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Abstract. This paper proposes new explicit formulas for the doubling and addition step in
Miller’s algorithm to compute the Tate pairing. For Edwards curves the formulas come from
a new way of seeing the arithmetic. We state the first geometric interpretation of the group
law on Edwards curves by presenting the functions which arise in the addition and doubling.
Computing the coefficients of the functions and the sum or double of the points is faster than
with all previously proposed formulas for pairings on Edwards curves. They are even competitive
with all published formulas for pairing computation on Weierstrass curves. We also speed up
pairing computation on Weierstrass curves in Jacobian coordinates. Finally, we present several
examples of pairing-friendly Edwards curves.
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1 Introduction

Since their introduction to cryptography by Bernstein and Lange [7], Edwards curves have
received a lot of attention because of their very fast group law. The group law in affine form
was introduced by Edwards in [14] along with a description of the curve and several proofs
of the group law. Remarkably none of the proofs provided a geometric interpretation while
addition on Weierstrass curves is usually explained via the chord-and-tangent method.

Applications in discrete-logarithm-based systems such as Diffie-Hellman key exchange or
digital signatures require efficient computation of scalar multiples and thus have benefited
from the speedup in addition and doubling. The situation is significantly different in pairing-
based cryptography where Miller’s algorithm needs a function whose divisor is (P ) + (Q) −
(P + Q)− (O), for two input points P and Q and their sum P + Q. For curves in Weierstrass
form these functions are readily given by the line functions in the usual addition and doubling.
Edwards curves have degree 4 and thus any line passes through 4 points instead of 3. This
led many to conclude that Edwards curves provide no benefit to pairings and are doomed to
be slower than the Weierstrass counterparts.

So far two papers have attempted to compute pairings efficiently on Edwards curves: Das
and Sarkar [12] use the birational equivalence to Weierstrass curves to map the points on the
Edwards curve to a Weierstrass curve on which the usual line functions are then evaluated.
This approach comes at a huge performance penalty as these implicit pairing formulas need
many more field operations to evaluate them. Das and Sarkar then focus on supersingular
curves with embedding degree k = 2 and develop explicit formulas for that case.

* This work has been supported in part by the European Commission through the ICT Programme under
Contract ICT–2007–216646 ECRYPT II, and in part by grant MTM2006-11391 from the Spanish MEC.
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Ionica and Joux [22] use a different map to a curve of degree 3 and compute the 4-th
power of the Tate pairing. The latter poses no problem in usage in protocols as long as both
sides perform the same type of pairing computation. Their results are significantly faster than
Das and Sarkar’s but they are still much slower than pairings on Weierstrass curves.

In this paper we close several important gaps:

– We provide a geometric interpretation of the addition law for twisted Edwards curves.
– We study additions, doublings, and all the special cases that appear as part of the geo-

metric addition law for twisted Edwards curves.
– We use the geometric interpretation of the group law to show how to compute the Tate

pairing on twisted Edwards curves.
– We give examples of pairing-friendly Edwards curves.

Beyond that, we develop explicit formulas for computing pairings on Edwards and twisted
Edwards curves that for Edwards curves

– solidly beat the results by Das–Sarkar [12] and Ionica–Joux [22];
– are as fast as the fastest published formulas for the doubling step on Weierstrass curves,

namely curves with a4 = 0 (e.g. Barreto-Naehrig curves) in Jacobian coordinates, and
faster than other Weierstrass curves;

– need the same number of field operations as the best published formulas for mixed addition
in Jacobian coordinates;

– have minimal performance penalty for non-affine base points.

In particular, for even embedding degree k the doubling step on an Edwards curve takes
1M + 1S + (k + 6)m + 5s, where m and s denote the costs of multiplication and squaring in
the base field while M and S denote the costs of multiplication and squaring in the extension
field of degree k. A mixed addition step takes 1M + (k + 12)m and an addition step takes
1M + (k + 14)m.

We also speed up the addition and doubling steps on Weierstrass curves. We present the
first and surprisingly fast explicit formulas for full addition steps on Weierstrass curves.

Our new formulas for Weierstrass curves are the fastest for affine base points while Edwards
curves are better for projective base points – a common case in pairing-based protocols.

This paper does not consider other pairings such as the ate pairing; such pairings are
particularly interesting for curves with twists of degree 4 or 6 and our example curves do not
fit with that. The geometric interpretation and the explicit formulas work over any field.

2 Background on Pairings

Let p be a prime different from 2 and let E/Fp be an elliptic curve over Fp with neutral
element denoted by O. Let n | #E(Fp) be a prime divisor of the group order and let E have
embedding degree k with respect to n. For simplicity and speed we assume that k > 1.

Let P ∈ E(Fp)[n] and let fP ∈ Fp(E) be such that div(fP ) = n(P )−n(O). Let µn ⊂ F∗

pk

denote the group of n-th roots of unity. The reduced Tate pairing is given by

Tn : E(Fp)[n]× E(Fpk)/nE(Fpk)→ µn; (P,Q) 7→ fP (Q)(p
k−1)/n.

