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Abstract. In this paper, we study security for a certain class of permutation-based compression
functions. Denoted lp231 in [12], they are 2n-bit to n-bit compression functions using three calls
to a single n-bit random permutation. We prove that lp231 is asymptotically preimage resistant

up to (2
2n
3 /n) queries, adaptive preimage resistant up to (2

n
2 /n) queries/commitments, and

collision resistant up to (2
n
2 /n1+ε) queries for ε > 0.

1 Introduction

A cryptographic hash function takes a message of arbitrary length, and returns a bit string of
fixed length. The most common way of hashing variable length messages is to iterate a fixed-
size compression function according to the Merkle-Damg̊ard paradigm. The underlying com-
pression function can either be constructed from scratch, or be built upon off-the-shelf cryp-
tographic primitives. For example, the Whirlpool hash function, adopted as ISO/IEC 10118-3
standard, is based on the Miyaguchi-Preneel construction using a modified version of AES [1].
Compression functions based on blockciphers have been widely studied [4, 6, 7, 9, 10, 16, 17].
Recently, researchers has begun to pay attention to building compression functions from fixed
key blockciphers, where just a small number of constants are used as keys [2, 3, 11, 12, 14,
15]. Since each key of a blockcipher defines an independent random permutation in the ideal
cipher model, such compression functions are often called permutation-based. Permutation-
based compression functions have an obvious advantage over conventional blockcipher-based
ones, since fixing the keys allows to save computational overload for key scheduling.

In earlier work, Black, Cochran and Shrimpton showed that any “highly-efficient” com-
pression function using exactly one permutation call for each message block allows a query-
efficient collision-finding attack [3]. Rogaway and Shrimpton extended this result to a wide
class of compression functions that map mn bits to rn bits using k calls to n-bit permuta-
tions [13]. Such compression functions, denoted m

k−→ r, allow collision-finding attacks with
about 2n(1−(m−0.5r)/k) queries, and preimage finding attacks with about 2n(1−(m−r)/k) queries.

In [12], the authors focused on the security of a special class of permutation-based com-
pression functions, where the input to each permutation is given by a linear combination of
the inputs to the compression function and the outputs of the previously called permutations.
Such compression functions are called linearly-dependent permutation-based, and denoted by
LPmkr if the compression function is based on independent random permutations, and by
lpmkr if the compression function is based on a single random permutation. Taking into ac-
count the attacks presented in [13], they investigated the security of LP231, LP241, LP352,
LP362 and their “lp variants”. From a practical point of view, it is obvious that lp compression
functions are more efficient compared to LP ones since an lp compression function uses its
basing blockcipher with only one fixed key. However, [12] gives a concrete analysis only for



LP231. The analysis of the other compression functions rest on computer-aided approxima-
tion. Especially, the authors say that analyzing lp231 by hand would require about 30 times
as much paper as LP231.

In this paper, we give a concrete analysis for the security of lp231 in terms of preimage resis-
tance, adaptive preimage resistance and collision resistance. Specifically, we prove preimage re-
sistance up to (2

2n
3 /n) queries, adaptive preimage resistance up to (2

n
2 /n) queries/commitments,

and collision resistance up to (2
n
2 /n1+ε) queries for ε > 0. Our analysis is not only simpler

than the authors of [12] estimated, but also elegant based on a recursive approach.
The notion of adaptive preimage resistance is first introduced in [8]. A compression func-

tion that is collision resistant and adaptive preimage resistant can be composed with a public
random function to yield a hash function that is indifferentiable from a random oracle. In
addition, the Merkle-Damg̊ard transform preserves adaptive preimage resistance as long as
the underlying compression function is collision resistant. For this reason, we believe that
adaptive preimage resistance would be one of the desirable properties of a secure compression
function. We note that a similar security notion, called preimage awareness, was indepen-
dently introduced in [5]. Since any compression function that is both collision resistant and
adaptive preimage resistant is preimage aware, our result can be regarded as the proof of
preimage awareness for lp231.

2 Preliminaries

General Notations For a positive integer n, let In = {0, 1}n and [1, n] = {1, 2, . . . , n}.
We write Πn for the set of permutations on In. We let F2n denote a finite field of order 2n.
Throughout our work, we will identify F2n and In, assuming a fixed mapping between the
two sets.

For positive integers s and t, we let Ms×t
F2n

denote the set of all s × t matrices over F2n .
Given s× t matrices A and B, [A,B] denotes the s×2t matrix obtained by the concatenation
of A and B. The concatenation is similarly denoted for more than two matrices. For a nonzero
matrix A ∈M2×1

F2n
, A∗ denotes a nonzero matrix in M1×2

F2n
such that A∗A = 0. Such a matrix

is unique up to scalar multiplication. Note that [A,B] is invertible if and only if A∗B 6= 0 for
A, B ∈M2×1

F2n
.

For a set U , U denotes the complement of U . We write u
$← U to denote uniform random

sampling from the set U and assignment to u. For a miltiset U , mult(U, u) is the multiplicity
of u in U , and mult(U) = maxu∈U mult(U, u).

Linearly-dependent Permutation-based Compression Functions For positive integers
m, k and r with m > r, let MF2n (m, k, r) be a set of (k + r) × (m + k) matrices A = (aij)
over F2n such that

aij = 0 for 1 ≤ i ≤ k and j ≥ m + i.

Then each matrix A ∈MF2n (m, k, r) defines a compression function lpA
mkr with oracle access

to a random permutation π ∈ Πn as follows.

lpA
mkr : Im

n −→ Ir
n

(v1, . . . , vm) 7−→ (w1, . . . , wr),
(1)



where (w1, . . . , wr) is computed by the algorithm described in Figure 1(a). A function lpA
mkr

is called linearly-dependent single-permutation-based, and often simply denoted as lpmkr or
lpA. A compression function lpA

231 for A ∈MF2n (2, 3, 1) is separately described in Figure 1(b).

Algorithm lpA
mkr(v1, . . . , vm)

for i ← 1 to k do
xi ←

∑m
j=1 aijvj +

∑i−1
j=1 ai(m+j)yj

yi ← π(xi)

for i ← 1 to r do
wi ←

∑m
j=1 a(k+i)jvj +

∑k
j=1 a(k+i)(m+j)yj

return (w1, . . . , wr)

(a) lpA
mkr for A ∈MF2n (m, k, r)

Algorithm lpA
231(v1, v2)

x1 ← a11v1 + a12v2

y1 ← π(x1)
x2 ← a21v1 + a22v2 + a23y1

y2 ← π(x2)
x3 ← a31v1 + a32v2 + a33y1 + a34y2

y3 ← π(x3)
w ← a41v1 + a42v2 + a43y1 + a44y2 + a45y3

return w

(b) lpA
231 for A ∈MF2n (2, 3, 1)

Fig. 1. Compression function lpA
mkr

Collision Resistance and Preimage Resistance For simplicity of notations, we will define
security notions including collision resistance, preimage resistance and adaptive preimage
resistance for linearly-dependent single-permutation-based compression functions. However,
we note that these security notions can be extended in an obvious way to any hash function
based on public ideal primitives.

