ecced

V_2O_5 /炭基材料用于烟气脱硫

脱硝的研究进展

刘清雅, 刘振宇

(北京化工大学化工资源有效利用国家重点实验室,北京 100029)

摘要: 燃煤烟气污染是我国可持续发展需要重点解决的环境问题。目前国内外使用的均是偏离排烟温度的单一 污染物控制技术,几种技术串连实现多种污染物排放控制的成本较高。炭基材料由于其独特的性质,不仅可在 排烟温度范围脱除烟气主要污染物——硫、硝、汞等,而且可以实现这些污染物的同时脱除。活性焦作为较为 廉价的炭基材料,已经在国外实现了工业应用。过去 10 余年的研究表明, V_2O_5 /活性焦的脱硫、脱硝、脱汞活 性显著优于活性焦自身,也优于其他金属氧化物改性的活性焦,有望成为新一代烟气污染物排放控制技术的核 心催化剂。本文总结了过去 10 年中 V_2O_5 /活性焦的研究进展,重点展示了脱硫和脱硝过程中的原理性认识,得 出 V_2O_5 的低温氧化性是其促进多种污染物脱除的共性原因。可以看出,我国在这方面的研发中做出了重要贡 献,形成了系统、深入的研究成果。

关键词: V₂O₅;炭基材料;烟气;脱硫;脱硝;选择性催化还原

中图分类号: TQ 028.8 文献标识码: A

文章编号:0438-1157(2008)08-1894-13

Review of V₂O₅-supported carbon based catalyst for SO₂ and NO removal from flue gas

LIU Qingya, LIU Zhenyu

(State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China)

Abstract: Flue gas clean-up is an important task for sustainable development of China. Dominant technologies used today in the world are effective only for single pollutant removal under conditions significantly different from that of flue gas emission, and the overall cost for multi-pollutants removal is high. Carbon materials have superior properties for removal of many flue gas pollutants, individually or collectively, at temperatures of flue gas emission. V_2O_5 /activated coke shows even higher activities mainly due to the oxidative properties of V_2O_5 , which makes it better than activated coke itself and other metal oxides-modified activated coke. V_2O_5 /activated coke may be the core for development of new generation technologies for flue gas clean-up. This article summarizes main research and development of V_2O_5 /activated coke in the past decade, and reveals significant contributions made by Chinese researchers.

Key words: V_2O_5 ; carbon-based material; flue gas; SO_2 removal; NO removal; SCR

引 言

煤炭是我国的主要一次能源,近年来占一次能

联系人:刘振宇。第一作者:刘清雅(1975—),女,博士, 副教授。

基金项目:国家自然科学基金项目(20736001)。

源的 70%左右,预计到 2050 年约占 50%以上。由于煤炭利用以燃烧(发电和供热)为主,导致煤中 多种污染物组分随烟气排出,造成大气污染。因

Received date: 2008-06-03.

Corresponding author: Prof. LIU Zhenyu. E - mail: liuzy@mail.buct.edu.cn

Foundation item: supported by the National Natural Science Foundation of China (20736001).

²⁰⁰⁸⁻⁰⁶⁻⁰³ 收到初稿。

此, 燃煤污染排放控制一直是全球能源和环保领 域的重点, 是我国可持续发展中非常重视的 问题。

燃煤烟气污染物的种类很多,如粉尘、SO₂ (硫)、 NO_x (硝)、有害金属、 CO_2 等。随着社会 的发展,人们对这些污染物的排放控制不断重视, 由除尘开始逐步增加到脱硫、脱硝、脱汞, 直至今 天考虑的脱 CO2。但不同国家的发展水平不同,对 燃煤烟气污染物的控制水平也不同。发达国家于 20世纪60年代开始研究烟气脱硫,到70年代便 开发出一系列脱硫技术,并在燃煤电厂锅炉上大规 模应用[1]。综观目前应用的主流技术可以发现,无 论是炉内脱硫还是烟气净化,核心均为钙基化合物 与 SO₂ 反应生成石膏(硫酸钙)。这些方法工艺简 单,理应是首选技术,但从绿色和可持续发展的角 度看,耗水量大、石膏难以利用造成二次污染、脱 硫后烟气温度低造成排烟困难、难以同时脱除其他 污染物等问题限制了这些技术的应用^[2]。因此,开 发易与锅炉匹配、易实现硫资源化的低温干法脱硫 技术成为烟气脱硫的发展方向。

国内外大量实验表明^[34],炭基材料(活性炭、 活性焦、炭纤维等)是最具应用潜力的低温干法脱 硫吸附/催化剂,而且还可同时实现脱硝和脱汞。 日本三井公司于 20 世纪 80 年代就实现了活性焦移 动床技术的工业化^[5],目前已有 20 余家应用。近 10 余年来,我国一些单位也从事了炭基材料脱硫 的技术研发,有些进行了示范^[6]。为了进一步提高 排烟温度下的脱硫速率,国内外对各种炭基材料进 行了改性或担载金属氧化物活性组分。在所探索的 大量金属氧化物中,V₂O₅ 的效果最为突出,因 此,V₂O₅/炭基材料脱硫剂得到了深入细致的研 究,在理论认识方面取得了重要进展。

燃煤 NO_x 排放控制的研究始于 20 世纪 70 年 代末,至 90 年代证明以 NH₃ 为还原剂的选择性催 化还原(SCR)脱硝法最为有效,以 V₂O₅/TiO₂ 为主要成分、以 WO₃ 和 MoO₃ 等为助催化组分制 得的催化剂的脱硝性能最好^[7]。但是,为了避免喷 入的氨与 SO₂ 及氧和水反应生成的硫酸氢铵盐覆 盖催化剂表面(俗称 SO₂ 毒化),该催化剂只能在 350℃以上运行,以促进硫酸氢铵盐分解或反应, 因此,该脱硝装置须置于除尘之前,要求催化剂有 很高的抗粉尘冲刷和毒化能力。由于已建锅炉空间 的限制,V₂O₅/TiO₂脱硝技术仅适于新建锅炉。 国内近年来对此类催化剂也有一定的研究,包括 V₂O₅/TiO₂的制备和脱硝反应条件^[8]、以堇青石 蜂窝体为骨架制得 V₂O₅/TiO₂/堇青石^[9]等,发现 此类催化剂要求的锐钛矿型 TiO₂ 易在制备时发生 晶型转变使得成品率不高、脱硝条件下烟尘中的碱 金属化合物等易使催化剂失活。