Miller [25] suggested to compute pairings in an iterative manner. Let n = (nl−1, . . . , n1, n0)2
be the binary representation of n and let gR,P ∈ Fp(E) be the function arising in addition
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on E such that div(gR,P ) = (R) + (P )− (R + P )−O, where O denotes the neutral element
in the group of points and R + P denotes the sum of R and P on E while additions of the
form (R) + (P ) denote formal additions in the divisor group. Miller’s algorithm starts with
R = P, f = 1 and computes

1. for i = l − 2 to 0 do
(a) f ← f2 · gR,R(Q), R← 2R //doubling step
(b) if ni = 1 then f ← f · gR,P (Q), R← R + P //addition step

2. f ← f (pk−1)/n

For Weierstrass curves and even k, several improvements and speedups are presented in
[2] and [3]. In particular it is common to eliminate all denominators by choosing the second
point Q such that its x-coordinate is in a subfield of Fpk . The functions gR,P are defined over
Fp and their denominators are functions in x only. Writing gR,P (Q) = hR,P (xQ, yQ)/sR,P (xQ)
with polynomial functions hR,P and sR,P , one sees that the complete contribution of all terms
sR,P (xQ) will be mapped to 1 by the final exponentiation if xQ is in a proper subfield of Fpk .
The latter is usually enforced by choosing a point Q′ on a quadratic twist of E over Fpk/2

and defining Q as the image of Q′ under the twist.

3 Formulas for Pairings on Weierstrass curves

An elliptic curve over Fp in short Weierstrass form is given by an equation of the form
y2 = x3 + a4x + a6 with a4, a6 ∈ Fp. In this section we present new formulas for the addition
and doubling step in Miller’s algorithm that are faster than previous ones. Furthermore, we
also cover the case of a non-affine base point.

The fastest formulas for doublings on Weierstrass curves are given in Jacobian coordinates
(cf. the EFD [6]). A point is represented as (X1 : Y1 : Z1) which for Z1 6= 0 corresponds to the
affine point (x1, y1) with x1 = X1/Z

2
1 and y1 = Y1/Z

3
1 . To obtain the full speed of pairings

on Weierstrass curves it is useful to represent a point by (X1 : Y1 : Z1 : T1) with T1 = Z2
1 .

This allows one s −m tradeoff in the addition step compared with the usual representation
(X1 : Y1 : Z1). If the intermediate storage is an issue or if s are not much cheaper than m, T1

should not be cached. We present the formulas including T1 below to have the best operation
count for Weierstrass curves in the comparison; the modifications to omit T1 are trivial.

The line function for Weierstrass curves is given by

gR,P (X : Y : Z) =
(Y Z3

0 − Y0Z
3)− λ(XZ2

0 −X0Z
2)ZZ0

(X − cZ)Z2
,

where λ is the slope of the line through R and P (with multiplicities), (X0 : Y0 : Z0) is a point
on the line, and c is some constant. When one computes the Tate pairing, the point (X0 : Y0 :
Z0) and the constants λ and c are defined over the base field Fp. The function is evaluated at a
point Q = (XQ : YQ : ZQ) defined over Fpk ; if k is even then the field extension Fpk is usually
constructed via a quadratic subfield as Fpk = Fpk/2(α), with α2 = δ and Q is chosen to be
of the form Q = (xQ : yQα : 1) with xQ, yQ ∈ Fpk/2. Since the denominator is defined over a
subfield, only the numerator needs to be considered and all multiplicative contributions from
subfields of Fpk can be discarded. In particular λ = L1/Z3 for curves in Jacobian coordinates
and thus the computation simplifies to computing Z3(yQZ3

0α − Y0) − L1(xQZ2
0 − X0)Z0 up

to factors from subfields of Fpk .
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3.1 Addition

In Miller’s algorithm all additions involve the base point as one input point, so in computing
the line function, (X0 : Y0 : Z0) can be chosen as the base point P and all values depending
solely on P and Q can be precomputed at the beginning of the computation. For additions,
P is always stated as the second summand P = (X2 : Y2 : Z2).

Independent of the value of a4, all doubling formulas compute Y 2
2 . This means that R2 =

Y 2
2 can be cached since Miller’s algorithm starts by computing 2P . To enable an m − s

tradeoff we compute twice the value above; this does not change the result since 2 ∈ Fp.
Multiplications with xQ and yQ cost (k/2)m each; for k > 2 it is thus useful to rewrite this
equation as

l = Z3 · 2yQZ3
2α− 2Z3 · Y2 − L1 · (2(xQZ2

2 −X2)Z2).

needing (k + 1)m for precomputed y′Q = 2yQZ3
2α and x′

Q = 2(xQZ2
2 − X2)Z2. Additionally

1M is needed to update the function f in Miller’s algorithm.

Full addition. We use Bernstein and Lange’s formulas (“add-2007-bl”) from the EFD [6].
Note that pairings can be combined with windowing methods but this is rarely done because
of the extra costs of 1M of updating the step function. This means that all additions involve
the base point P which is fixed throughout the computation. Therefore we can cache all values
depending solely on P . In particular we precompute (or cache after the first addition) the
values of T2 = Z2

2 and S2 = T2 · Z2. The numerator of λ is r = D − C.

A = X1 · T2; B = X2 · T1; C = 2Y1 · S2; D = ((Y2 + Z1)
2 −R2 − T1) · T1;

H = B −A; I = (2H)2; J = H · I; r = D − C; V = A · I;

X3 = r2 − J − 2V ; Y3 = r · (V −X3)− 2C · J ; Z3 = ((Z1 + Z2)
2 − T1 − T2) ·H;

T3 = Z2
3 ; l = Z3 · y

′
Q − (Y2 + Z3)

2 + R2 + T3 − r · x′
Q.