Let lpA
mkr be a compression function for A ∈MF2n (m, k, r). Given an information-theoretic

adversary A with oracle access to π and π−1, we execute the experiment Expcoll
A described

in Figure 2(a) in order to quantify the collision resistance of lpA
mkr. The experiment records

the query-response pairs that the adversary A obtains into a query history Q. A pair (x, y)
is in the query history if A makes π(x) and gets back y, or it makes π−1(y) and gets back x.
Given a query history Q, then MaplpA(Q) ⊂ Im

n × Ir
n is defined to be the set of pairs (v, w)

such that there exist evaluations (xi, yi) ∈ Q satisfying the following equations.

xi =
m∑

j=1

aijvj +
i−1∑

j=1

ai(m+j)yj , i = 1, . . . , k,

wi =
m∑

j=1

a(k+i)jvj +
k∑

j=1

a(k+i)(m+j)yj , i = 1, . . . , r, (2)

where we write v = (v1, . . . , vm) and w = (w1, . . . , wr). Informally, MaplpA(Q) is the set of the
evaluations of lpA

mkr that are determined by the query history Q. Now the collision-finding
advantage of A is defined to be

Advcoll
lpA(A) = Pr

[
Expcoll

A = 1
]
. (3)

The probability is taken over the random permutation π, and A’s coins (if any). For q > 0,
we define Advcoll

lpA(q) as the maximum of Advcoll
lpA(A) over all adversaries A making at most q

queries.



The preimage resistance of lpA
mkr is quantified similarly using the experiment Exppre

A de-
scribed in Figure 2(b). The adversary A takes as input a random w ∈ Ir

n before it begins
making queries to π±1. The preimage-finding advantage of A is defined to be

Advpre

lpA(A) = Pr
[
Exppre

A = 1
]
. (4)

For q > 0, Advpre

lpA(q) is the maximum of Advpre

lpA(A) over all adversaries A making at most
q queries.

Experiment Expcoll
A

π
$← Πn

Aπ±1
updates Q

if ∃ v 6= v′, w s.t. (v, w), (v′, w) ∈ MaplpA(Q) then
output 1

else
output 0

(a) Quantification of collision resistance

Experiment Exppre
A

π
$← Πn

w
$← Ir

n

Aπ±1
(w) updates Q

if ∃ v s.t. (v, w) ∈ MaplpA(Q) then
output 1

else
output 0

(b) Quantification of preimage resistance

Fig. 2. Experiments for quantification of collision resistance and preimage resistance

Adaptive Preimage Resistance In this section, we define a notion of adaptive preimage
resistance. Given a compression function lpA

mkr for A ∈ MF2n (m, k, r) and an information-
theoretic adversary A with oracle access to π±1, the adaptive preimage resistance of lpA

mkr

is quantified by the experiment Expa−pre
A described in Figure 3. At any point during the

experiment, the adversary A can choose a “commitment” point w ∈ Ir
n\RangelpA(Q), where

RangelpA(Q) =
{

w ∈ Ir
n : (v, w) ∈ MaplpA(Q) for some v ∈ Im

n

}
.

Then the experiment Expa−pre
A records the element w into a commitment list L ⊂ Ir

n. At the
end of the experiment, A would like to succeed in finding a preimage of some element in the
commitment list. Now the adaptive preimage-finding advantage of A is defined to be

Adva−pre

lpA (A) = Pr
[
Expa−pre

A = 1
]
. (5)

For q1, q2 > 0, we define Adva−pre

lpA (q1, q2) as the maximum of Adva−pre

lpA (A) over all adversaries

A that makes at most q1 queries to π and π−1 and makes at most q2 commitments.

3 Auxiliary Events

In order to analyze the security of lp231, we need to define some auxiliary events. Suppose
that an adversary A makes q adaptive queries to a random permutation π and its inverse



Experiment Expa−pre
A

π
$← Πn

Aπ±1
updates Q and L (in an arbitrarily interleaved order)

if ∃ v such that (v, w) ∈ MaplpA(Q) for some w ∈ L then
output 1

else
output 0

Fig. 3. Experiment for quantification of adaptive preimage resistance

π−1, and records a query history Q = {(xj , yj) ∈ I2
n : 1 ≤ j ≤ q}, where (xj , yj) denotes the

query-response pair obtained by the j-th query. Then we define the following multisets.

U t (a1, b1, . . . , at, bt) =

{
t∑

i=1

(
aix

ji + biy
ji
)

: (j1, . . . , jt) ∈ [1, q]t
}

, (6)

U t
6= (a1, b1, . . . , at, bt) = U t (a1, b1, . . . , at, bt) \U1

(
t∑

i=1

ai,
t∑

i=1

bi

)
, (7)

V t (A1, B1, . . . , At, Bt) =

{
t∑

i=1

(
Aix

ji + Biy
ji
)

: (j1, . . . , jt) ∈ [1, q]t
}

, (8)

where t > 0 and, ai, bi ∈ F2n and Ai, Bi ∈ M2×1
F2n

for i ∈ [1, t]. For a positive integer l, these
multisets are associated with the following events.

E t(a1, b1, . . . , at, bt; l) ⇔ A sets mult(U t(a1, b1, . . . , at, bt)) > l, (9)
E t
6=(a1, b1, . . . , at, bt; l) ⇔ A sets mult(U t

6=(a1, b1, . . . , at, bt)) > l, (10)

F t(A1, B1, . . . , At, Bt; l) ⇔ A sets mult(V t(A1, B1, . . . , At, Bt)) > l. (11)

We often write E t(l) = E t(a1, b1, . . . , at, bt; l), E t
6=(l) = E t

6=(a1, b1, . . . , at, bt; l) and F t(l) =
F t(A1, B1, . . . , At, Bt; l). The rest of this section is devoted to the estimation of the probability
of auxiliary events needed for the analysis of lp231. First, we prove recursive formulas for the
probability of the auxiliary events E t, E t

6= and F t.

Theorem 1. Suppose that an adversary A makes q (≤ 2n−1) adaptive queries to a ran-
dom permutation π and its inverse π−1, and records a query history Q. For t > 1, let
(l0, l1, . . . , lt−1, lt) be a sequence of positive integers with l0 = 1, and let ∆ =

∑t−1
s=0

(
t
s

)
ls.

Let ai and bi, i ∈ [1, t], be elements in F2n that satisfy the following conditions for every
nonempty subset I = {i1, . . . , is}  [1, t].

A1.
∑

i/∈I ai 6= 0 and
∑

i/∈I bi 6= 0.

A2. Pr [Es (ai1 , bi1 , . . . , ais , bis ; ls)] ≤ ps (ls).