实际上,从易与锅炉匹配、避免烟尘影响、优 化锅炉热量利用的角度考虑,置于除尘设施之后、 可在排烟温度(120~200°C)脱硝的低温催化剂更 具优越性。近年来的研究表明^[10-13],以炭基材料 为载体的催化剂是很好的选择,报道的活性组分包 括 V_2O_5 、CuO、Fe₂O₃、MnO_x、CrO_x等。这些 催化剂的低温 SCR 活性均较高,但在抗 SO₂ 毒化 (即硫酸氢铵盐覆盖)方面, V_2O_5 /炭基材料的性 能最好^[12]。鉴于在排烟温度下, V_2O_5 /炭基材料 既是好的脱硫剂,又是好的 SCR 脱硝催化剂,具 有发展和应用的潜力,本文将重点评述该催化剂在 烟气脱硫和脱硝方面的研究进展。

1 V₂O₅/炭基材料的烟气脱硫行为

1.1 V₂O₅ 在烟气脱硫中的作用

炭基材料(活性炭、活性焦、活性炭纤维)自 身在 30~80℃有较好的脱硫活性。目前普遍认为 其脱硫过程包括以下几个步骤: SO2 在炭表面的吸 附,吸附态 SO2 被炭表面的含氧官能团催化氧化 为 SO₃, SO₃和烟气中的 H₂O 反应生成 H₂SO₄ 储 存于炭的孔中^[14-15]。显然,温度越高,SO₂的吸附 能力越弱,脱硫活性会越低。因此,为了获得排烟 温度(120~200℃)下的高活性炭基材料脱硫剂, 必须增强其吸附能力或催化氧化能力, 使 SO₂ 在 脱附之前氧化转化。基于此, 文献报道了一些金属 氧化物/炭基材料催化剂^[16-17];刘守军等^[18]、马建 蓉等^[19]、肖勇等^[20]分别考察了 CuO/活性焦、 Fe_2O_3 /活性焦和 V_2O_5 /活性焦的脱硫活性,发现 它们在180℃左右均有较好的脱硫能力,但CuO 和 Fe_2O_3 会与 SO_2 和 O_2 反应生成水溶性的 CuSO₄ 和 $Fe_2(SO_4)_3$,因而在含水烟气中的稳定性可能不 好。相比而言, V₂O₅ 更为稳定。图 1 是 200℃、 $5600 h^{-1}$ 空速下 $V_2 O_5 / 活性焦的脱硫转化率,其中$ V 后面的数字 (0.5, 2, 8) 代表催化剂中 V_2O_5 的质量分数。显然, V_2O_5 的添加显著提高了活性 焦的脱硫活性, \mathbb{I} V₂O₅ 含量越高,催化剂的脱硫 活性越好。

马建蓉等^[21]详细研究了 V_2O_5 提高活性焦脱 硫活性的原因。通过红外发现,脱硫后催化剂表面 出现了 $VOSO_4$ 的吸收峰,200℃下通入 O_2 和 H_2O 后 $VOSO_4$ 吸收峰消失(图 2);通过暂态响应实验 发现气相 O_2 和 H_2O 对脱硫至关重要,尤其是 O_2 。 由此认为 $VOSO_4$ 是 V_2O_5 /活性焦脱硫的中间体, V_2O_5 促进脱硫主要源于其对 SO_2 的催化氧化作 用,并提出了图 3 所述的脱硫机理。即:(1) SO_2 吸附在 V_2O_5 及其相邻的炭位上;(2) 吸附态 SO_2 与 V_2O_5 作用形成具有 $VOSO_4$ 结构的中间体;(3) $VOSO_4$ 中间体与气相的 O_2 反应生成 SO_3 和 V_2O_5 ;(4) SO_3 或 SO_3 与烟气中的水所形成的 H_2SO_4 迁移/存储于 V_2O_5 附近的活性焦孔中。在 该过程中发生 $V^{5+} \rightarrow V^{4+} \rightarrow V^{5+}$ 的循环。

值得一提的是,硫酸生产中广泛应用 V_2O_5 , 在 400~500℃之间催化 SO₂ 氧化,反应中间体为 含有 V^{4+} 的 K₄ (VO)₃ (SO₄)₅、Na₂VO(SO₄)₂、 β-VOSO₄ 等^[22-24]。然 而, $V_2O_5/$ 活 性 焦 在 200℃左右即可催化 SO₂ 氧化,该现象令人惊 诧,可能与载体活性焦的性质相关,值得深入 研究。

显然, V_2O_5 /活性焦的脱硫过程涉及 SO₂ 与 V₂O₅反应形成 VOSO₄ 中间体和 VOSO₄ 与 O₂反 应恢复 V₂O₅。肖勇等^[20]通过 O₂ 暂态响应实验发 现,V₂O₅ 担载量越高,生成的 VOSO₄ 量越多 (图 4 中切断 O₂ 后催化剂吸附 SO₂ 的量);VOSO₄ 与 O₂ 的反应速率很快,在烟气中大量 O₂ (约 5%)存在下,VOSO₄ 的转化速率与其表面浓度无 关(图 4 中恢复供 O₂ 后,SO₂ 转化率恢复的速率 一致),说明 VOSO₄ 的生成速率是脱硫过程的限

图 4 载钒量对 VOSO₄ 中间体生成和消耗的影响^[20] Fig. 4 Effect of V₂O₅ loading on formation and consumption of VOSO₄ intermediate^[20]

制性步骤。VOSO₄ 的生成量反映了担载于活性焦 表面的 V_2O_5 中能够参与 SO₂ 氧化的 O 量(即有 效 O 量)。研究发现, V_2O_5 担载量为 0.5%(质 量)时,每个 V_2O_5 分子基本可以提供 1 个有效 O;但随着 V_2O_5 担载量的增加,虽然绝对有效 O 量增多,脱硫活性提高,但每个 V_2O_5 分子可提供 的有效 O 数目却降低,表明某些 V_2O_5 不能参与脱 硫过程(即 V_2O_5 利用率降低,可能源于 V_2O_5 的 聚集)。

1.2 炭基材料性质对脱硫活性的影响

大量文献表明^[25-27],炭基材料自身的脱硫活 性与其表面官能团、含有的无机物(灰分)、孔结 构等有关,但三者对脱硫的影响程度随炭基材料的 不同而不同,说明不同炭基材料在不同条件下脱硫 的限制性步骤不同,或受限于 SO₂ 在炭表面的催 化氧化,或受限于氧化产物 SO₃ 或 H₂SO₄ 在炭孔 中的储存。对于 V₂O₅/活性焦,肖勇等^[20]同样发 现活性焦的孔结构和表面性质影响脱硫活性,增大 活性焦的比表面积和脱灰处理均有利于脱硫活性的 提高。但由于 V₂O₅/活性焦在 200℃左右脱硫时, SO₂ 的催化氧化主要发生在钒位,不是活性焦表面 的含氧官能团上,因此,活性焦性质对载 V₂O₅ 催 化剂脱硫活性的影响机理应不同于无 V₂O₅ 时的 情况。