The formulas need 1M + (k + 9)m + 6s to compute the addition step. To our knowledge
this is the first set of formulas for full (non-mixed) addition. If m is not significantly more
expensive than s, some computations should be performed differently. In particular, R2 need
not be stored, D is computed as D = 2Y2 · Z1 · T1, l contains the term −2Y2 · Z3 instead of
−(Y2 + Z3)

2 + R2 + T3, and the computation of Z3 can save some field additions.
If the values T1, R2, S2, T2, x

′
Q, and y′Q cannot be stored, different optimizations are needed;

in particular the line function is computed as

l = ((Z3 · Z0) · Z
2
0 ) · yQα− Y0 · Z3 − (L1 · Z0) · Z

2
0 · xQ + X0 · (L1 · Z0)

and the computation costs end up as (11m + 5s) + 1M + (k + 6)m + 1s.

Mixed addition. Mixed addition means that the second input point is in affine representa-
tion. This happens in scalar multiplication if the base point P is given as (x2 : y2 : 1).

We now state the mixed addition formulas based on Bernstein and Lange’s formulas (“add-
2007-bl”) from the EFD [6]. Mixed additions are the usual case studied for pairings and the
evaluation in (k + 1)m is standard. However, most implementations miss the s−m tradeoff
in the main mixed addition formulas and do not compute the T -coordinate.

B = x2 · T1; D = ((y2 + Z1)
2 −R2 − T1) · T1; H = B −X1; I = H2; E = 4I; J = H · E;

r = 2(D − Y1); V = X1 ·E; X3 = r2 − J − 2V ; Y3 = r · (V −X3)− 2Y1 · J ;

Z3 = (Z1 + H)2 − T1 − I;T3 = Z2
3 ; l = Z3 · yQα− (y2 + Z3)

2 + R2 + T3 − r · (xQ − x2).

The formulas need 1M + (k + 6)m + 6s to compute the mixed addition step.
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3.2 Doubling

The main differences between the addition and the doubling formulas are that the doubling
formulas depend on the curve coefficients and that the line function must be computed with
the input to the doubling function (X0 : Y0 : Z0) = (X1 : Y1 : Z1), which is changing at every
step. So in particular Z0 6= 1 and no precomputations (like x′

Q or y′Q in the addition step)
can be done.

For arbitrary a4 the equation of the slope is λ = (3X2
1−a4Z

2
1 )/(2Y1Z1) = (3X2

1−a4Z
2
1 )/Z3.

Thus Z3 is divisible by Z1 and we can replace l by l′ = l/Z1 which will give the same result
for the pairing computation. The value of

l′ = (Z3 · Z
2
1 ) · yQα− 2Y 2

1 − L1 · Z
2
1 · xQ + X1 · L1

can be computed in at worst (k + 3)m + 1s.
The formulas by Ionica and Joux take into account the doubling formulas from the EFD

for general Weierstrass curves in Jacobian coordinates. We thus present new formulas for the
more special curves with a4 = −3 and a4 = 0.

Doubling on curves with a4 = −3. The fastest doubling formulas are due to Bernstein
(see [6] “dbl-2001-b”) and need 3m + 5s for the doubling.

A = Y 2
1 ; B = X1 · A; C = 3(X1 − T1) · (X1 + T1);

X3 = C2 − 8B; Z3 = (Y1 + Z1)
2 −A− T1; Y3 = C · (4B −X3)− 8A2;

l = (Z3 · T1) · yQα− 2A− L1 · T1 · xQ + X1 · L1; T3 = Z2
3 .

The complete doubling step thus takes 1M + 1S + (k + 6)m + 5s.

Doubling on curves with a4 = 0. The following formulas compute a doubling in 1m+7s.
Note that without T1 and computing Z3 = 2Y1 · Z1 a doubling can be computed in 2m + 5s
which is always faster (see [6]) but the line functions make use of Z2

1 . Note further that here
L1 = E = 3X2

1 is particularly simple.

A = X2
1 ; B = Y 2

1 ; C = B2; D = 2((X1 + B)2 −A− C); E = 3A; G = E2;

X3 = G− 2D; Y3 = E · (D −X3)− 8C; Z3 = (Y1 + Z1)
2 −B − T1;

l = 2(Z3 · T1) · yQα− 4B − 2E · T1 · xQ + (X1 + E)2 −A−G; T3 = Z2
3 ;

The complete doubling step thus takes 1M + 1S + (k + 3)m + 8s.

4 Geometric interpretation of the group law on twisted Edwards curves

In this section K will denote a field of characteristic different from 2. A twisted Edwards curve
over K is a curve given by an affine equation of the form Ea,d : ax2 + y2 = 1 + dx2y2 for
a, d ∈ K∗ and a 6= d. They were introduced by Bernstein et al. in [5] as a generalization
of Edwards curves [7] which are included as E1,d. The addition law on Ea,d found a lot of
attention in scalar multiplication. There is an addition law on points of the curve Ea,d which
is given by

(x1, y1) + (x2, y2) =

(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − ax1x2

1− dx1x2y1y2

)

.
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The neutral element is O = (0, 1), and the negative of (x1, y1) is (−x1, y1). The point O′ =
(0,−1) has order 2. The points at infinity Ω1 = (1 : 0 : 0) and Ω2 = (0 : 1 : 0) are singular
and blow up to two points each.