Then,

Pr
[E t
6= (a1, b1, . . . , at, bt; lt)

] ≤ 2n

(
q⌈

lt+1
∆−1

⌉
)(

2tqt−1

2n−1

)⌈
lt+1
∆−1

⌉

+
t−1∑

s=1

(
t

s

)
ps(ls). (12)



If
∑t

i=1 ai 6= 0 and
∑t

i=1 bi 6= 0, then

Pr
[E t (a1, b1, . . . , at, bt; lt)

] ≤ 2n

(
q⌈

lt+1
∆

⌉
)(

2tqt−1

2n−1

)⌈
lt+1

∆

⌉

+
t−1∑

s=1

(
t

s

)
ps(ls). (13)

Proof. Here we give a proof for inequality (13). Inequality (12) can be proved similarly. For
c ∈ F2n and j ∈ [1, q], we define events

E t(c, j) ⇔ A sets
t∑

i=1

(
aix

ji + biy
ji
)

= c, where j ∈ {j1, . . . , jt} ⊂ [1, j], (14)

E t(c; lt) ⇔ A sets mult(U t, c) > lt, (15)

where we simply write U t = U t(a1, b1, . . . , at, bt). Note that E t(c, j) occurs when the j-th
query increases the multiplicity of c in U t at least by one. In order to estimate Pr

[E t(lt)
]
,

we decompose E t(lt) as follows.

E t(lt) =
⋃

c∈F2n

E t(c; lt) ⊂
⋃

c∈F2n

(E t(c; lt) ∩ Eex

) ∪ Eex, (16)

where
Eex =

⋃

1≤s≤t−1

Es
ex and Es

ex =
⋃

{i1,...,is}⊂[1,t]

Es(ai1 , bi1 , . . . , ais , bis ; ls). (17)

From condition A2, it follows that

Pr [Eex] ≤
t−1∑

s=1

(
t

s

)
ps(ls). (18)

We now analyze the event E t(ĉ; lt)∩Eex for a fixed ĉ ∈ F2n . Since each query increases the
multiplicity mult(U t, ĉ) at most by

∆ =
t−1∑

s=0

(
t

s

)
ls, (19)

without the occurrence of Eex, the number of queries that increase mult(U t, ĉ) should be at
least

d =
⌈

lt + 1
∆

⌉
. (20)

Therefore, we obtain

E t(ĉ; lt) ∩ Eex ⊂
⋃

J⊂[1,q]
|J |=d


⋂

j∈J

(E t(ĉ, j) ∩ Eex

)

 . (21)

In order to compute Pr
[⋂

j∈Ĵ

(E t(ĉ, j) ∩ Eex

)]
for a fixed Ĵ = {̂1, . . . , ̂d} ⊂ [1, q], suppose

that A makes the ̂-th query π(x̂) for ̂ ∈ Ĵ . Then we upper-bound the number of y = π(x̂)
that contributes the equation

t∑

i=1

(
aix

ji + biy
ji
)

= ĉ, (22)



with ̂ ∈ {j1, . . . , jt} ⊂ [1, ̂]. Consider the case where the ̂-th query-response pair contributes
t − s terms in equation (22) for s ∈ [0, t − 1]. Taking into account symmetry, assume that
ji = ̂ for i ∈ [s + 1, t]. Then the equation (22) is reduced to

s∑

i=1

(
aix

ji + biy
ji
)

+ āx̂ + b̄y = ĉ, (23)

where ā =
∑t

i=s+1 ai 6= 0 and b̄ =
∑t

i=s+1 bi 6= 0 by condition A1. The number of y satisfying
(23) is at most qs. With an analogous argument for π−1, we conclude that

Pr


⋂

j∈Ĵ

(E t(ĉ, j) ∩ Eex

)

 ≤

(
∆′

2n−1

)d

, (24)

where

∆′ =
t−1∑

s=0

(
t

s

)
qs <

(
t∑

s=0

(
t

s

))
qt−1 = 2tqt−1. (25)

Now the proof is complete from (16), (18), (21), (24) and (25). ut
Theorem 2. Suppose that an adversary A makes q (≤ 2n−1) adaptive queries to a random
permutation π and its inverse π−1, and records a query history Q. For t > 1, let (l0, . . . , lt)
and (l′0, . . . , l

′
t−1) be sequences of positive integers with l0 = l′0 = 1. Let Ai and Bi, i ∈ [1, t],

be matrices in M2×1
F2n

that satisfy the following conditions for every nonempty subset I =
{i1, . . . , is}  [1, t].

B1. ĀI =
∑

i/∈I Ai 6= 0 and B̄I =
∑

i/∈I Bi 6= 0.

B2. Pr [Fs (Ai1 , Bi1 , . . . , Ais , Bis ; ls)] ≤ Ps (ls).

B3. Pr
[Es

(
Ā∗IAi1 , Ā

∗
IBi1 , . . . , Ā

∗
IAis , Ā

∗
IBis ; l′s

)] ≤ ps (l′s).

B4. Pr
[Es

(
B̄∗

I Ai1 , B̄
∗
I Bi1 , . . . , B̄

∗
I Ais , B̄

∗
I Bis ; l′s

)] ≤ ps (l′s).

If
∑t

i=1 Ai 6= 0 and
∑t

i=1 Bi 6= 0, then

Pr
[F t (A1, B1, . . . , At, Bt; lt)

] ≤ 22n

(
q⌈

lt+1
∆

⌉
)(

∆′

2n−1

)⌈
lt+1

∆

⌉

+
t−1∑

s=1

(
t

s

) (
Ps(ls) + 2ps(l′s)

)
,

(26)
where

∆ =
t−1∑

s=0

(
t

s

)
ls and ∆′ =

t−1∑

s=0

(
t

s

)
l′s. (27)

Proof. The proof is essentially the same as Theorem 1. For C ∈ M2×1
F2n

and j ∈ [1, q], we
define events

F t(C, j) ⇔ A sets
t∑

i=1

(
Aix

ji + Biy
ji
)

= C, where j ∈ {j1, . . . , jt} ⊂ [1, j], (28)

F t(C; lt) ⇔ A sets mult(V t, C) > lt, (29)



where we simply write V t = V t(A1, B1, . . . , At, Bt). The event F t(C, j) occurs when the j-th
query increases the multiplicity of C in V t at least by one. In order to estimate Pr

[F t(lt)
]
,

we decompose F t(lt) as follows.

