CoCl, 缺氧诱导 SW480 细胞化疗耐药及其机制

谭泽明',伍 莹',张华莉²,肖献忠²,*

(1. 中南大学湘雅医学院临床医学七年制 2000 级学生;

2. 中南大学湘雅医学院病理生理学教研室,长沙 410078)

[摘要] 目的:研究不同程度的 $CoCl_2$ 化学缺氧条件下 SW480 细胞的生长情况及对氟尿嘧啶 (fluorouracil ,FU)的敏感性 ,以及缺氧诱导因子- 1α (hypoxia inducible factor 1 alpha ,HIF- 1α)和诱导型血红素氧化酶(heme oxygenase-1 ,HO-1)基因在缺氧条件下的表达 ,以探讨缺氧条件下导致肿瘤细胞耐药的机制。方法:采用四甲基偶氮唑蓝(methyl thiazolyl tetrazolium , MTT)法测定不同 $CoCl_2$ 浓度下 SW480 细胞的生长情况及化疗药物 FU 对 SW480 细胞的生长抑制作用 ;采用逆转录聚合酶链反应检测 $HIF-1\alpha$ 和 HO-1 mRNA 在缺氧条件下的表达。结果 :MTT 结果显示 ,随着 $CoCl_2$ 浓度增加 ,SW480 细胞的增殖速度减慢 ,FU 对 SW480 的杀伤作用降低。RT-PCR 结果显示 ,CoCl_2 化学缺氧处理使 $HIF-1\alpha$ 和 HO-1 mRNA 表达上调 ,并呈较好的剂量和时间依赖性关系。结论 : $CoCl_2$ 诱导的体外缺氧可以减缓 SW480 细胞的生长速度 ,并降低 SW480 细胞对 FU 的敏感性 ,其机制可能与 $HIF-1\alpha$ 及 HO-1 的表达上调有关。

[关键词] 缺氧; 二氯化钴; SW480 细胞; 缺氧诱导因子- 1α ; 血红蛋白氧化酶-1; 化疗耐药性

[中图分类号] R730.23 [文献标识码] A [文章编号] 1672-7347(2006)03-0345-05

CoCl₂-induced chemotherapy resistance in SW480 cells and its mechanism

TAN Ze-ming¹, WU Ying¹, ZHANG Hua-li², XIAO Xian-zhong²,*

(1. Medical Student of Seven-year Program, Grade 2000, Xiangya School of Medicine, Central South University;

2. Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha 410078, China)

Abstract: **Objective** To observe the proliferation of SW480 cells exposed to different concentrations of $CoCl_2$, and to examine the expression of hypoxiainducible factor-1 alpha (HIF-1 α) and heme oxygenase-1 (HO-1) during hypoxia to explore the chemotherapy resistance effect and role of HIF-1 α and HO-1. **Methods** Methyl thiazolyl tetrazolium (MTT) method was used to detect the proliferation of SW480 cells in the presence of fluorouracil(FU). RT-PCR was applied to examine the expression of HIF-1 α and HO-1 mRNA in hypoxia. **Results** SW480 cells were proliferated at a slow rate , and had a strong resistance to FU with the increase of $CoCl_2$. RT-PCR showed that the up-regulated expression of HIF-1 α and HO-1 mRNA was consistent with the dose-effect curve and time-effect curve. **Conclusion** The hypoxia induced by $CoCl_2$ can inhibit the proliferation of SW480 , and it can also decrease the sensitivity of the cell to FU. The mechanism is probably related to the up-regulated expression of HIF-1 α and HO-1 mRNA.

Key words: hypoxia; $CoCl_2$; hypoxia inducible factor- 1α ; heme oxygenase-1; chemotherapy resistance effect

[J Cent South Univ (Med Sci) , 2006 , 31(3) :0345-05]