The name twisted Edwards curves comes from the fact that the set of twisted Edwards
curves is invariant under quadratic twists while a quadratic twist of an Edwards curve is
not necessarily an Edwards curve. In particular, let δ ∈ K \K2 and let α2 = δ for some α
in a quadratic extension K2 of K. The map ǫ : (x, y) 7→ (αx, y) defines a K2-isomorphism
between the twisted Edwards curves Ea/δ,d/δ and Ea,d. Hence, the map ǫ is the prototype of a
quadratic twist. Note that twists change the x-coordinate unlike on Weierstrass curves where
they affect the y-coordinate.

We now study the intersection of Ea,d with certain plane curves and explain the Edwards
addition law in terms of the divisor class arithmetic. We remind the reader that the divisor
class group is defined as the group of degree-0 divisors modulo the group of principal divisors
in the function field of the curve, i.e. two divisors are equivalent if they differ by a principal
divisor. For background reading on curves and Jacobians, we refer to [16] and [30].
We first consider projective lines in P

2. A general line is of the form L : cXX +cY Y +cZZ = 0
where (cX : cY : cZ) ∈ P

2. A line is uniquely determined by two of its points when they are
distinct. Let P = (X0 : Y0 : Z0) ∈ P

2(K) with Z0 6= 0. The line through P and Ω1 will be
denoted L1,P and is defined by Z0Y − Y0Z = 0. The line through P and Ω2 will be denoted
L2,P and is defined by Z0X −X0Z = 0.

Let φ(X,Y,Z) = cX2X2 + cY 2Y 2 + cZ2Z2 + cXY XY + cXZXZ + cY ZY Z ∈ K[X,Y,Z] be
a homogeneous polynomial of degree 2 and C : φ(X,Y,Z) = 0, the associated plane (possibly
degenerate) conic. Since the points Ω1, Ω2,O

′ are not on a line, a conic C passing through
these points cannot be a double line and φ represents C uniquely up to multiplication by a
scalar. Evaluating φ at Ω1, Ω2, and O′ we see that a conic C through these points has the
form

C : cZ2(Z2 + Y Z) + cXY XY + cXZXZ = 0, (1)

where (cZ2 : cXY : cXZ) ∈ P
2(K).

Theorem 1. Let Ea,d be a twisted Edwards curve over K, and let P1 = (X1 : Y1 : Z1) and
P2 = (X2 : Y2 : Z2) be two affine, not necessarily distinct, points on Ea,d(K). Let C be the
conic passing through Ω1, Ω2, O

′, P1, and P2, i. e. C is given by an equation of the form (1).
If some of the above points are equal, we consider C and Ea,d to intersect with at least that
multiplicity at the corresponding point. Then the coefficients in (1) of the equation φ of the
conic C are uniquely (up to scalars) determined as follows:

(a) If P1 6= P2, P1 6= O
′ and P2 6= O

′, then

cZ2 = X1X2(Y1Z2 − Y2Z1),

cXY = Z1Z2(X1Z2 −X2Z1 + X1Y2 −X2Y1),

cXZ = X2Y2Z
2
1 −X1Y1Z

2
2 + Y1Y2(X2Z1 −X1Z2).

(b) If P1 6= P2 = O′, then cZ2 = −X1, cXY = Z1, cXZ = Z1.
(c) If P1 = P2, then

cZ2 = X1Z1(Z1 − Y1),

cXY = dX2
1Y1 − Z3

1 ,

cXZ = Z1(Z1Y1 − aX2
1 ).



Faster Computation of Tate Pairings 7

Proof. If the points are distinct, the coefficients are obtained by evaluating the previous
equation at the points P1 and P2. We obtain two linear equations in cZ2 , cXY , and cXZ

cZ2(Z2
1 + Y1Z1) + cXY X1Y1 + cXZX1Z1 = 0,

cZ2(Z2
2 + Y2Z2) + cXY X2Y2 + cXZX2Z2 = 0.

The formulas in (a) follow from the (projective) solutions

cZ2 =

∣

∣

∣

∣

X1Y1 X1Z1

X2Y2 X2Z2

∣

∣

∣

∣

, cXY =

∣

∣

∣

∣

X1Z1 Z2
1 + Y1Z1

X2Z2 Z2
2 + Y2Z2

∣

∣

∣

∣

, cXZ =

∣

∣

∣

∣

Z2
1 + Y1Z1 X1Y1

Z2
2 + Y2Z2 X2Y2

∣

∣

∣

∣

.

If P1 = P2 6= O
′, we start by letting Z1 = 1, Z = 1 in the equations. The tangent vectors

at the non singular point P1 = (X1 : Y1 : 1) of Ea,d and of C are

(

dX2
1Y1 − Y1

aX1 − dX1Y
2
1

)

,

(

−cZ2 − cXY X1

cXY Y1 + cXZ

)

.