F t(lt) =
⋃

C∈M2×1
F2n

F t(C; lt) ⊂
⋃

C∈M2×1
F2n

(F t(C; lt) ∩ Fex

) ∪ Fex, (30)

where

Fex =


 ⋃

1≤s≤t−1

Fs
ex


 ∪


 ⋃

1≤s≤t−1

Es
ex


 , (31)

Fs
ex =

⋃

{i1,...,is}⊂[1,t]

Fs(Ai1 , Bi1 , . . . , Ais , Bis ; ls), (32)

Es
ex =

⋃

I={i1,...,is}⊂[1,t]

Es
(
Ā∗IAi1 , Ā

∗
IBi1 , . . . , Ā

∗
IAis , Ā

∗
IBis ; l

′
s

)

∪
⋃

I={i1,...,is}⊂[1,t]

Es
(
B̄∗

I Ai1 , B̄
∗
I Bi1 , . . . , B̄

∗
I Ais , B̄

∗
I Bis ; l

′
s

)
. (33)

From conditions B2, B3 and B4, it follows that

Pr [Fex] ≤
t−1∑

s=1

(
t

s

)
(Ps(ls) + 2ps(ls)) . (34)

We now analyze the event F t(Ĉ; lt)∩Fex for a fixed Ĉ ∈M2×1
F2n

. Since each query increases
the multiplicity mult(V t, Ĉ) at most by

∆ =
t−1∑

s=0

(
t

s

)
ls, (35)

without the occurrence of
⋃t−1

s=1Fs
ex, the number of queries that increase mult(V t, Ĉ) should

be at least

d =
⌈

lt + 1
∆

⌉
. (36)

Therefore, we obtain

F t(Ĉ; lt) ∩ Fex ⊂
⋃

J⊂[1,q]
|J |=d


⋂

j∈J

(
F t(Ĉ, j) ∩ Fex

)

 . (37)

In order to compute Pr
[⋂

j∈Ĵ

(
F t(Ĉ, j) ∩ Fex

)]
for a fixed Ĵ = {̂1, . . . , ̂d} ⊂ [1, q], suppose

that A makes the ̂-th query π(x̂) for ̂ ∈ Ĵ . Then we upper-bound the number of y = π(x̂)
that contributes the equation

t∑

i=1

(
Aix

ji + Biy
ji
)

= Ĉ, (38)



with ̂ ∈ {j1, . . . , jt} ⊂ [1, ̂]. Consider the case where the ̂-th query-response pair contributes
t− s terms in equation (38) for s ∈ [0, t− 1]. Taking into account symmetry, we can assume
that ji = ̂ for i ∈ [s + 1, t]. Then the equation (38) is reduced to

s∑

i=1

(
Aix

ji + Biy
ji
)

+ Āx̂ + B̄y = Ĉ, (39)

where Ā =
∑t

i=s+1 Ai 6= 0 and B̄ =
∑t

i=s+1 Bi 6= 0 by condition B1. By multiplying B̄∗

on both sides of (39), we observe that each y satisfying (39) is associated with a solution
(j1, . . . , js) ∈ [1, ̂− 1]s to the following equation.

s∑

i=1

(
B̄∗Aix

ji + B̄∗Biy
ji
)

= B̄∗Ĉ + B̄∗Āx̂. (40)

The number of solutions (j1, . . . , js) to (40) is at most l′s without the occurrence of Es
ex. With

an analogous argument for π−1, we conclude that

Pr


⋂

j∈Ĵ

(
F t(Ĉ, j) ∩ Fex

)

 ≤

(
∆′

2n−1

)d

, (41)

where

∆′ =
t−1∑

s=0

(
t

s

)
l′s. (42)

Now the proof is complete from (30), (34), (37) and (41). ut
Corollary 1. Suppose that an adversary A makes q (≤ 2n−1) adaptive queries to a random
permutation π and its inverse π−1, and records a query history Q. Let ai and bi, 1 ≤ i ≤ 3,
be nonzero elements in F2n, and let

f1 = f1(l1) = 2n

(
q

l1 + 1

)(
2
2n

)l1+1

, (43)

f2 = f2(l1, l2) = 2n

(
q⌈

l2+1
2l1+1

⌉
)(

8q

2n

)⌈
l2+1
2l1+1

⌉

, (44)

f3 = f3(l1, l2, l3) = 2n

(
q⌈

l3+1
3l1+3l2+1

⌉
)(

16q2

2n

)⌈
l3+1

3l1+3l2+1

⌉

, (45)

for positive integers l1, l2 and l3. Then the following hold.

1. Pr
[E1(a1, b1; l1)

] ≤ f1(l1).

2. Pr
[
E2
6=(a1, b1, a2, b2; l2)

]
≤ f2 + 2f1.

3. If a1 + a2 6= 0 and b1 + b2 6= 0, then

Pr
[E2(a1, b1, a2, b2; l2)

] ≤ f2 + 2f1.



4. If a1 + a2 6= 0, a2 + a3 6= 0, a3 + a1 6= 0, b1 + b2 6= 0, b2 + b3 6= 0 and b3 + b1 6= 0, then

Pr
[E3
6=(a1, b1, a2, b2, a3, b3; l3)

] ≤ f3 + 3f2 + 9f1.

Proof. Here we only give a proof for the first inequality. The other inequalities can be proved
by recursive application of Theorem 1.

Fix ĉ ∈ F2n . When Amakes the j-th query π(x̂), the probability that ax̂+bπ(x̂) = ĉ, which
is equivalent to π(x̂) = b−1 (ĉ + ax̂), is not greater than 1/ (2n − (j − 1)). Similarly, when A
makes the j-th query π−1(ŷ), the probability that aπ−1(ŷ) + bŷ = ĉ is not greater than
1/ (2n − (j − 1)). The event E1(a1, b1; l1) occurs when there exists a set {j1, . . . , jl+1} ⊂ [1, q]
such that

a1x
j1 + b1y

j1 = . . . = a1x
jl+1 + b1y

jl+1 = c,

for some c ∈ F2n . Since 1/(2n − (j − 1)) ≤ 1/(2n − q) ≤ 2/2n, it follows that

Pr
[E1(a1, b1; l1)

] ≤ 2n

(
q

l1 + 1

)(
2
2n

)l1+1

.

ut

Definition 1. For t > 0, a matrix M = [A1, B1, . . . , At, Bt] ∈ M2×2t
F2n

is called column-sum
independent if M satisfies the following conditions.

1.
[∑

i∈I1
Ai,

∑
i∈I2

Ai

]
,
[∑

i∈I1
Ai,

∑
i∈I2

Bi

]
and

[∑
i∈I1

Bi,
∑

i∈I1
Bi

]
are invertible for ev-

ery pair (I1, I2) of nonempty subsets of [1, t] such that I1 ∩ I2 = ∅.
2. [Ai, Bi] are invertible for i = 1, . . . , t.

Definition 1 is needed for compact statement of the following corollary. We point out some
useful properties of column-sum independent matrices.

– If [A1, B1, . . . , At, Bt] is column-sum independent, then [Ai1 , Bi1 , . . . , Ais , Bis ] is also column-
sum independent for every subset {i1, . . . , is} ⊂ [1, t].

– If [A1, B1, . . . , At, Bt] is column-sum independent, then
∑

i∈I Ai 6= 0 and
∑

i∈I Bi 6= 0 for
every nonempty subset I ⊂ [1, t].

– Column-sum independence of M stipulates nonsigularity of
(
2 · 3t − 4 · 2t + t + 2

)
matri-

ces determined by M .

Corollary 2. Suppose that an adversary A makes q (≤ 2n−1) adaptive queries to a random
permutation π and its inverse π−1, and records a query history Q. Let [A1, B1, A2, B2, A3, B3]
be a column-sum independent matrix in M2×6

F2n
, and let

f1 = f1(l′1), f2 = f2(l′1, l
′
2), f3 = f3(l′1, l

′
2, l

′
3), (46)

g2 = g2(l′1, l2) = 22n

(
q⌈

l2+1
3

⌉
)(

4l′1 + 2
2n

)⌈
l2+1

3

⌉

, (47)

g3 = g3(l′1, l
′
2, l2, l3) = 22n

(
q⌈

l3+1
3l2+4

⌉
)(

6l′1 + 6l′2 + 2
2n

)⌈
l3+1
3l2+4

⌉

, (48)

for positive integers l′1, l′2, l′3, l2 and l3. Then the following hold.