一方面,活性焦性质可能影响 V_2O_5 分散性, 从而影响其催化氧化能力和 V_2O_5 /活性焦的脱硫活 性;另一方面,活性焦性质可能影响 SO_3/H_2SO_4 的储存能力,从而也影响 V_2O_5 /活性焦的脱硫活 性。肖勇等^[20]通过 O_2 暂态响应实验发现,同一来 源但经不同活化条件制得的活性焦的孔结构和表面

性质虽然不同,但其表面担载的 V_2O_5 的催化氧化 能力却没有明显差异(图5),因此,由它们制得 的 V_2O_5 /活性焦的脱硫活性差异主要源于对 H₂SO₄的存储能力不同。鉴于 SO₂ 主要在活性焦 表面的钒位上催化氧化,不难想像氧化产物 SO₃/ H_2SO_4 仅能储存于 V_2O_5 周围的孔中(称为有效 孔)。随着载钒量的增加,活性焦上的 V₂O₅ 位增 加,有效孔体积会增加。但是这种增加不会是线性 的,因为低载钒量时,活性焦上的 V₂O₅ 位相邻或 发生重叠的概率较小,有效孔体积随载钒量增加呈 比例增加; 高载钒量时, V₂O₅ 位相邻或发生重叠 的比例增大,活性焦的部分孔被多个 V₂O₅ 共享, 使得有效孔体积的增加程度相对变小。图 6 示意了 V_2O_5 /活性焦上不同组分的赋存及其与脱硫行为之 间的关系,该认识为进一步的实验探索、理论发展 和催化剂设计奠定了里程碑式的基础。

Fig. 6 Schematic diagram of distribution of V_2O_5 and storage of H_2SO_4 over V_2O_5/AC catalyst ^[20]

1.3 催化剂尺寸对 V₂O₅/活性焦脱硫活性的影响

1898

燃煤烟气气量大、粉尘多、压力低。虽然炭基 材料的脱硫温度低因而可置于除尘之后,但仍须考 虑剩余烟尘堵塞问题,并尽量降低床层压降。为 此,日立 MMC-BF 烟气脱硫技术采用移动床反应 器和大尺寸、高强度的柱状活性焦(直径5~10 mm,长度8~13 mm),V₂O₅/活性焦同样也需要 柱状成型才能满足工业应用的要求。但是,大尺寸 会影响脱硫剂内部的利用率,导致其脱硫动力学不 同于小颗粒的情况。

柱状焦通常采用挤出法成型,由于挤出过程中 润滑剂和轴向挤压作用,轴向外表面比较致密,而 径向为切割断面,相对疏松。这种现象导致活化过 程中径向和轴向的扩散/传质阻力不同,使得柱状 活性焦呈现各向异性,进而影响 V₂O₅ 的担载和分 布、影响 SO₂ 在柱状 V₂O₅/活性焦不同方向上的 传质和反应。

王建成等^[28]通过对柱状 V_2O_5 /活性焦进行轴向和径向剖析,发现无论轴向还是径向,V 含量和脱硫后的S含量都由表及里逐渐降低(见图7和图8),且轴向的V含量和S含量均比径向的高。进一步研究发现,脱硫后S分布的差异虽与 V_2O_5 分布的差异有关,但主要受脱硫过程中SO₂ 传质的影响。显然,柱状 V_2O_5 /活性焦应尽可能成型为短粗型,以增加其轴向外表面。

1.4 吸硫 V₂O₅/活性焦的再生

从炭基材料的脱硫机理可以看出,随着脱硫的 进行,产物 SO_3/H_2SO_4 不断填充炭基材料的孔, 直至完全填满而失去脱硫活性。因此,将存储于活 性焦孔中的 SO_3/H_2SO_4 脱附(称为再生)以恢复 脱硫活性是 $V_2O_5/活性焦循环应用的核心。$

炭基材料脱硫后的再生方法主要有水洗再生和 热再生。水洗再生是用水将炭基材料孔中的 H₂SO₄

图 7 柱状 V₂O₅/活性焦的 V₂O₅ 分布行为^[28]

Fig. 7 Distributions of V_2O_5 over granular $V_2O_5/AC^{[28]}$

脱附,操作简单但耗水量大,水洗产生的稀硫酸 (浓度10%~20%)难以利用。热再生是在惰性气 氛下加热,使存储于孔中的H₂SO₄在350~ 450℃被炭还原为SO₂(见如下反应式)释放至气 相。产生的浓SO₂被进一步制成硫磺或硫酸。

> $2H_2SO_4 + C = CO_2 + 2SO_2 + 2H_2O$ $H_2SO_4 + C = CO + SO_2 + H_2O$

显然,热再生过程中C被H₂SO₄氧化为CO₂/ CO 而释放,因此需要不断补充新鲜炭材料,从而 使脱硫成本增加。既然热再生的实质为H₂SO₄的 还原,那么在再生气氛中添加还原剂很可能减少或 抑制热再生过程中的炭损失,而且有的还原剂还可 能与再生出来的SO₂反应生成有价值的产物,实 现再生-硫资源化一体化,简化再生工艺。

基于此考虑,刘振宇等^[29]开发了氨再生法,即在再生过程中通入少量 NH₃,一方面希望通过 NH₃还原 H₂SO₄,减少炭的损失,另一方面希望 NH₃与再生产物 SO₂ 在低温区反应生成硫铵盐, 简化后续工艺。郭彦霞等^[30-31]考察了吸硫 V₂O₅/ 活性焦在 Ar 和 NH₃/Ar 气氛中的再生效率和炭损 失,发现 350~400℃的热再生(Ar 气氛)不能完

Fig. 8 S distribution over granular $V_2 O_5 / AC$ after different reaction time^[28]

全恢复 V_2O_5 /活性焦的脱硫活性,但 300°C 于 NH₃/Ar 气氛中再生便可有效恢复脱硫活性(见图 9),且反应器出口明显有硫铵盐生成,通过循环再 生工艺,S 回收率达 95%以上。值得指出的是,NH₃ 明显抑制了再生烧炭,但不影响 SO₂ 的释放 行为(图 10)。进一步研究表明^[32],NH₃/Ar 再生 过程中 H₂SO₄ 仍主要被 C 还原,NH₃ 抑制烧炭和 提高脱硫活性的本质是 NH₃ 代替 C 消耗了 V_2O_5 /活性焦表面的 O,从而提高了表面 N 含量,修饰 了活性焦表面。

后续脱硫活性的影响^[30]

Fig. 9 Effect of NH₃ addition during regeneration on subsequent SO₂ removal activity^[30]