They are collinear if the determinant of their coordinates is zero which gives us a linear
condition in the coefficients of φ. We get a second condition by φ(X1, Y1, 1) = 0. Solving the
linear system, we get the projective solution

cZ2 = X3
1 (−dY 2

1 + a) = X1(1− Y 2
1 ) = X1(Y1 + 1)(1 − Y1),

cXY = 2dX2
1Y 2

1 − Y1 − Y 2
1 + dX2

1Y1 − aX2
1

= −1− Y1 + dX2
1Y 2

1 + dX2
1Y1 = (Y1 + 1)(dX2

1 Y1 − 1),

cXZ = −dX2
1Y 3

1 − aX2
1 + Y 2

1 + Y 3
1 = (Y1 + 1)(Y1 − aX2

1 )

using the curve equation aX2
1 + Y 2

1 = 1 + dX2
1Y 2

1 to simplify. Finally, since P1 6= O
′, we can

divide by 1+Y1 and homogenize to get the result which provides the formulas as stated. The
same formulas hold if P1 = O′ since intersection multiplicity greater than or equal to 3 at O′

is achieved by setting φ = X(Y + Z) = XY + XZ.
Assume now that P1 6= P2 = O′. Note that the conic C is tangent to Ea,d at O′ if

and only if (∂φ/∂x)(0,−1, 1) = (cXY y + cXZz)(0,−1, 1) = 0, i.e. cXY = cXZ . Then φ =
(Y + Z)(cZ2Z + cXY X). Since P1 6= O

′, it is not on the line Y + Z = 0. Then we get
cZ2Z1 + cXY X1 = 0 and the coefficients as in (b). ⊓⊔

Let P1 and P2 be two affine K-rational points on a twisted Edwards curve Ea,d, and let
P3 = (X3 : Y3 : Z3) = P1 + P2 be their sum. Let

l1 = Z3Y − Y3Z, l2 = X

be the polynomials of the horizontal line L1,P3
and the vertical line L2,O respectively, and let

φ = cZ2(Z2 + Y Z) + cXY XY + cXZXZ

be the unique polynomial (up to multiplication by a scalar) defined by Theorem 1. The follow-
ing theorem shows that the twisted Edwards group law indeed has a geometric interpretation
involving the above equations. It gives us an important ingredient to compute Miller functions.
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Theorem 2. Let a, d ∈ K∗, a 6= d and Ea,d be a twisted Edwards curve over K. Let P1, P2 ∈
Ea,d(K). Define P3 = P1 + P2. Then we have

div

(

φ

l1l2

)

∼ (P1) + (P2)− (P3)− (O). (2)

Proof. Let us consider the intersection divisor (C · Ea,d) of the conic C : φ = 0 and the
singular quartic Ea,d. Bezout’s Theorem [17, p. 112] tells us that the intersection of C and
Ea,d should have 2 · 4 = 8 points counting multiplicities over K. We note that the two
points at infinity Ω1 and Ω2 are singular points of multiplicity 2. Moreover, by definition
of the conic C, (P1) + (P2) + (O′) + 2(Ω1) + 2(Ω2) ≤ (C · Ea,d). Hence there is an eighth
point Q in the intersection. Let L1,Q : lQ = 0 be the horizontal line going through Q. Since
the inverse for addition on twisted Edwards curves is given by (x, y) 7→ (−x, y), we see that
(L1,Q ·Ea,d) = (Q)+(−Q)+2(Ω2). On the other hand (L2,O ·Ea,d) = (O)+(O′)+2(Ω1). Hence

by combining the above divisors we get div
(

φ
lQl2

)

∼ (P1) + (P2)− (−Q)− (O). By unicity of

the group law with neutral element O on the elliptic curve Ea,d [30, Prop.3.4], the last equality
means that P3 = −Q. Hence (L1,P3

·Ea,d) = (P3) + (−P3) + 2(Ω2) = (−Q)+ (Q) + 2(Ω2) and

l1 = lQ. So div
(

φ
l1l2

)

∼ (P1) + (P2)− (P3)− (O). ⊓⊔

Remark 3. From the proof, we see that P1 + P2 is obtained as the mirror image with re-
spect to the y-axis of the eighth intersection point of Ea,d and the conic C passing through
Ω1, Ω2,O

′, P1 and P2.

Example 4. As an example we consider the Edwards curve E1,−30 : x2 + y2 = 1 − 30x2y2

over the set of real numbers R. We choose the point P1 with x-coordinate x1 = −0.6 and P2

with x-coordinate x2 = 0.1. Figure 1(a) shows addition of different points P1 and P2, and
Figure 1(b) shows doubling of the point P1.

b

b

b

b

b b

P1

P2

P3 −P3L1,P3

C

E1,−30

O

O′

(a) P1 6= P2, P1, P2 6= O′, P3 = P1 + P2

b

b

b

b b

P1

P3
−P3L1,P3

C

E1,−30

O

O′

(b) P1 = P2 6= O′, P3 = 2P1

Fig. 1. Geometric interpretation of the group law on x2 + y2 = 1 − 30x2y2 over R.

5 Formulas for Pairings on Edwards Curves

In this section we show how to use the geometric interpretation of the group law to compute
pairings. We assume that k is even and that the second input point Q is chosen by using
the tricks in [2] and [3]: Let Fpk have basis {1, α} over Fpk/2 with α2 = δ ∈ Fpk/2 and let
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Q′ = (X0 : Y0 : Z0) ∈ Eaδ,dδ(Fpk/2). Twisting Q′ with α ensures that the second argument
of the pairing is on Ea,d(Fpk) (and no smaller field) and is of the form Q = (X0α : Y0 : Z0),
where X0, Y0, Z0 ∈ Fpk/2.