1. Pr
[F1(A1, B1; 1)

]
= 0.

2. Pr
[F2(A1, B1, A2, B2; l2)

] ≤ g2 + 4f1.

3. If [A1 + A2, B1], [A1 + A2, B2], [B1 + B2, A1] and [B1 + B2, A2] are invertible, then

Pr
[F2(A1, B1, A2, B2; 1)

] ≤
(
4q2 + 2q

)
l′2

2n
+ 6f2 + 12f1.

4. Pr
[F3(A1, B1, A2, B2, A3, B3; l3)

] ≤ g3 + 3g2 + 6f2 + 30f1.

Proof. The proof of the first equality is straightforward. Due to the first equality, we can
always set l1 = 1 in recursive application of Theorem 2. Here we only give a proof for the
third inequality, since the proof of the other inequalities is straightforward.

First, we define the following events.

F2
coll(j) ⇔ A sets A1x

j1 + B1x
j1 + A2x

j2 + B2x
j2 = A1x

j3 + B1x
j3 + A2x

j4 + B2x
j4

where j3 < j1 ≤ j, j4 < j2 ≤ j, and j ∈ {j1, j2}, (49)

and

Eex = E2
6=

(
(B1 + B2)∗A1, (B1 + B2)∗B1, (B1 + B2)∗A2, (B1 + B2)∗B2; l′2

)

∪ E2
6=

(
(A1 + A2)∗A1, (A1 + A2)∗B1, (A1 + A2)∗A2, (A1 + A2)∗B2; l′2

)

∪ E2
6=

(
B∗

1A2, B
∗
1B2, B

∗
1A2, B

∗
1B2; l′2

) ∪ E2
6=

(
A∗1A2, A

∗
1B2, A

∗
1A2, A

∗
1B2; l′2

)

∪ E2
6=

(
B∗

2A1, B
∗
2B1, B

∗
2A1, B

∗
2B1; l′2

) ∪ E2
6=

(
A∗2A1, A

∗
2B1, A

∗
2A1, A

∗
2B1; l′2

)
. (50)

Then, it follows that

F2(A1, B1, A2, B2; 1) ⊂
⋃

1≤j≤q

F2
coll(j) ⊂

⋃

1≤j≤q

(F2
coll(j) ∩ Eex

) ∪ Eex, (51)

and
Pr [Eex] ≤ 6 (f2 + 2f1) , (52)

by Corollary 1.
We now estimate the probability Pr

[F2
coll(j) ∩ Eex

]
. Suppose that A makes the j-th query

π(x̂), and consider the following three cases where y = π(x̂) contributes the equation

A1x
j1 + B1x

j1 + A2x
j2 + B2x

j2 = A1x
j3 + B1x

j3 + A2x
j4 + B2x

j4 . (53)

Case 1: j1 = j2 = j. The equality (53) is reduced to

(A1 + A2)x̂ + (B1 + B2)y = A1x
j3 + B1y

j3 + A2x
j4 + B2y

j4 . (54)

Any response y satisfying (54) corresponds to a pair (j3, j4) ∈ [1, j − 1]2 such that

(B1 + B2)∗A1x
j3 + (B1 + B2)∗B1y

j3 + (B1 + B2)∗A2x
j4 + (B1 + B2)∗B2y

j4

= (B1 + B2)∗(A1 + A2)x̂. (55)

The number of such pairs is at most l′2 without the occurrence of Eex. Note that if j3 = j4,
then (55) is reduced to (B1 + B2)∗(A1 + A2)xj3 = (B1 + B2)∗(A1 + A2)x̂, which contradicts
to the condition xj3 6= x̂.



Case 2: j1 = j and j2 6= j. The equality (53) is reduced to

A1x̂ + B1y = A2x
j2 + B2y

j2 + A1x
j3 + B1y

j3 + A2x
j4 + B2y

j4 . (56)

Any response y satisfying (56) corresponds to a triple (j2, j3, j4) ∈ [1, j − 1]3 such that

B∗
1A1x

j3 + (B∗
1A2x

j2 + B∗
1B2y

j2 + B∗
1A2x

j4 + B∗
1B2y

j4) = B∗
1A1x̂. (57)

For each j3 ∈ [1, j − 1], the number of pairs (j2, j4) ∈ [1, j − 1]2 satisfying (57) is at most l′2
without the occurrence of Eex. Therefore the number of the triples satisfying (56) is at most
ql′2 without the occurrence of Eex.

Case 3: j2 = j and j1 6= j. The analysis of this case is essentially the same as Case 2.

To summarize, we conclude that

Pr
[F2

coll(j) ∩ Eex

] ≤ (2q + 1) l′2
2n−1

. (58)

The proof is complete from (51), (52) and (58). ut

4 Concrete Security Bounds for lp231

For A ∈MF2n (2, 3, 1), the system of equations (2) is rewritten as follows.

x1 = a11v1 + a12v2

x2 = a21v1 + a22v2 + a23y1

x3 = a31v1 + a32v2 + a33y1 + a34y2

w = a41v1 + a42v2 + a43y1 + a44y2 + a45y3. (59)

If we regard every variable in the system of equations (59) as constant except v1, v2, x3 and
y3, then we obtain the following system of equations in the four variables.




a11 a12 0 0
a21 a22 0 0
a31 a32 1 0
a41 a42 0 a45







v1

v2

x3

y3


 =




x1

x2 + a23y1

a33y1 + a34y2

a43y1 + a44y2 + w


 . (60)

If a11a22 + a12a21 6= 0 and a45 6= 0, then we can solve the system of equations (60) to obtain
an equation of the following form.

A1x1 + B1y1 + A2x2 + B2y2 + A3x3 + B3y3 = Cw, (61)

where Ai, Bi and C are matrices in M2×1
F2n

. We write M(A) = [A1, B1, A2, B2, A3, B3] and
C(A) = C, since these matrices are determined by the matrix A. Note that B3 = λC for some
λ ∈ F2n . When (xi, yi), i = 1, 2, 3, and w satisfy the equation (61), we write

(x1, y1;x2, y2; x3, y3) ` w. (62)



Assuming that M(A) is column-sum independent, we will use the following events in the
analysis of lp231.

