive integers. According to Knuth [2], “we 

might call Euclid’s method the granddaddy of all algorithms, because it is the oldest nontrivial 

algorithm that has survived to the present day”.  

  In Book 7, Proposition 3 of his Elements [1], Euclid further considered how to compute the 

great common divisors of three positive integers ,a b and c . His method is simple and natural. 

Namely, firstly, compute ( , )a b d= , secondly, compute ( , )c d e= , then ( , , )a b c e= .This method 

can be readily generalized to the case for computing the greatest common divisor of several 

positive integers.  

In this paper, we try to give another algorithm. Based on Division algorithm, for any positive 

integer a and b with a b> , we may find an integer r such that ),(),( rbba = and b r> . Hence, 

once repeating this process, we always can find ( , )a b . This enlightens us to find firstly the least 

among several positive integers 1 2, ,..., na a a so as to compute their greatest common divisor. Then, 

we must try to find integers 1 2, ,..., mb b b  with m n<  such that 

1 2 1 2min{ , ,..., } max{ , ,..., }n ma a a b b b≥ and 1 2( , ,..., )na a a = 1 2( , ,..., )mb b b . Once we achieve 

this goal, then in a finite number of steps, we can find 1 2( , ,..., )na a a . The following lemma 

enables us to present our algorithm. 

Lemma: Let 1 2, ,..., na a a be positive integers with 1 2min{ , ,..., }n na a a a=  . For1 1i n≤ ≤ − , 



Denote (mod )i na a by ( , )i nR a a . Namely, ( , )i nR a a (mod )i na a= . We have the following: 

(1) If ( , ) 0i nR a a = for1 1i n≤ ≤ − , then 1 2( , ,..., )n na a a a= . 

(2) Write 1{ ( , ) | ( , ) 0, 1 1} { ,..., }i n i n n n rR a a R a a for i n a a+ +≠ ≤ ≤ − = with 1r ≥ . 

Then we have 1 2 1( , ,..., ) ( , ,..., )n n n n ra a a a a a+ += .  

Proof: Easy. 

The algorithm for computing the greatest common divisor of several positive integers: 

Algorithm 1: For given positive integers 1 2, ,..., na a a , this algorithm finds 1 2( , ,..., )na a a . 

1. Compute 1 2min{ , ,..., }na a a . Without loss of generality, let 1 2min{ , ,..., }n na a a a= . 

2. For1 1i n≤ ≤ − , one by one compute ( , )i nR a a . If ( , ) 0i nR a a = for any1 1i n≤ ≤ − , then 

output 1 2( , ,..., )n na a a a= and terminate the algorithm. Otherwise, set 

1 2{ , ,..., }na a a 1{ , ,..., }n n n ra a a+ +← and go to Step 1, where 

1{ ,..., }n n ra a+ + = { ( , ) | ( , ) 0, 1 1}i n i nR a a R a a for i n≠ ≤ ≤ − . 

Remark 1: The advantage of Algorithm 1 is of that we need not do many divisions. However, we 

must find the least integer in Step 1. As a result, the total running time of our algorithm is 

approximately the total running time of Euclid’s algorithm for computing the greatest common 

divisor of several positive integers.  

I learned also that Algorithm 1 has been discovered by Blake, Von zur Gathen and Xu [Private 

Communication]. They further provided an analysis of the algorithm.  



2 The Guass’ elimination and the simplified Buchberger’s algorithm  

The aim of this section is to reveal again the relations among Euclid’s algorithm, Guass’ 

elimination and Buchberger’s algorithm [3]. We also try to simplify Buchberger’s algorithm 

without using multivariate division algorithm.  

Firstly, we find that, based on the idea of our algorithm in Section 1, one can compute Gröbner 

bases of the ideal 1,..., mI f f=< >  when 1,..., mf f  are all polynomials of degree 1 

over 1[ ,..., ]nF x x . Why? By using the S-polynomial, one can eliminate the leading terms of two 

polynomials and get the lesser polynomial under given (decreasing) ordering. This is just the 

innate character of Division algorithm. And our algorithm in Section 1 satisfies exactly this 

property. Therefore, one could present a simplified algorithm for finding Gröbner 

bases 1,..., kg g of the ideal 1,..., mI f f=< > , where 1,..., mf f are polynomials of 

degree1over 1[ ,..., ]nF x x .  

Algorithm 2 (A simplified Buchberger’s algorithm for polynomials 1,..., mf f  of degree1):  

1. For polynomials 1,..., mf f  of degree1over 1[ ,..., ]nF x x , find a polynomial (without loss of 

generality, denote by mf ) such that ( ) ( )i mL f L f≥ for 1 1i m≤ ≤ − under the given monomial 

ordering 1 ... nx x> > . Note that such a polynomial is not always unique. 

Remark 2: We say ( ) ( )L f L g≥  with 1
1( ) ... nee

nL f x xα= and 1
1( ) ... ndd

nL g x xβ= , if there is an 

integer j with1 j n≤ ≤  such that j je d≥  and for any1 i j≤ < , i id e= , where , Fα β ∈ . We 

say ( ) | ( )L d L f  with 1
1( ) ... nff

nL f x xα=  and 1
1( ) ... ndd

nL d x xβ= , if for any1 i n≤ ≤ , i id f≤ , 

where , Fα β ∈ and 0 ,i id f≤ for1 i n≤ ≤  are integers. 