By Theorem 2 we have gR,P = φ
l1l2

. So the update in the Miller loop computes gR,P ,
evaluates it at Q = (X0α : Y0 : Z0) and updates f as f ← f · gR,P (Q) (addition) or as
f ← f2 · gR,R(Q) (doubling). Given the shape of φ and the point Q = (X0α : Y0 : Z0), we see
that we need to compute

φ

l1l2
(X0α : Y0 : Z0) =

cZ2(Z2
0 + Y0Z0) + cXY X0αY0 + cXZX0Z0α

(Z3Y0 − Y3Z0)X0α

=
cZ2

Z0+Y0

X0δ α + cXY y0 + cXZ

Z3y0 − Y3
,

∈ (cZ2ηα + cXY y0 + cXZ)F∗

pk/2,

where (X3 : Y3 : Z3) are coordinates of the point R+P or R+R, y0 = Y0/Z0, and η = Z0+Y0

X0δ .
Note that η ∈ Fpk/2 and that it is fixed for the whole computation, so it can be precomputed.
The coefficients cZ2, cXY , and cXZ are defined over Fp, so the evaluation at Q given the
coefficients of the conic can be computed in km (multiplications by η and y0 need k

2m each).

5.1 Addition

Hisil et al. presented new addition formulas for twisted Edwards curves in extended Edwards
form at Asiacrypt 2008 [21]. Let P3 = P1 +P2 for two different points P1 = (X1 : Y1 : Z1 : T1)
and P2 = (X2 : Y2 : Z2 : T2) with Z1, Z2 6= 0 and Ti = XiYi/Zi. Theorem 1 (a) states the
coefficients of the conic section for addition. We use T1, T2 to shorten the formulas.

cZ2 = X1X2(Y1Z2 − Y2Z1) = Z1Z2(T1X2 −X1T2),

cXY = Z1Z2(X1Z2 − Z1X2 + X1Y2 − Y1X2),

cXZ = X2Y2Z
2
1 −X1Y1Z

2
2 + Y1Y2(X2Z1 −X1Z2)

= Z1Z2(Z1T2 − T1Z2 + Y1T2 − T1Y2).

Note that all coefficients are divisible by Z1Z2 6= 0 and so we scale the coefficients. The
explicit formulas for computing P3 = P1 + P2 and (cZ2 , cXY , cXZ) are given as follows:

A = X1 ·X2; B = Y1 · Y2; C = Z1 · T2; D = T1 · Z2; E = D + C;

F = (X1 − Y1) · (X2 + Y2) + B −A; G = B + aA; H = D −C; I = T1 · T2;

cZ2 = (T1 −X1) · (T2 + X2)− I + A; cXY = X1 · Z2 −X2 · Z1 + F ;

cXZ = (Y1 − T1) · (Y2 + T2)−B + I −H;

X3 = E · F ; Y3 = G ·H; T3 = E ·H; Z3 = F ·G.

With these formulas P3 and (cZ2 , cXY , cXZ) can be computed in 1M+(k+14)m+1ma , where
ma denotes the costs of a multiplication by a. If the base point P2 has Z2 = 1, the above
costs reduce to 1M + (k + 12)m + 1ma. We used Sage [31] to verify the explicit formulas.
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5.2 Doubling

Theorem 1 (c) states the coefficients of the conic section in the case of doubling. To speed
up the computation we multiply each coefficient by −2Y1/Z1; remember that φ was unique
up to scaling. Note also that Y1, Z1 6= 0 because we assume that all points have odd order.
The multiplication by Y1/Z1 reduces the overall degree of the equations since we can use the
curve equation to simplify the formula for cXY ; the factor 2 is useful in obtaining an s −m

tradeoff in the explicit formulas below. We obtain:

cZ2 = X1(2Y
2
1 − 2Y1Z1),

cXY = 2(Y1Z
3
1 − dX2

1Y 2
1 )/Z1 = 2(Y1Z

3
1 − Z2

1 (aX2
1 + Y 2

1 ) + Z4
1 )/Z1

= Z1(2(Z
2
1 − aX2

1 − Y 2
1 ) + 2Y1Z1),

cXZ = Y1(2aX2
1 − 2Y1Z1).

Of course we also need to compute P3 = 2P1. We use the explicit formulas from [5] for the
doubling and reuse subexpressions in computing the coefficients of the conic. The formulas
were checked for correctness with Sage [31]. Since the input is given in extended form as
P1 = (X1 : Y1 : Z1 : T1) we can use T1 in the computation of the conic as

cZ2 = X1(2Y
2
1 − 2Y1Z1) = 2Z1Y1(T1 −X1),

cXY = Z1(2(Z
2
1 − aX2

1 − Y 2
1 ) + 2Y1Z1),

cXZ = Y1(2aX2
1 − 2Y1Z1) = 2Z1(aX1T1 − Y 2

1 ),

and then scale the coefficients by 1/Z1. The computation of P3 = (X3 : Y3 : Z3 : T3) and
(cZ2 , cXY , cXZ) is then done in 1M + 1S + (k + 6)m + 5s + 2ma as

A = X2
1 ; B = Y 2

1 ; C = Z2
1 ;D = (X1 + Y1)

2; E = (Y1 + Z1)
2;

F = D − (A + B); G = E − (B + C); H = aA; I = H + B; J = C − I;

K = J + C; cZ2 = 2Y1 · (T1 −X1); cXY = 2J + G; cXZ = 2(aX1 · T1 −B);

X3 = F ·K; Y3 = I · (B −H); Z3 = I ·K; T3 = F · (B −H).