Gex(l′1, l
′
2) =

⋃

1≤i≤3

E1
(
(Ai+1 + Ai+2)∗Ai, (Ai+1 + Ai+2)∗Bi; l′1

)

∪
⋃

1≤i≤3

E1
(
(Bi+1 + Bi+2)∗Ai, (Bi+1 + Bi+2)∗Bi; l′1

)

∪
⋃

1≤i≤3

E2
(
A∗i Ai+1, A

∗
i Bi+1, A

∗
i Ai+2, A

∗
i Bi+2; l′2

)

∪
⋃

1≤i≤3

E2
(
B∗

i Ai+1, B
∗
i Bi+1, B

∗
i Ai+2, B

∗
i Bi+2; l′2

)
, (63)

where l′1 and l′2 are positive integers and indices i are interpreted up to modulo 3. Note that

Pr
[Gex(l′1, l

′
2)

] ≤ 6f2(l′1, l
′
2) + 18f1(l′1)

= 6 · 2n

(
q

d

)(
8q

2n

)d

+ 18 · 2n

(
q

l′1 + 1

)(
2
2n

)l′1+1

≤ 6 · 2n

(
24q2

d2n

)d

+ 18 · 2n

(
6q

(l′1 + 1)2n

)l′1+1

, (64)

for d =
⌈

l′2+1
2l′1+1

⌉
.

4.1 Preimage Resistance

Theorem 3. Suppose that an adversary A makes a total of q(≤ 2n−1) queries to a random
permutation π and its inverse π−1, and records a query history Q. Let A = (aij) be a matrix in
MF2n (2, 3, 1) such that a11a22 +a12a21 6= 0 and a45 6= 0. If M(A) is column-sum independent,
then for positive integers l′1 and l′2,

Advpre

lpA (A) ≤ q(3l′1 + 3l′2 + 1)
2n−1

+ 6f2(l′1, l
′
2) + 18f1(l′1). (65)

Proof. For w ∈ F2n and j ∈ [1, q], we define events

P(w, j) ⇔ A sets (xj1 , yj1 ;xj2 , yj2 ; xj3 , yj3) ` w, where j ∈ {j1, j2, j3} ⊂ [1, j]. (66)

The events P(w, j) are identical with F3(Cw, j) as defined in (28). Since the occurrence of
P(w, j) means that the j-th query determines a preimage of w, it follows that

Advpre

lpA(A) ≤ max
w∈F2n

Pr


 ⋃

1≤j≤q

P (w, j)


 . (67)

For a fixed ŵ ∈ F2n , we have

Pr


 ⋃

1≤j≤q

P(ŵ, j)


 ≤ Pr


 ⋃

1≤j≤q

(
P(ŵ, j) ∩ Gex(l′1, l

′
2)

)

 + Pr

[Gex(l′1, l
′
2)

]
. (68)



Since the number of responses that determine a preimage of ŵ is at most 3l′1 + 3l′2 + 1 for
each query without the occurrence of Gex(l′1, l

′
2), we obtain

Pr


 ⋃

1≤j≤q

(
P(ŵ, j) ∩ Gex(l′1, l

′
2)

)

 ≤ q(3l′1 + 3l′2 + 1)

2n−1
. (69)

The proof is complete from (64), (67), (68) and (69). ut
Corollary 3. Let A = (aij) be a matrix in MF2n (2, 3, 1) such that a11a22 + a12a21 6= 0 and
a45 6= 0. If M(A) is column-sum independent, then

lim
n→∞Advpre

lpA

(
2

2n
3 /n

)
= 0. (70)

Proof. Let q = 2
2n
3 /n, l′1 = 2 and l′2 = 5 · 2n

3 − 1. Then it follows that

lim
n→0

q(3l′1 + 3l′2 + 1)
2n−1

= lim
n→0

f2(l′1, l
′
2) = lim

n→0
f1(l′1) = 0. (71)

The proof is complete from Theorem 3. ut

4.2 Adaptive Preimage Resistance

Theorem 4. Suppose that an adversary A makes a total of q1(≤ 2n−1) queries to a random
permutation π and its inverse π−1, and makes q2 commitments. Let A = (aij) be a matrix in
MF2n (2, 3, 1) such that a11a22 +a12a21 6= 0 and a45 6= 0. If M(A) is column-sum independent,
then for positive integers l′1 and l′2,

Advpre

lpA (A) ≤ q1q2(3l′1 + 3l′2 + 1)
2n−1

+ 6f2(l′1, l
′
2) + 18f1(l′1). (72)

Proof. Let Q = {(xj , yj) ∈ I2
n : 1 ≤ j ≤ q1} and L denote the query history and the

commitment list, respectively. Let Lj denote the set of commitments made before the j-th
query. For w ∈ F2n and j ∈ [1, q1], we define events

D(j) ⇔ A sets (xj1 , yj1 ; xj2 , yj2 ; xj3 , yj3) ` w,

where j ∈ {j1, j2, j3} ⊂ [1, j] and w ∈ Lj . (73)

Since the occurrence of D(j) means that the j-th query determines a preimage of an element
in L, it follows that

Adva−pre

lpA (A) = Pr


 ⋃

1≤j≤q1

D (j)




≤ Pr


 ⋃

1≤j≤q1

(
D (j) ∩ Gex(l′1, l

′
2)

)

 + Pr

[Gex(l′1, l
′
2)

]
. (74)

For a fixed ̂ ∈ [1, q1], we have

Pr
[
D(̂) ∩ Gex(l′1, l

′
2)

]
≤ q2(3l′1 + 3l′2 + 1)

2n−1
, (75)



with a similar argument as the analysis of preimage resistance. Therefore it follows that

Pr


 ⋃

1≤j≤q1

(
D (j) ∩ Gex(l′1, l

′
2)

)

 ≤ q1q2(3l′1 + 3l′2 + 1)

2n−1
. (76)

The proof is complete from (64), (74) and (76). ut
Corollary 4. Let A = (aij) be a matrix in MF2n (2, 3, 1) such that a11a22 + a12a21 6= 0 and
a45 6= 0. If M(A) is column-sum independent, then

lim
n→∞Adva−pre

lpA

(
2

n
2 /n, 2

n
2 /n

)
= 0. (77)

Proof. Let q1 = q2 = 2
n
2 /n, l′1 = 1 and l′2 = 3n− 1. Then it follows that

lim
n→0

q1q2(3l′1 + 3l′2 + 1)
2n−1

= lim
n→0

f2(l′1, l
′
2) = lim

n→0
f1(l′1) = 0. (78)

The proof is complete from Theorem 4. ut

4.3 Collision Resistance

Theorem 5. Suppose that an adversary A makes a total of q(≤ 2n−1) queries to a ran-
dom permutation π and its inverse π−1, and records a query history Q. Let A = (aij) be
a matrix in MF2n (2, 3, 1) such that a11a22 + a12a21 6= 0 and a45 6= 0, and let M(A) =
[A1, B1, A2, B2, A3, B3] and C(A) = C satisfy the following conditions.

1. M(A) is column-sum independent.

2. [A1 + A2, B1], [A1 + A2, B2], [A2 + A3, B2], [A2 + A3, B3], [A3 + A1, B3] and [A3 + A1, B1]
are invertible.

3. [B1 + B2, A1], [B1 + B2, A2], [B2 + B3, A2], [B2 + B3, A3], [B3 + B1, A3] and [B3 + B1, A1]
are invertible.