基于同样的考虑,邢新燕等^[33]研究了吸硫 V₂O₅/活性焦的 H₂ 再生行为,力求通过添加新的 活性组分,使再生产物 SO₂ 在再生过程中通过 Claus 法生成硫磺,以省去后续转化工艺。结果 (图 11)表明,在 V₂O₅/活性焦中添加 0.5%的 Co 和 0.5%的 Mo,可以得到 50%的硫磺产率,但再 生中生成了金属硫化物,且硫磺难以完全逸出,再 生效率仅为 50%左右(即再生样的脱硫活性仅为 新鲜样的 50%)。尾气检测表明,H₂ 再生和热再 生过程的 SO₂ 和 CO₂ 释放行为类似(图 12),说 明 H₂ 不能像 NH₃ 一样与活性焦表面的 O 反应而 抑制再生过程中的炭烧失。

 V_2O_5/AC during H_2 regeneration^[33]

2 V₂O₅/炭基材料的烟气脱硝行为

如前所述,低温 SCR 脱硝催化剂需要解决的 关键问题是低活性和 SO₂ 中毒。文献显示,许多 炭基材料经过改性或负载金属氧化物(CuO、 Fe₂O₃、MnO_x、CrO_x、V₂O₅)后在排烟温度范围 都有较高的脱硝活性^[34-37]。但是,有关 SO₂ 对上 述炭基催化剂脱硝活性的影响研究,文献报道却较

sulfated V1Co1/AC in H_2 and $N_2^{[33]}$

少。理论上, CuO、Fe₂O₃、MnO_x、CrO_x等均易 与 SO₂和 O₂反应生成水溶性硫酸盐,不仅影响脱 硝活性,而且影响稳定性。而从前面所述的 V₂O₅/ 活性焦的脱硫机理知,虽然 V₂O₅ 会与 SO₂作用生 成水溶性 VOSO₄中间体,但 VOSO₄ 很易被烟气 中的 O₂氧化为不溶于水的 V₂O₅。因此,与负载 其他金属氧化物的炭基催化剂相比,V₂O₅/炭基材 料在脱硝方面具有显著的优越性。

2.1 V₂O₅ 对炭基材料脱硝活性的影响

Huang 等^[38]考察了 V_2O_5 /碳纳米管的 SCR 脱 硝活性,发现碳纳米管自身在 80~300℃的 NO 转 化率仅为 10%,但负载 V_2O_5 后,NO 转化率明显 提高,从 80℃的 30%到 180℃的 85%,继续升高 温度,NO 转化率略有降低。Lázaro 等^[13]发现 150~275℃时, V_2O_5 明显促进了煤质活性炭的脱 硝活性。但这些研究均未涉及 SO₂ 对脱硝活性的 影响。

Zhu 等^[12] 以煤质活性焦为载体制备了 V_2O_5 / 活性焦催化剂,发现当温度由 80℃升至 250℃时, 活性焦自身的脱硝活性由 50%逐步降至 20%,但 负载 5%(质量) V_2O_5 后,脱硝活性由 100℃时的 30%升高至 250℃时的 100%(图 13)。文献表明, 多数催化剂上的 SCR 反应发生在吸附/活化态的 NH₃ 与气相或弱吸附的 NO 之间,遵循 Eley-Rideal机理,因此,催化剂的 SCR 活性与 NH₃ 的 吸附和活化密切相关。马建蓉等^[39]发现活性焦自 身具有吸附 NH₃ 和将 NH₃氧化转化为 NO 的能 力; 担载 V_2O_5 后, NH₃ 的吸附能力显著增强,并 产生了新的 NH_3 氧化产物 N_2 。因此, V_2O_5 /活性 焦的高 SCR 活性可能与 V_2O_5 对 NH_3 的吸附和温 和氧化有关。

关于 SO₂ 对 V₂O₅/活性焦脱硝活性的影响, Zhu 等^[40]进行了考察,发现当载钒量低于 3%时, 200℃连续添加 SO₂ (400 μ l · L⁻¹) 不仅没有降低 催化剂的脱硝活性,反而显著提高了它们的脱硝活 性;但载钒量高于 7%时,SO₂ 却降低了催化剂的 脱硝活性(图 14)。SO₂ 对脱硝的影响还与反应温 度有关,图 15 表明,只有当温度高于 180℃时, SO₂ 对 V₂O₅/AC 脱硝活性的促进作用才能显现。

图 13 活性焦和 V₂O₅/活性焦的脱硝活性对比^[12] Fig. 13 NO removal activities of AC and V₂O₅/AC at different temperatures^[12]

Fig. 14 Effect of SO₂ on NO removal activity of $V_2 O_5 / ACs$ with different $V_2 O_5$ loading^[40]

2.2 SO₂ 影响 V₂O₅/炭基材料脱硝活性的原因

大量文献表明, SO₂ 对 SCR 脱硝活性的毒化 主要源于 SO₂ 与 NH₃ 和 O₂ 反应生成硫铵盐, 覆

Fig. 15 Effect of SO₂ on NO removal activity of 1% (mass) V₂O₅/AC at different temperatures^[40]

盖催化剂表面^[41-42]。因此,硫铵盐在脱硝过程中 的行为决定了 SO₂ 对脱硝的作用。若生成的硫铵 盐能够及时分解,则不会表现出 SO₂ 对脱硝的毒 化;若生成的硫铵盐能够高活性地参与 NO 还原, 则可能表现出 SO₂ 对脱硝的促进。

Zhu 等^[43]以文献公认的中毒物 NH₄ HSO₄ 为 模型化合物,考察了其在不同条件下的分解行为, 发现 NH₄ HSO₄ 的起始分解温度差异很大。纯态 NH₄ HSO₄ 的分解温度为 390℃, NH₄ HSO₄ 担载 到 5%(质量) V₂O₅/AC、AC 和 V₂O₅ 表面后的 起始分解温度分别为 245℃、240℃和 450℃,由此 得出活性焦对 NH₄ HSO₄ 的分解具有促进作用, V₂O₅ 具有抑制作用。图 16 表明 V₂O₅/活性焦的载 钒量越高,其上的 NH₄ HSO₄ 分解温度越高。