Note that like in [21] we can save 1ma per doubling by changing to the extended represen-
tation only before an addition. Morain [26] showed that a can always be chosen as a = 1 when
constructing a pairing-friendly curve. So the effective cost of multiplying by a is ma = 0.

6 Operation counts

We give an overview of the best formulas in the literature for pairing computation on Edwards
curves and for the different forms of Weierstrass curves in Jacobian coordinates. We compare
the results with our new pairing formulas for Weierstrass and Edwards curves.

Throughout this section we assume that k is even, that Q is given in affine coordinates,
and that quadratic twists are used so that multiplications with η and yQ take (k/2)m each.

6.1 Overview

Chatterjee, Sarkar, and Barua [8] study pairings on Weierstrass curves in Jacobian coordi-
nates. Their paper does not distinguish between multiplications in Fp and in Fpk but their
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results are easily translated. For mixed addition their formulas need 1M + (k + 9)m + 3s.
For doublings they need 1M + (k + 7)m + 1S + 4s if a4 = −3. For doubling on general
Weierstrass curves (no condition on a4) the formulas by Ionica and Joux [22] are fastest with
1M + (k + 1)m + 1S + 11s.

Actually, any mixed addition (mADD) or addition (ADD) needs 1M + km for the evalu-
ation at Q and the update of f ; each doubling (DBL) needs 1M+km+1S for the evaluation
at Q and the update of f . In the following we do not comment on these costs since they do
not depend on the chosen representation and are a fixed offset. We also do not report these
expenses in the overview table.

Hankerson, Menezes, and Scott [20] study pairing computation on Barreto-Naehrig [4]
curves. All BN curves have the form y2 = x3 + a6 and are thus more special than curves with
a4 = −3 or Edwards curves. They need 6m+ 5s for a doubling step and 9m+ 3s for a mixed
addition step. Very recently, Costello et al. presented explicit formulas for pairing on curves
of the form y2 = x3 + b2, i.e. a4 = 0 and a6 is a square. The representation is in projective
rather than Jacobian coordinates.

Das and Sarkar [12] were the first to publish pairing formulas for Edwards curves. We do
not include them in our overview since their study is specific to supersingular curves with
k = 2. Ionica and Joux [22] proposed the thus far fastest pairing formulas for Edwards curves.
Note that they actually compute the 4th power Tn(P,Q)4 of the Tate pairing. This has almost
no negative effect for usage in protocols. So we include their result as pairings on Edwards
curves.

We denote Edwards coordinates by E , projective coordinates by P, and Jacobian coordi-
nates by J . Morain [26] showed that 2-isogenies reach a = 1 from any twisted Edwards curve;
we therefore omit ma in the table.

DBL mADD ADD

J , [22], [8] 1m + 11s + 1ma4
9m + 3s —

J , [22], this paper 1m + 11s + 1ma4
6m + 6s 9m + 6s

J , a4 = −3, [8] 7m + 4s 9m + 3s —

J , a4 = −3, this paper 6m + 5s 6m + 6s 9m + 6s

J , a4 = 0, [9], [8] 6m + 5s 9m + 3s —

J , a4 = 0, this paper 3m + 8s 6m + 6s 9m + 6s

P, a4 = 0, a6 = b2 [11] 3m + 5s 10m + 2s + 1mb 13m + 2s + 1mb

E , [22] 8m + 4s + 1md 14m + 4s + 1md —

E , this paper 6m + 5s 12m 14m

6.2 Comparison

It is common in the literature to assume s = 0.8m; however, this is for extremely sparse primes
such as generalized Mersenne primes allowing extremely fast reduction. The construction of
pairing-friendly curves rarely lead to very sparse primes p and thus s/m is closer to 1. Note
also that additions appear far less frequently than doublings since the constructions lead to
n with low Hamming weight.

The overview shows that our new formulas for Edwards curves solidly beat all previous
formulas published for pairing computation on Edwards curves.
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Our new formulas for pairings on arbitrary Edwards curves are faster than all formulas
previously known for Weierstrass curves except for the very special curves with a4 = 0.
Specifically mixed additions on Edwards curves are slower by some s − m tradeoffs but
doublings are much more frequent and gain at least an s−m tradeoff each.

The curves considered in [11] are extremely special: For p ≡ 2 mod 3 these curves are
supersingular and thus have k = 2 and for p ≡ 1 mod 3 a total of 3 isomorphism classes
is covered by this curve shape. They have faster doublings but slower additions and mixed
additions than Edwards curves.

Our own improvements to the doubling and addition formulas for Weierstrass curves beat
our new formulas for Edwards curves with affine base point by several s−m tradeoffs. However,
in many protocols the pairing input P is the output of some scalar multiplication and is thus
naturally provided in non-affine form. Converting P to affine form is more expensive than
proceeding in non-affine form so that all additions are full additions. A full addition on an
Edwards curve needs one field operation less than on Weierstrass curves. Depending on the
frequency of addition and the s/m ratio the special curves with a4 = 0 might or might not be
faster. For all other curves, the Edwards form is the best representation. Furthermore, scalar
multiplications on Edwards curves are significantly faster than on Weierstrass curves.