4.
[
Ā, B1

]
,

[
Ā, B2

]
,

[
Ā, B3

]
,

[
Ā, B1 + B2

]
,

[
Ā, B2 + B3

]
and

[
Ā, B3 + B1

]
are invertible,

where Ā = A1 + A2 + A3.

5.
[
B̄, A1

]
,

[
B̄, A2

]
,

[
B̄, A3

]
,

[
B̄, A1 + A2

]
,

[
B̄, A2 + A3

]
and

[
B̄, A3 + A1

]
are invertible,

where B̄ = B1 + B2 + B3.

6. [A1, C], [A2, C], [A3, C], [B1, C] and [B2, C] are invertible.

7. The following 2× 6 matrices are column-sum independent.

D1 =
[
[A3, C]−1[A1, B1], [A3, C]−1[A2, B2], [A1, C]−1[A3, B3]]

]
,

D2 =
[
[A3, C]−1[A1, B1], [A3, C]−1[A2, B2], [A2, C]−1[A3, B3]]

]
,

D3 =
[
[A2, C]−1[A1, B1], [A1, C]−1[A2, B2], [A1, C]−1[A3, B3]]

]
,

D4 =
[
[B2, C]−1[A1, B1], [B1, C]−1[A2, B2], [B1, C]−1[A3, B3]]

]
.



Then for positive integers l′1, l′2, l′3, l2 and l3,

Advcoll
lpA (A) ≤ 2nq2

(
3l′1 + 3l′2 + 1

2n−1

)2

+
3q(l′3 + q) + 3q max(ql3, l′2)

2n−1

+

(
12q2 + 6q

)
l′2

2n
+ 4g3 + 12g2 + 2f3 + 37f2 + 194f1, (79)

where f1 = f1(l′1), f2 = f2(l′1, l
′
2), f3 = f3(l′1, l

′
2, l

′
3), g2 = g2(l′1, l2) and g3 = g3(l′1, l

′
2, l2, l3).

Proof. For j ∈ [1, q] and ρ1, ρ2 ∈ I+
3 = I3\{0}, we define the following events.

C2(j; ρ1, ρ2) ⇔A sets (x11 , y11 ; x12 , y12 ; x13 , y13) ` w and (x21 , y21 ; x22 , y22 ;x23 , y23) ` w,

where w ∈ F2n , (11, 
1
2, 

1
3) 6= (21, 

2
2, 

2
3) ∈ [1, j]3, and

si = j if and only if ρs
i = 1 for i = 1, 2, 3 and s = 1, 2. (80)

The occurrence of C2(j; ρ1, ρ2) means that the single j-th query determines a collision for
lpA

231. Here, ρ1 and ρ2 specify the positions where the j-th query-response pair contributes
within the two-way collision. Let

C1 =
⋃

1≤j1<j2≤q
w∈F2n

(P(w, j1) ∩ P(w, j2)) and C2 =
⋃

1≤j≤q

ρ1,ρ2∈I+
3

C2(j; ρ1, ρ2). (81)

Then it follows that

Advcoll
lpA(A) = Pr

[C1 ∪ C2
] ≤ Pr

[C1
]
+ Pr

[C2
]
. (82)

Estimation of Pr
[C1

]
. If events P are defined as (66), then

Pr
[C1

] ≤ Pr




⋃

1≤j1<j2≤q
w∈F2n

(
P(w, j1) ∩ P(w, j2) ∩ Gex(l′1, l

′
2)

)

 + Pr

[Gex(l′1, l
′
2)

]
. (83)

With a similar argument as the analysis of preimage resistance, we obtain

Pr
[
P(ŵ, ̂1) ∩ P(ŵ, ̂2) ∩ Gex(l′1, l

′
2)

]
≤

(
3l′1 + 3l′2 + 1

2n−1

)2

, (84)

for fixed ŵ ∈ F2n and 1 ≤ ̂1 < ̂2 ≤ q. Therefore, we have

Pr




⋃

1≤j1<j2≤q
w∈F2n

(
P(w, j1) ∩ P(w, j2) ∩ Gex(l′1, l

′
2)

)

 ≤ 2nq2

(
3l′1 + 3l′2 + 1

2n−1

)2

. (85)



Estimation of Pr
[C2

]
. Let

Cex = F2 (A2, B2, A3, B3; 1) ∪ F2 (A1, B1, A3, B3; 1) ∪ F2 (A1, B1, A2, B2; 1)

∪ E3
6=

(
Ā∗A1, Ā

∗B1, Ā
∗A2, Ā

∗B2, Ā
∗A3, Ā

∗B3; l′3
)

∪ E3
6=

(
B̄∗A1, B̄

∗B1, B̄
∗A2, B̄

∗B2, B̄
∗A3, B̄

∗B3; l′3
)

∪
⋃

1≤i≤4

F3
(
Di; l3

) ∪ E2
(
B∗

3A1, B
∗
3B1, B

∗
3A2, B

∗
3B2; l′2

)
. (86)

By Corollary 1 and 2, we obtain

Pr [Cex] ≤ 3

((
4q2 + 2q

)
l′2

2n
+ 6f2 + 12f1

)
+ 2(f3 + 3f2 + 9f1)

+ 4(g3 + 3g2 + 6f2 + 30f1) + (f2 + 2f1)

=

(
12q2 + 6q

)
l′2

2n
+ 4g3 + 12g2 + 2f3 + 31f2 + 176f1. (87)

Since
Pr

[C2
] ≤

∑

1≤j≤q

ρ1,ρ2∈I+
3

Pr
[C2(j; ρ1, ρ2) ∩ Cex

]
+ Pr [Cex] , (88)

we now focus on the estimation of Pr
[C2

(
j; ρ1, ρ2

) ∩ Cex

]
for each (ρ1, ρ2) ∈ (I+

3 )2.

Case 1: We estimate the probability Pr
[C2

(
j; ρ1, ρ2

) ∩ Cex

]
for ρ1 and ρ2 such that ρ1∩ρ2 6=

∅. Suppose that ρ1 = ρ2 = (1, 0, 0). If the event C2(j; (1, 0, 0), (1, 0, 0)) occurs, then it holds
that

A1x
j + B1y

j + A2x
12 + B2y

12 + A3x
13 + B3y

13 = Cw, (89)

A1x
j + B1y

j + A2x
22 + B2y

22 + A3x
23 + B3y

23 = Cw, (90)

for some 12, 13, 22, 23 < j and w ∈ F2n . The equations (89) and (90) imply that

A2x
12 + B2y

12 + A3x
13 + B3y

13 = A2x
22 + B2y

22 + A3x
23 + B3y

23 . (91)

Therefore, it follows that

C2 (j; (1, 0, 0), (1, 0, 0)) ⊂ F2 (A2, B2, A3, B3; 1) ⊂ Cex, (92)

and hence,
Pr

[C2 (j; (1, 0, 0), (1, 0, 0)) ∩ Cex

]
= 0. (93)

The same argument applies to any event C2
(
j; ρ1, ρ2

)
such that ρ1 ∩ ρ2 6= ∅.