值得注意的是,尽管 NH₄ HSO₄ 的分解温度 由纯态的 390℃降至 V₂O₅/活性焦上的 220 ~ 330℃,但这并不能解释 180℃时 SO₂ 促进 V₂O₅/ 活性焦脱硝的现象(如图 15)。如前所述,SO₂ 对 脱硝的促进作用可能与硫铵盐能够参与还原 NO 有 关。Zhu 等^[43] 通过考察不同条件下 NH₄ HSO₄ 与 NO 的反应行为,发现纯 NH₄ HSO₄ 与 NO 的反应 起始于 390℃; NH₄ HSO₄ 担载到 5%(质量) V₂O₅/活性焦表面后,反应存在两个阶段,起始温 度分别为 100℃和 190℃(图 17),由此得出 NH₄ HSO₄ 在 V₂O₅/活性焦脱硝的促 进作用主要源于两种形态的 NH₄ HSO₄ 均可参与 NO 反应。进一步研究表明,V₂O₅/活性焦的载钒

NO 反应行为的比较^[43]

Fig. 17 TPSR profiles of NO with pure $NH_4\,HSO_4$ and $NH_4\,HSO_4\,\,deposited\,\,on\,\,5\%\,\,(mass)\,\,V_2\,O_5/AC^{[43]}$

量越高,其表面的 NH₄ HSO₄ 与 NO 的反应性越 差^[44],因此,载钒量越高, SO₂ 的促进作用越小 甚至消失(图 14)。

事实上,脱硝过程中硫铵盐的生成和消耗(反 应或分解)是个动态过程,催化剂是否失活与两者 的速率有关。Huang 等^[45-46]从该角度探讨了 SO₂ 和 H₂O 共存时 V₂O₅/活性焦的脱硝活性,发现 H₂O 促进了硫铵盐的生成,抑制了硫铵盐与 NO 的反应(图 18),SO₂ 对硫铵盐与 NO 的反应性无 影响^[45],因此,SO₂ 和 H₂O 共存时发生硫铵盐沉 积,导致 V₂O₅/活性焦的脱硝活性随反应进行逐渐 降低,而且 H₂O 量越高,脱硝活性下降得越快 (图 19)^[46]。García-Bordejé 等^[47]研究 H₂O 和 SO₂ 对 V₂O₅/涂炭蜂窝体低温脱硝活性的影响时,同样 发现硫铵盐的沉积导致催化剂在 200~220℃时 失活。

• 1902 •

Fig. 19 Effect of H_2O content on activity of 1% (mass) V_2O_5/AC catalyst^[46]

显然,降低硫铵盐生成速率和/或提高其消耗 (包括反应和分解)均会减少它在催化剂表面的沉 积,延缓催化剂失活。黄张根等^[48]发现对活性焦 进行脱灰处理、降低 V_2O_5 担载量和反应空速都可 以减缓硫铵盐的沉积,提高 V_2O_5 /活性焦抗 H_2O 和 SO_2 毒化的能力。当烟气中 H_2O 含量低于 2.5%时, V_2O_5 /AC 催化剂在 250℃和 6300 h⁻¹空 速下运行 135 h 未见失活。黄张根等^[48]同时发现 催化剂一旦失活,通过热处理可恢复部分活性。对 于失活的 V_2O_5 /涂炭蜂窝体,García-Bordejé 等^[47] 发现切断 H_2O 后于 200℃运行一段时间,脱硝活 性亦可逐渐恢复。 以上从硫铵盐生成与消耗的角度探讨了 SO₂ 对 V₂O₅/活性焦脱硝的影响,但前面的脱硫机理表 明, SO₂存在时 V₂O₅ 的形态也发生了变化,部分 V₂O₅ 生成具有 VOSO₄ 结构的中间体。为此,肖 勇等^[49]从 V 形态变化的角度考察了 SO₂ 和 H₂O 共存时对脱硝的影响,发现 VOSO₄ 几乎没有脱硝 活性,但由于催化剂表面的 VOSO₄ 量既与气氛中 SO₂ 浓度有关,又与催化剂已实现的脱硫量有关, V 形态对脱硝的影响随反应进行而动态变化。

2.3 炭基材料性质对脱硝活性的影响

如前所述,活性焦促进 NH₄HSO₄的分解, 活性焦与 V_2O_5 协同促进 NH₄HSO₄与 NO 的反 应,从而避免了一些条件下 V_2O_5 /活性焦在 SO₂ 存在时的失活。Zhu 等^[43]在相同条件下比较了 V_2O_5 /活性焦和 V_2O_5 /TiO₂ 上 NH₄HSO₄的反应 性,发现与 NO 反应的起始温度后者为 300℃,远 高于前者的温度,表明活性焦在提高硫铵盐反应 性、抑制 SO₂ 失活方面起决定作用。因此,考察 不同性质的炭基材料制得的载钒催化剂的脱硝活 性、选择合适的炭基载体对获得高活性、长寿命的 V_2O_5 /炭基材料脱硝催化剂具有非常重要的意义。

有关炭基材料性质对 V_2O_5 /炭基材料脱硝活性 影响的研究,文献报道很少。肖勇^[50] 以同一来源 的焦为载体,研究了活性焦中无机物(灰)对 V_2O_5 /活性焦脱硝活性的影响,发现活性焦的脱灰 处理(HCl和HF洗涤)对 V_2O_5 /活性焦脱硝活性 的影响很小;对脱灰焦进行不同时间的水蒸气活化 也不改变 V_2O_5 /活性焦的脱硝活性;但是对脱灰焦 进行硝酸洗涤显著提高了 V_2O_5 /活性焦的稳态脱硝 活性。关于这种现象的原理认识还需更多的实验数 据和理论分析。

3 V₂O₅/炭基材料催化剂尚需解决的 问题

综上可知,10年来,国内外在 V_2O_5 /炭基材 料脱除烟气 SO₂和 NO 方面的研究较多,技术水 平和理论认识方面均有很大的进展,不仅开发了吸 硫催化剂的新型再生方法,简化了硫资源化工艺, 而且深化了脱硫、脱硝和再生机理,揭示了脱硝过 程中的抗中毒行为。但已经获得的结果仍不能完全 认识 NH₃在 V_2O_5 /活性焦上的氧化行为、活性焦 促进 V_2O_5 低温氧化活性的原因以及活性焦促进硫 铵盐与 NO 反应的本质。更为重要的是,无论 V₂O₅/炭基材料是脱硫还是脱硝,均涉及反应物的 氧化,因此,催化剂的氧化性对脱硫脱硝活性至关 重要,V₂O₅对脱硫和脱硝的促进作用可能均源于 催化剂氧化性的改变,但目前的研究尚未从脱硫脱 硝的共性出发考虑催化剂的研发与改进,导致 V₂O₅/炭基材料的研究进展较慢。另外,炭基材料 是一类组成非常复杂的物质,不同炭基材料的性质 差异很大,而现有的研究大多基于同种活性焦,不 同研究之间的可比性较差,因此,认识不同炭基材 料对脱硫脱硝的影响程度也具有非常重要的意义。