自 20 世纪 50 年代 Thomlinson[1] 发现肿瘤缺 **氢现象至今**,随着缺氢检测技术的不断发展和完 善 ,越来越多的证据表明缺氧普遍存在于人类肿 瘤中。缺氧作为恶性实体瘤的特征之一,不仅改 变了肿瘤细胞的生物学特性,导致肿瘤细胞的遗 传不稳定性及恶性选择,而且也是肿瘤对放、化疗 产生抗性的主要原因之一。但是缺氧引起肿瘤细 胞耐药性的机制并不十分清楚。缺氧诱导因子- 1α (HIF- 1α)是缺氧条件下广泛存在于哺乳动物 及人体的一种转录因子^[2]。许多研究表明 $_{i}HIF-1\alpha$ 在动物及人体许多肿瘤组织中大量表达,它除了 在肿瘤细胞耐受缺氧方面起重要作用外,也能调 节肿瘤细胞的凋亡及降低缺氧肿瘤细胞对化疗药 物的敏感性[3]。本研究采用 CoCl, 处理 SW480 细 胞模拟结肠癌在体内的缺氧环境,观察缺氧条件 下 SW480 细胞的生长情况及对氟尿嘧啶(fluorouracn, FU)的敏感性,并进一步检测 $HIF-1\alpha$ 及 其调控的基因 HO-1 在缺氧条件下的表达,以探讨 缺氧导致肿瘤细胞耐药的可能机制。

1 材料与方法

1.1 主要试剂和仪器 主要采用 CoCl₂(上海 生物工程技术服务有限公司),RPMI-1640 培养基 (Gibco产品),新生小牛血清(中南大学湘雅医学 院细胞中心产品),MTT,二甲亚(Dimethyl sulfoxide ,DMSO)(Sigma 公司), FU(上海旭东海普药 业有限公司),Trizol(美国 GIBCO 公司),TagDNA 聚合酶 ,AMV 逆转录酶(Takara 公司)(宝生物公 司),CO,培养箱(美国 Thermo Forma Series II Water Jacketed CO, Incubator),PCR 引物由上海博亚生物 公司合成,高速冷冻离心机(国产 GL20A),电泳 仪(国产 DYY-III7B)及PCR 仪(英国 HYBAID)。 细胞培养 结肠癌细胞株 SW480 购自中 南大学湘雅医学院细胞中心。SW480细胞用含 10% 新生小牛血清的 RPMI 1640 培养基 ,置37 ℃ , 5% CO,混合气体的孵育箱中培养。

1.3 SW 480 细胞生长曲线的测定 收集细胞制成悬液 ,加入 96 孔培养板中(每孔细胞数约5000个),移入 CO_2 孵育箱培养8 h贴壁 ,用含不同浓度的 $CoCl_2$ (0,50,100,150,200 $\mu mol/L$) 1640 培养液培养各组细胞 ,其中 0 $\mu mol/L$ $CoCl_2$ 为对照组 ,另设空白组(无细胞)。每组复孔 6 个,在 37 ℃ 5% CO_2 培养箱中培养 1 ~ 6 d。吸去培养液 ,每孔加入 MTT 溶液(5 g/L) 20 μL ,37 ℃ 反应 4

h ,吸去孔内培养基 ,再加入 DMSO 180 μ L ,充分溶解后在酶标仪 570 nm 下测吸光度 OD 值 ,再以 OD 值作图。

1.4 肿瘤细胞生长抑制率的测定 采用 MTT 法检测 FU(50 mg/L)对 SW480 细胞生长的抑制作用。收集细胞制成悬液 ,加入 96 孔培养板中(每孔细胞数约 5×10^4) ,移入 CO_2 孵育箱培养 8 h 贴壁 ,然后用不同浓度的 $CoCl_2$ (0 ,100 ,200 μ mol/L)处理各组细胞 ,每个浓度设 6 个复孔 ,并设对照孔(未加药物)和空白孔(无细胞) ,培养 24 h 后加入 FU(50 mg/L),继续培养 48 h ,每孔加入 MTT 溶液(5 g/L)20 μ L ,37 $^{\circ}$ C 反应 4 h ,吸去孔内培养基 ,再加入 DMSO 180 μ L ,充分溶解后在酶标仪 570 nm 下测吸光度(A)值 ,按下列公式计算细胞生长抑制率。

肿瘤抑制率(%)=[1-(实验组平均 A-空白组平均 A)/(对照组平均 A-空白组平均 A)]×100%。 1.5 RT-PCR 检测 *HIF-1* 和 *HO-1* mRNA 的表达