To the best of our knowledge no full addition formulas were published for Weierstrass
curves before this paper. Our new formulas for Weierstrass curves are faster than all previous
ones by several s−m tradeoffs.

7 Construction of Pairing-Friendly Edwards Curves

The previous chapter showed that pairing computation can benefit from Edwards curves.
Most constructions of pairing-friendly elliptic curves in the literature aim at a prime group
order and thus in particular do not lead to curves with cofactor 4 that can be transformed to
Edwards curves. Galbraith, McKee, and Valença [18] showed how to use the MNT construction
to produce curves with small cofactor. Some other constructions that allow to find curves with
cofactor divisible by 4 are described by Freeman, Scott, and Teske [15].

For efficient implementation, we aim at balancing the difficulty of the DLPs on the curve
and in the multiplicative group of the finite field Fpk . Following the ECRYPT recommenda-
tions [13], the “optimal” bitsizes of the primes p and n for curves E/Fp with n | #E(Fp)
and n prime are shown in Table 1 for the most common security levels. For these parameters,
the DLP in the subgroup of E(Fp) of order n is considered equally hard as the DLP in F∗

pk .

In order to transform the curve to an Edwards curve, we need to have #E(Fp) = 4hn for
some cofactor h. It follows that the rho-value ρ = log(p)/ log(n) of E is always larger than 1.
The recommendations imply a desired value for ρ ·k as displayed in Table 1, which preferably
should be achieved with an even embedding degree to favor efficient implementation and ρ
close to 1. In the appendix we present five examples of pairing-friendly Edwards curves with

n 160 192 224 256 320 512

pk 1248 1776 2432 3248 4800 15424

ρ · k 7.80 9.25 10.86 12.67 15 30.13

Table 1. “Optimal” bitsizes for the primes n and p and the corresponding values for ρ · k.

embedding degrees k ∈ {6, 8, 10, 22}, thus covering a range of security parameters.
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8 Appendix: Examples of Pairing-Friendly Edwards Curves

This appendix presents pairing-friendly Edwards curves. Note that they were constructed for
applications in the Tate pairing so that the curve over the ground field has a point of order
4 (rather than for the ate pairing for which the twist of the curve should be birationally
equivalent to a curve in Edwards form. The rho-values are stated with the curves. Notation
is as before, where the number of Fp-rational points on the curve is 4hn.

k = 6, ρ = 1.22 following [18]: D = 7230, ⌈log(n)⌉ = 165, ⌈log(h)⌉ = 34, ⌈log(p)⌉ = 201

p = 2051613663768129606093583432875887398415301962227490187508801,

n = 44812545413308579913957438201331385434743442366277,

h = 7 · 733 · 2230663,

d = 889556570662354157210639662153375862261205379822879716332449.

k = 6, ρ = 1.48 following [18]: D = 4630, ⌈log(n)⌉ = 191, ⌈log(h)⌉ = 90, ⌈log(p)⌉ = 283

p = 12076422473257620999622772924220230535655104285600826357856070179619031510615886361601,

n = 2498886235887409414948289020220476887707263210939845485839,

h = 11161 · 19068349 · 5676957216676051,

d = 4597008687866412934970378498245465932931615077893178705320744592305527135300502778190.

k = 8, ρ = 1.50 following Example 6.10 in [15]:
D = 1, ⌈log(n)⌉ = 267, ⌈log(h)⌉ = 133, ⌈log(p)⌉ = 401

p = 3268160001953756839814226928408095055564196036053442104675179095037921817537848577548206

867473587369969429214840474559317,

n = 133392486801388615111969646482668382660908529878176013752617390075068036872364881,

h = 5 · 7730839564540529681 · 15845840683775553774,

d = 2123127426004088514407260044332673251624085348705495887018005315725392532299918749170138

1125724984507626273646524438.

k = 10, ρ = 1.49 following Construction 6.5 in [15]:
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D = 1, ⌈log(n)⌉ = 328, ⌈log(h)⌉ = 160, ⌈log(p)⌉ = 490

p = 319667071934078971315677746964738362812713703914060344412320604868708613896665173327525

2543330209754427990875101879841425427646115157594515629491249,

n = 546812704438652190176048473638362779688423061794499756311925945545462152449512232744941

959488864241,

h = 24 · 701994 · 78313914
,

d = −1.

k = 22, ρ = 1.39 following Construction 6.6 in [15]:
D = 3, ⌈log(n)⌉ = 519, ⌈log(h)⌉ = 204, ⌈log(p)⌉ = 724

p = 793243907836538225101919663581953770913765580662849594203574636874518836858270555160144

920983827280386815433912190214824741372960533715598691121880716182459140439367767771926

66177113943586415044911851669785290654695123,

n = 962131187808560377898569195262572710988984869464755002509459666178069262628367282191252

973105101373704953818660670550658659790389637917606342501732923486369,

h = 35 · 7 · 132 · 192 · 372 · 64212 · 7291 · 34985592 · 225268692 · 78478074679,

d = 264414627547939780810839826727395383259987444981352560753582877086320074680650633780571

920373615518032509200852332864216413041328949865016666759728218019456097204687710831048

17656092016879614901160245443945786256399518.