从应用的角度看,燃煤烟气中含有多种有害组 分,包括碱性微尘、挥发性重金属、氟和氯、缩合 芳烃等,它们的浓度虽然比 SO₂ 和 NO₄ 低,但对 催化剂的长期运行有着不可忽视的影响。近年来, 这方面已有个别研究,如发现烟气中的 K 化合物 会明显降低 V_2O_5/TiO_2 基催化剂的脱硝活性,缩 短使用寿命^[51-53];发现 KCl 在 $V_2O_5/活性焦上的$ 担载可提高其脱硫活性但明显降低脱硝活性^[54]; 发现 V_2O_5 的氧化性催化了 Hg⁰ 到 Hg²⁺的转变, 使得 $V_2O_5/活性焦具有很好的脱汞活性^[55]。显然,$ $目前对烟气中多种污染物对 <math>V_2O_5/炭基材料影响的$ 认识还很局限,亟需展开这方面的研究以指导催化 剂的设计和脱硫脱硝工艺的优化。

4 炭基催化剂用于烟气污染物脱除的 发展趋势

4.1 结构化脱硝催化剂

燃煤烟气脱硝对工艺和催化剂的要求显著不同 于脱硫。脱硫剂须有高的装填密度和强度,以保障 单位体积的催化剂具有较高的 SO₂ 吸附容量,降 低脱硫-再生的循环频率(以天计)和抗磨损能力。 烟气脱硝催化剂无需循环再生,运行周期较长(以 年计),因此须有高烟气通量、低压降、抗烟尘冲 刷等特点,所以工业上均采用蜂窝结构的形式,其 大尺度的直通孔道便于烟气流通、减小压降、避免 烟尘堵塞;小尺度的孔提供了大的催化表面、保证 高的脱硝速率。

近年来,国内外已经有一些蜂窝状炭基脱硝催 化剂的研究报道。一类是在堇青石陶瓷蜂窝体上涂 敷炭层,然后负载活性组分^[47,56-57],此类催化剂成 本高、含炭量低,且堇青石和炭层的热膨胀系数差 异较大,涂层稳定性有待于考察。另一类是由活性 焦粉加黏结剂挤压制得的纯炭蜂窝体,含炭量较 高,脱硝活性较好^[58-59]。最近,Liu 等^[60-61]研究了 由煤直接制备蜂窝炭的成型工艺,避免了焦粉的制 备,减少了黏结剂用量,在经济上更具优越性,为 廉价蜂窝炭基脱硝催化剂的研发奠定了基础。

4.2 硫、硝、重金属同时脱除

随着社会的进步,人们逐步认识到燃煤烟气中 各种污染物的危害,因此,其排放控制技术的研发 分阶段逐步发展,形成了目前单一污染物控制技术 (脱硫、脱硝及目前进行的脱汞)串连应用的格局。 显然,这种格局成本高、效率低,开发烟气多种污 染物的同时脱除技术并实现污染物资源化/无害化 是燃煤烟气污染物脱除技术的发展方向,特别符合 我国尽快解决多种污染物排放控制的要求。炭基材 料的多孔性质、丰富的表面化学结构和在排烟温度 下的高活性使其成为多种污染物同时脱除的优选 材料。

国内外在炭基材料同时脱除烟气污染物方面已 有一定的研究与应用^[62-65]。典型范例是采用活性 焦的 Mitsui-BF 工艺,已在日本、德国等实现工业 化运行^[5],在排烟温度条件下应用移动床技术达到 脱硫率>90%、脱硝率>80%、脱汞率>90%,并 通过热再生实现了硫的资源化,证明了炭基材料在 排烟温度下实现多种污染物同时脱除的可行性,奠 定了新一代燃煤烟气净化技术发展的基石。但现有 技术仍存在烟气处理能力低、设备庞大、资源化工 艺复杂的问题,需要进一步解决。近 10 年来 V₂O₅/炭基材料催化剂的研发表明,V₂O₅ 是炭基 载体上很好的脱硫、脱硝、脱汞催化剂,可显著提 高烟气处理能力,有望形成更经济有效的多种污染 物同时脱除技术。

致谢:本文很多工作是在国家自然科学基金委 (29633030、20503038、29876046、20276078、90210034、 20736001)的长期支持下进行和完成的,在此深表感谢。

References

- [1] Peng Dingyi (彭定一), Lin Shaoning (林少宁). Air Pollution and Its Control (大气污染及其控制). Beijing: China Environmental Science Press, 1991
- [2] Gu Nianzu (顾念祖). An analysis of the current status of coal-fired power plant desulfurization technology and some measures taken for its further advancement. Journal of Engineering for Thermal Energy and Power(热能动力工 程), 2000, 15 (2): 91
- [3] Mangun C L, DeBarr J A, Economy J. Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers.

• 1904 • Carbon, 2001, **39**: 1689

- [4] Liu Q, Li C, Li Y. SO₂ removal from flue gas by activated semi-cokes (I): The preparation of catalysts and determination of operating conditions. *Carbon*, 2003, 41: 2217
- [5] Olson David G, Tsuji K, Shiraishi I. The reduction of gas phase air toxics from combustion and incineration sources using the MET-Mitsui-BF activated coke process. *Fuel Processing Technology*, 2000, 65/66: 393
- [6] Wang Derong (王德荣), Lin Yanqi (林彦奇), Zhao Wei (赵薇), Song Gang (宋刚), Liu Decai (刘德才). Study on the technique of removal of SO₂ and NO_x with carbolic absorber. *Environmental Protection Science* (环境保护科 学), 2002, **28** (1): 4
- [7] Forzatti P. Present status and perspectives in De-NO_x SCR catalysis. Appl. Catal. A: General, 2001, 222: 221
- [8] Qu Hongxia (曲虹霞). Study on catalytic removal of NO_x from coal-fired flue gas [D]. Nanjing: Nanjing University of Science and Technology, 2005
- [9] Tian L, Ye D, Liang H. Catalytic performance of a novel ceramic-supported vanadium oxide catalyst for NO reduction with NH₃. Catal. Today, 2003, 78: 159
- [10] Marbán G, Antuña R, Fuertes Antonio B. Lowtemperature SCR of NO_x with NH₃ over activated carbon fiber composite-supported metal oxides. *Applied Catalysis* B: Environmental, 2003, **41**: 323
- [11] Pasela J, Käβner P, Montanari B, Gazzano M, Vaccari A, Makowski W, Lojewski T, Dziembaj Roman, Papp H. Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH₃. Applied Catalysis B: Environmental, 1998, 18: 199
- [12] Zhu Z, Liu Z, Liu S, Niu H. A novel carbon supported vanadium oxide catalyst for NO reduction with NH₃ at low temperatures. *Applied Catalysis B*: *Environmental*, 1999, 23: 229
- [13] Lázaro M J, Gálvez M E, Ruiz C, Juan R, Moliner R. Vanadium loaded carbon-based catalysts for the reduction of nitric oxide. *Applied Catalysis B*: *Environmental*, 2006, 68: 130
- [14] Davini P. SO₂ adsorption by activated carbons with various burn-offs obtained from a bituminous coal. *Carbon*, 2001, 39: 1387
- [15] Lisovskii A, Semiat R, Aharoni C. Adsorption of SO₂ by active carbon treated by HNO₃ (I): Effect of the treatment on adsorption of SO₂ and extractability of the acid formed. *Carbon*, 1997, **35**: 1639
- [16] Carabineiro S A C, Ramos A M, Vital J, Loureiro J M, Órfão J J M, Fonseca I M. Adsorption of SO₂ using vanadium and vanadium-copper supported on activated carbon. *Catalysis Today*, 2003, **78** (1/2/3/4): 203
- [17] Tseng H H, Wey M Y. Study of SO₂ adsorption and thermal regeneration over activated carbon-supported copper oxide catalysts. *Carbon*, 2004, **42** (11): 2269