Case 2: We estimate the probability Pr
[C2

(
j; ρ1, ρ2

) ∩ Cex

]
for ρ1 and ρ2 such that ρ1∩ρ2 =

∅, wt(ρ1) = 2 and wt(ρ2) = 1. (Here wt(ρ) denotes the number of 1’s in ρ.) Say ρ1 = (1, 1, 0)
and ρ2 = (0, 0, 1). Suppose that A makes the j-th query π(x̂). There are (2n−(j−1)) possible
responses for y = π(x̂). We now need to upper-bound the number of y = π(x̂) satisfying

(A1 + A2) x̂ + (B1 + B2) y + A3x
13 + B3y

13 = Cw, (94)

A1x
21 + B1y

21 + A2x
22 + B2y

22 + A3x̂ + B3y = Cw, (95)



for some 13, 21, 22 < j and w ∈ F2n . Adding (94) and (95), we obtain

Āx̂ + B̄y + A1x
21 + B1y

21 + A2x
22 + B2y

22 + A3x
13 + B3y

13 = 0, (96)

which implies the following equation.

B̄∗A1x
21 + B̄∗B1y

21 + B̄∗A2x
22 + B̄∗B2y

22 + B̄∗A3x
13 + B̄∗B3y

13 = B̄∗Āx̂. (97)

The number of solutions (13, 
2
1, 

2
2) to (97) is at most l′3 + q without the occurrence of Cex.

(The number of solutions (13, 
2
1, 

2
2) to (97) such that 13 = 21 = 22 is at most q.) With the

same argument for events C2 (j; (0, 1, 1), (1, 0, 0)) and C2 (j; (1, 0, 1), (0, 1, 0)), we have

Pr
[C2

(
j; ρ1, ρ2

) ∩ Cex

] ≤ l′3 + q

2n − (j − 1)
≤ l′3 + q

2n−1
. (98)

Case 3: We estimate the probability Pr
[C2

(
j; ρ1, ρ2

) ∩ Cex

]
for ρ1 and ρ2 such that ρ1∩ρ2 = ∅

and wt(ρ1) = wt(ρ2) = 1. Say ρ1 = (1, 0, 0) and ρ2 = (0, 1, 0). Suppose that A makes the
j-th query π(x̂). There are (2n − (j − 1)) possible responses for y = π(x̂). We now need to
upper-bound the number of y = π(x̂) satisfying

A1x̂ + B1y + A2x
12 + B2y

12 + A3x
13 + B3y

13 = Cw, (99)

A1x
21 + B1y

21 + A2x̂ + B2y + A3x
23 + B3y

23 = Cw, (100)

for some 12, 13, 21, 23 < j and w ∈ F2n . Removing variables y and w from this system of
equations, we obtain the following equation.

[B1, C]−1A2x
12 + [B1, C]−1B2y

12 + [B1, C]−1A3x
13 + [B1, C]−1B3y

13

+ [B2, C]−1A1x
21 + [B2, C]−1B1y

21 +
(
[B2, C]−1A3x

23 + [B2, C]−1B3y
23

)

=
(
[B1, C]−1A1 + [B2, C]−1A2

)
x̂. (101)

For each 23, the number of solutions (12, 
1
3, 

2
1) to (101) is at most l3 without the occurrence

of F3
(
D4; l3

)
. Therefore, the number of solutions (12, 

1
3, 

2
1, 

2
3) to (101) is at most ql3.

One special case is when ρ1 or ρ2 is (0, 0, 1) and A makes a forward query y = π(x̂). Say
ρ1 = (0, 0, 1). Then the response y = π(x̂) should satisfy

A1x
11 + B1y

11 + A2x
12 + B2y

12 + A3x̂ + B3y = Cw, (102)

for some 11, 12 and w ∈ F2n . By multiplying B∗
3 on both sides of (102), we observe that each

y satisfying (102) is associated with a solution (11, 
1
2) to the following equation.

B∗
3A1x

11 + B∗
3B1y

11 + B∗
3A2x

12 + B∗
3B2y

12 = B∗
3A3x̂. (103)

Here we note that B∗
3C = 0. The number of solutions (11, 

1
2) to (103) is at most l′2 without

the occurrence of E2 (B∗
3A1, B

∗
3B1, B

∗
3A2, B

∗
3B2; l′2). Therefore, we have

Pr
[C2

(
j; ρ1, ρ2

) ∩ Cex

] ≤ max(ql3, l′2)
2n − (j − 1)

≤ max(ql3, l′2)
2n−1

. (104)



To summarize the analysis for the three cases, we conclude that

∑

1≤j≤q

ρ1,ρ2∈I+
3

Pr
[C2(j; ρ1, ρ2) ∩ Cex

] ≤ 3q(l′3 + q) + 3q max(ql3, l′2)
2n−1

. (105)

Now the proof is complete from (64), (82), (83), (85), (87), (88) and (105). ut

Corollary 5. Let A = (aij) be a matrix in MF2n (2, 3, 1) such that a11a22 + a12a21 6= 0 and
a45 6= 0. If M(A) satisfies the conditions described in Theorem 5, then

lim
n→∞Advcoll

lpA

(
2

n
2 /n1+ε

)
= 0, (106)

for ε > 0.

Proof. Let q = 2
n
2 /n1+ε, (l′1, l

′
2, l

′
3) = (1, 3n − 1, (9 + 1/n)2n/2) and (l2, l3) = (11, 147). Then

it is easy to check that

lim
n→0

(
2nq2

(
3l′1 + 3l′2 + 1

2n−1

)2
)

= lim
n→0

3q(l′3 + q) + 3q max(ql3, l′2)
2n−1

= lim
n→0

(
12q2 + 6q

)
l′2

2n
= 0. (107)

Since

lim
n→0

f1(l′1) = lim
n→0

f2(l′1, l
′
2) = lim

n→0
f3(l′1, l

′
2, l

′
3) = lim

n→0
g2(l′1, l2) = lim

n→0
g3(l′1, l

′
2, l2, l3) = 0, (108)

Theorem 5 completes the proof. ut

Example 1. Let n = 128 and let F2128 = F[ζ]/(ζ128 + ζ7 + ζ2 + ζ + 1) be a finite field of order
2n, where f(ζ) = ζ128 + ζ7 + ζ2 + ζ + 1 is an irreducible polynomial over F2. For simplicity
of computation, assume that a23 = 0, a45 = 1, and

[
a11 a12

a21 a22

]
=

[
1 0
0 1

]
.

Then we have

M(A) =
[
a31 a33 a32 a34 1 0
a41 a43 a42 a44 0 1

]
and C(A) =

[
0
1

]
.

If we set a31 = a44 = ζ, a33 = a42 = ζ3, a32 = a43 = ζ2 + ζ, and a34 = a41 = 1, then

A =




1 0 0 0 0
0 1 0 0 0
ζ ζ2 + ζ ζ3 1 0
1 ζ3 ζ2 + ζ ζ 1


 ,

and the corresponding matrices M(A) and C(A) satisfy all the conditions described in The-
orem 5.
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