2. For1 1i m≤ ≤ − , one by one compute S-polynomial ( , )i mS f f . If ( , )i mS f f F∈ for some 



1 1i m≤ ≤ − , then output Gröbner bases 1,..., ,1nx x of the ideal I and terminate the algorithm.  

Set ( , )i i mf S f f←  if ( ) | ( )m iL f L f . Otherwise, set i if f←  . If for any 1 1i m≤ ≤ − , 

( ( ), ( )) 1m iL f L f = , then find another polynomial among 1 1,..., mf f − , without loss of generality, 

denote by 1mf − , with 1( ) ( )i mL f L f −≥ for 1 2i m≤ ≤ − . Repeat this process, until find a 

polynomial whose leading term is not relatively prime with some. Without loss of generality, 

denote still such a polynomial by mf , which is the top priority whose leading term is not relatively 

prime with some by this program. If there is not such a polynomial, then output Gröbner 

bases 1,..., mf f of the ideal I . Otherwise, we get a new set 1 1{ ( , ),..., ( , ), }m m m mR f f R f f f− . And 

set 1{ ,..., }mf f ← 1 1{ ( , ),..., ( , ), }m m m mR f f R f f f− , go to Step 1. 

Remark 3: Note that if ( , )i mS f f F∈ , then I = 1[ ,..., ]nF x x with its Gröbner bases 1,..., ,1nx x . 

Note that if the leading terms of 1,..., mf f are coprime each other, then 1,..., mf f themselves form 

Gröbner bases of I since they can not offer new S-polynomials. Hence Algorithm 2 is true.  

Clearly, Algorithm 2 is essentially Guass’ elimination. In order to simplify Buchberger’s 

algorithm, we need a pretreatment algorithm which description is omitted. 

Pretreatment algorithm: For any given polynomials 1,..., mf f  over 1[ ,..., ]nF x x  satisfying 

1 1,..., [ ,..., ]m nI f f F x x=< >≠ , this algorithm finds polynomials 1,..., kh h over 1[ ,..., ]nF x x with 

k m≤  such that 1( ),..., ( )kL h L h do not divide each other and 1,..., mI f f=< > 1,..., kh h=< > . 

Algorithm 3 (The simplified Buchberger’s algorithm): For polynomials 1,..., mf f  of 

over 1[ ,..., ]nF x x , Algorithm 3 finds Reduced Gröbner basis of 1,..., mI f f=< > . A Gröbner base 

is reduced if the leading coefficient of each element of the basis is 1 and no monomial in any 

element of the basis is in the ideal generated by the leading terms of the other elements of the 



basis. As we know, Reduced Gröbner basis is unique. 

1. Find the polynomials 1,..., kh h over 1[ ,..., ]nF x x with k m≤  such that 1( ),..., ( )kL h L h do not 

divide each other and 1,..., mI f f=< > 1,..., kh h=< >  by Pretreatment algorithm. With 

ordering 1 ... nx x> > , sort order 1,..., kh h . Without loss of generality, assume that 1 ...
k

h h> > . 

2. Reduce 1 ...
k

h h> >  such that ( ) 1iLc h =  for1 i k≤ ≤ and each term of ih  is not divisible 

by ( )jL h for1 i j k≤ ≠ ≤ . We denote the reduced 1 ...
k

h h> > by 1 ...
k

h h> > for convenience. 

Let 1{ ,..., }kA h h= . 

3. For any1 i j k≤ ≠ ≤ , one by one compute S-polynomial ( , )i jS h h when ( , ) 1i jh h > . If for 

any1 i j k≤ ≠ ≤ , ( , ) 1i jh h = , then terminate the algorithm and output the Gröbner bases 

1,..., kh h . Otherwise, regard the new set 1 1 1{ ,..., } { ( , ),..., ( , )}k k k kh h S h h S h h−∪  

as 1{ ,..., }mf f and go to Step1 and Step2. Thus, we get the new reduced set 1{ ,..., }
r

B l l= . 

If A B= , then terminate the algorithm and output the Gröbner bases 1,..., kh h  

of 1,..., mI f f=< > . Otherwise, set A B← and repeat Step3. 

Remark 4: By Hilbert’s basis theorem which states that every ideal in the ring 1[ ,..., ]nF x x  is 

finitely generated, Algorithm 3 gives the Gröbner bases in a finite number of steps. Note that the 

reduced Gröbner basis is unique. Therefore, Algorithm 3 is true.  

Based on Algorithms 1, 2 and 3, one will see the relations among Euclid’s algorithm, Guass’ 

elimination and Buchberger’s algorithm again --- Guass’ elimination is the generalization of 

Euclid’s algorithm, and Buchberger’s algorithm is the generalization of Guass’ elimination.  

It is well-known that the problem how to estimate the complexity of Buchberger’s algorithm 

remained a mystery for over thirty years. Although our algorithm 3 can simplify Buchberger’s 



algorithm without using multivariate division algorithm, we do not know how to estimate its 

complexity yet.  
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