- [18] Liu Shoujun (刘守军), Liu Zhenyu (刘振宇), Zhu Zhenping (朱珍平), Niu Hongxian (牛宏贤). A novel CuO/ACs sorbent-catalyst for removal of SO₂ and NO from flue gas at low temperature. *Journal of Fuel Chemistry and Technology*(燃料化学学报), 1999, **27** (suppl.): 192
- [19] Ma J, Liu Z, Liu S, Zhu Z. A regenerable Fe/AC desulfurizer for SO₂ adsorption at low temperatures. Applied Catalysis B: Environmental, 2003, 45: 301
- [20] Xiao Y, Liu Q, Liu Z, Huang Z, Guo Y, Yang J. Roles of lattice oxygen in V₂O₅ and activated coke in SO₂ removal over coke-supported V₂O₅ catalysts. *Applied Catalysis B*: *Environmental*, 2008, 82: 114
- [21] Ma J, Liu Z, Liu Q, Guo S, Huang Z, Xiao Y. SO₂ and NO removal from flue gas over V₂O₅/AC at lower temperatures—role of V₂O₅ on SO₂ removal. Fuel Processing Technology, 2008, 89: 242
- [22] Lapina O B, Bal'zhinimaev B S, Boghosian S, Eriksen K M, Fehrmann R. Progress on the mechanistic understanding of SO₂ oxidation catalysts. *Catalysis Today*, 1999, **51**: 469
- [23] Eriksen K M, Karydis D A, Boghosian S, Fehrmann R. Deactivation and compound formation in sulfuric-acid catalysts and model systems. *Journal of Catalysis*, 1995, 155: 32
- Boghosian S, Fehrmann R, Bjerrum N J, Papatheodorou G N. Formation of crystalline compounds and catalyst deactivation during SO₂ oxidation in V₂O₅-M₂S₂O₇ (M = Na, K, Cs) melts. Journal of Catalysis, 1989, 119: 121
- [25] Lizzio Anthony A, Debarr Joseph A. Effect of surface area and chemisorbed oxygen on the SO₂ adsorption capacity of activated char. *Fuel*, 1996, **75** (3): 1515
- [26] Liu Q, Shangguan J, Li J, Li C. SO₂ removal from flue gas by activated semi-cokes (2): Effects of physical structures and chemical properties on SO₂ removal activity. *Carbon*, 2003, **41**: 2225
- [27] Lisovskii A, Semiat R, Aharoni C. Adsorption of SO₂ by active carbon treated by HNO₃ (1): Effect of the treatment on adsorption of SO₂ and extractability of the acid formed. *Carbon*, 1997, **35** (10/11): 1639
- Wang J, Liu Q, Liu Z, Huang Z. Heterogeneity of V₂O₅ supported cylindrical activated coke used for SO₂ removal from flue gas. *Chemical Engineering Technology*, 2008, 31 (6): 1056-1061
- [29] Liu Zhenyu (刘振宇), Liu Shoujun (刘守军), Niu Hongxian (牛宏贤), Zhu Zhenping (朱珍平). A regeneration method of a CuO-based catalyst: CN, 1303728. 2001-07-18
- [30] Guo Y, Liu Z, Liu Q, Huang Z. Regeneration of a vanadium pentoxide supported activated coke catalystsorbent used in simultaneous sulfur dioxide and nitric oxide removal from flue gas: effect of ammonia. *Catalysis Today*, 2008, **131**: 322

• 1905 •

 [31] Guo Yanxia (郭彦霞), Liu Zhenyu (刘振宇), Li Yunmei (李允梅), Liu Qingya (刘清雅). NH₃ regeneration of SO₂-captured V₂O₅/AC catalyst-sorbent for simultaneous SO₂ and NO removal. Journal of Fuel Chemistry Technology(燃料化学学报), 2007, 35 (3): 344-348

第8期

- [32] Guo Yanxia (郭彦霞), Liu Zhenyu (刘振宇), Liu Qingya (刘清雅), Sun Dekui (孙德魁). Mechanism of carbon burn-off on V₂O₅/AC for simultaneous SO₂ and NO removal during regeneration in NH₃ atmosphere. *Chinese Journal of Catalysis*(催化学报), 2007, **28**: 514
- [33] Xing X, Liu Z, Yang J. Mo and Co doped V₂O₅/AC catalyst-sorbents for flue gas SO₂ removal and elemental sulfur production. *Fuel*, 2008, 87: 1705
- [34] Yoshikawaa M, Yasutake A, Mochida I. Low-temperature selective catalytic reduction of NO_x by metal oxides supported on active carbon fibers. *Applied Catalysis A*: *General*, 1998, **173**: 239
- [35] Izquierdo M T, Rubio B, Mayoral C, Andrés J M. Modifications to the surface chemistry of low-rank coalbased carbon catalysts to improve flue gas nitric oxide removal. Applied Catalysis B: Environmental, 2001, 33: 315
- [36] Hsu Li-Yeh, Teng H. Catalytic NO reduction with NH₃ over carbons modified by acid oxidation and by metal impregnation and its kinetic studies. *Applied Catalysis B*: *Environmental*, 2001, 33: 21
- [37] Teng H, Tu Ying-Tsung, Lai Yu-Chung, Lin Chi-Cheng. Reduction of NO with NH over carbon catalysts: the effects of treating carbon with H₂SO₄ and HNO₃. *Carbon*, 2001, 39: 575
- [38] Huang B, Huang R, Jin D, Ye D. Low temperature SCR of NO with NH₃ over carbon nanotubes supported vanadium oxides. *Catalysis Today*, 2007, **126**: 279
- [39] Ma Jianrong (马建蓉), Liu Zhenyu (刘振宇), Huang Zhanggen (黄张根), Liu Qingya (刘清雅). Adsorption and oxidation of NH₃ over V₂O₅/AC catalyst. Chinese Journal of Catalysis(催化学报), 2006, 27 (1): 91
- [40] Zhu Z, Liu Z, Liu S, Niu H. Promotive effect of SO₂ on activated carbon supported vanadia catalyst for NO reduction by NH₃ at low temperature. *Journal of Catalysis*, 1999, 187: 245
- [41] Xie G, Liu Z, Zhu Z, Liu Q, Ge J, Huang Z. Simultaneous removal of SO₂ and NO_x from flue gas using a CuO/Al₂O₃ catalyst-sorbent (I): Deactivation of SCR activity by SO₂ at low temperatures. *Journal of Catalysis*, 2004, **224**: 36
- [42] Bosch H, Janssen F. Formation and control of nitrogen oxides. Catalysis Today, 1988, 2: 369
- [43] Zhu Z, Niu H, Liu Z, Liu S. Decomposition and reactivity of NH₄ HSO₄ on V₂O₅/AC catalysts used for NO reduction with ammonia. *Journal of Catalysis*, 2000, **195**: 268
- [44] Zhu Z, Liu Z, Niu H, Liu S, Hu T, Xie Y. Mechanism of SO₂ promotion for NO reduction with NH₃ over activated

carbon-supported vanadium oxide catalyst. Journal of Catalysis, 2001, 197: 6

- [45] Huang Z, Zhu Z, Liu Z. Combined effect of H₂O and SO₂ on V₂O₅/AC catalysts for NO reduction with ammonia at lower temperatures. *Applied Catalysis B*: *Environmental*, 2002, **39**: 361
- [46] Huang Z, Zhu Z, Liu Z, Liu Q. Formation and reaction of ammonium sulfate salts on V₂O₅/AC catalyst during selective catalytic reduction of nitric oxide by ammonia at low temperatures. *Journal of Catalysis*, 2003, 214: 213
- [47] García-Bordejé E, Pinilla J L, Lázaro M J, Moliner R. NH₃-SCR of NO at low temperatures over sulphated vanadia on carbon-coated monoliths: effect of H₂O and SO₂ traces in the gas feed. *Applied Catalysis B*: *Environmental*, 2006, 66: 281
- [48] Huang Zhanggen (黃张根), Zhu Zhenping (朱珍平), Liu Zhenyu (刘振宇). Effect of water on V₂O₅/AC catalyst for NO reduction by NH₃ at lower temperature. *Chinese Journal of Catalysis*(催化学报), 2001, **22** (6): 532
- [49] Xiao Yong (肖勇), Liu Zhenyu (刘振宇), Liu Qingya (刘清雅), Wang Jiancheng (王建成), Xing Xinyan (邢新燕), Huang Zhanggen (黄张根). Mechanism of SO₂ influence on NO removal over V₂O₅/AC catalyst. Chinese Journal of Catalysis(催化学报), 2008, **29** (1): 81
- [50] Xiao Yong (肖勇). Fundamental behavior of V₂O₅/AC catalyst in SO₂ and NO removal [D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2008
- [51] Zheng Y, Jensen A D, Johnsson J E. Deactivation of V₂O₅-WO₃-TiO₂ SCR catalyst at a biomass-fired combined heat and power plant. Applied Catalysis B: Environmental, 2005, 60: 253
- [52] Kröcher O, Elsener M. Chemical deactivation of V₂O₅/WO₃-TiO₂ SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution (I): Catalytic studies. Applied Catalysis B: Environmental, 2008, 75: 215
- [53] Åsa Kling, Christer Andersson, Åse Myringer, David Eskilsson, Järås Sven G. Alkali deactivation of high-dust SCR catalysts used for NO_x reduction exposed to flue gas from 100 MW-scale biofuel and peat fired boilers: influence of flue gas composition. Applied Catalysis B: Environmental, 2007, 69: 240
- [54] Zhang X, Huang Z, Liu Z. Effect of KCl on selective catalytic reduction of NO with NH₃ over a V₂O₅/AC catalyst. *Catalysis Communications*, 2008, 9: 842
- [55] Wang J, Yang J, Liu Z. A preliminary study on mercury removal over a V₂O₅/AC catalyst//The 7th China-Korea Workshop on Clean Energy Technology. Taiyuan, 2008
- [56] Valdés-Solís T, Marbán G, Fuertes Antonio B. Lowtemperature SCR of NO_x with NH_3 over carbon-ceramic cellular monolith-supported manganese oxides. *Catalysis Today*, 2001, **69**: 259
- [57] Tang X, Hao J, Yi H, Li J. Low-temperature SCR of NO

with NH₃ over AC/C supported manganese-based monolithic catalysts. *Catalysis Today*, 2007, **126**: 406

- [58][№] Wang Y, Liu Z, Zhan L, Huang Z, Liu Q, Ma J. Performance of an activated carbon honeycomb supported V₂O₅ catalyst in simultaneous SO₂ and NO removal. Chemical Engineering Science, 2004, **59**: 5283
- [59] Wang Y, Huang Z, Liu Z, Liu Q. A novel activated carbon honeycomb catalyst for simultaneous SO₂ and NO removal at low temperatures. *Carbon*, 2004, **42**: 423
- [60] Liu L, Liu Z, Huang Z, Liu Z, Liu P. Preparation of activated carbon honeycomb monolith directly from coal. *Carbon*, 2006, 44: 1581
- [61] Liu L, Liu Z, Yang J, Huang Z, Liu Z. Effect of preparation conditions on the properties of a coal-derived activated carbon honeycomb monolith. *Carbon*, 2007,

45: 2836

- [62] Knoblauch K, Richter E, Jüntgen H. Application of active coke in processes of SO₂-and NO_x-removal from flue gases. *Fuel*, 1981, 60: 832
- [63] Kazuhiko Tsuji, Ikuo Shiraishi. Combined desulfurization and denitrification and reduction of air toxics using activated coke. Fuel, 1997, 76: 549
- [64] Tseng H, Wey M, Liang Y, Chen K. Catalytic removal of SO₂, NO and HCl from incineration flue gas over activated carbon-supported metal oxides. *Carbon*, 2003, 41: 1079
- [65] Ma Jianrong (马建蓉), Liu Zhenyu (刘振宇), Guo Shijie (郭士杰). Simultaneous removal of SO₂ and NO by V₂O₅/ AC catalyst. Journal of Fuel Chemistry Technology(燃料 化学学报), 2005, 33 (1): 6