SW480 细胞按 1 × 10⁶ 个/ 瓶接种于 100 mL 培养瓶中,孵育24 h 待细胞贴壁后加CoCl。CoCl。 按 0 , 50 , 100 ,150 ,200 μmol/L 浓度梯度分别处 理 8 h ,随后在 CoCl, 200 μmol/ L 浓度的基础上, 选取0.2 4.8 和24 h 时间点进行观测。在指定 的时间收集细胞用 Trizol 提取总 RNA 。并用 DNA 酶 I 消化除去总 RNA 中的痕量 DNA ,1.0% 琼脂糖 凝胶电泳检测总 RNA,紫外分光光度计测量 A260 mm /280 mm 比值。用 AMV 逆转录酶合成第一链 ,用 1 μL 的逆转录产物作为模板进行 PCR。HIF-1α引 物序列:5'-GTCGGACAGCCTCACCAAACAGAGC-3' 和 5'-GTTAACTTGATCCAAAGCTCTGAG-3',扩增片 段为 487 bp ,退火温度为 55 ℃(27 个循环) ;HO-1 引物序列:5'-CAGGCAGAGAATGCTGAGTTC-3'和 5'-GATGTTGAGCAGGAACGCAGT-3',扩增片段为 550 bp ,退火温度为 60 ℃(27 个循环)。选取 B-actin 为内对照,引物如下:5'-CCTCGCCTTTGC-CGATCC-3'和 5'- GGATCTTCATGAGGTAGTCAGTC-3′,扩增片段为 626 bp ,退火温度为 60 ℃(30 个 循环)。

2 结 果

2.1 缺氧条件下 SW480 细胞的生长情况 用 $CoCl_2$ 模拟实体肿瘤在体内的缺氧环境 ,采用 MTT 测定 SW480 细胞的生长情况 ,发现对照组细胞生长曲线呈现比较明显的"S"形 , $1 \sim 3 d$ 为滞留期 ,

 $3 \sim 4 \text{ d}$ 迅速进入对数增长期 ,4 d 以后进入平台期 ;经过 $CoCl_2$ 不同浓度处理后 ,各组细胞生长曲线大致亦呈" S "形 ,但是对数增长期提前 ,对数期短 ,生长速度减慢 ,进入平台期较早及曲线低平(图 1)。

2.2 FU 对缺氧 SW480 细胞的抑制作用 采用

MTT 法检测 FU 对 100 , 200 μ mol/L CoCl₂处理后的 SW480 细胞生长的抑制作用 ,结果发现 ,100 μ mol/L 和 200 μ mol/L CoCl₂处理 SW480 细胞后 , FU 对细胞的生长抑制率分别为(52.0299 ± 5.2888)% (43.3237 ± 6.8776)% ,明显低于未经 CoCl₂处理的对照组(图 2)。

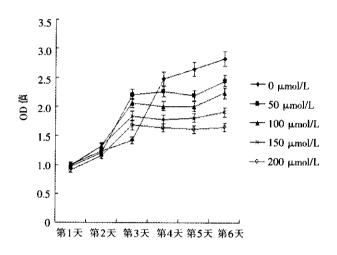


Fig. 1 Growth curves of SW480 cells culture in medium containing different concentration of CoCl₂

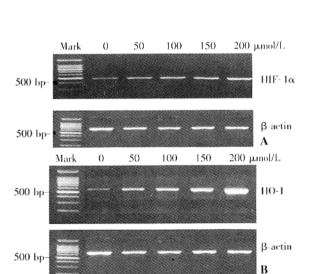


图3 不同浓度的 $CoCl_2$ 处理后 SW480 细胞 8 h 后检测 $HIF-I\alpha$ 和 HO-I mRNA 的表达 A $HIF-I\alpha$ mRNA; B HO-I mRNA

Fig. 3 HIF- 1α and HO-1 mRNA levels of SW480 cells cultivated in the medium containing different concentration of CoCl₂ for 8 h A: HIF- 1α mRNA; B: HO-1 mRNA

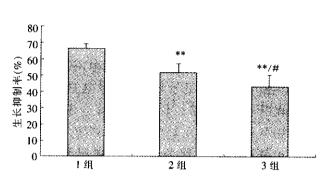


图 2 FU 对缺氧 SW480 细胞的生长抑制率 1组 对照组 2组:100 μ mol/L CoCl₂处理组 3组 200 μ mol/L CoCl₂处理组 ;与对照组 比较 ,* P < 0.001(n=6);与 100μ mol/L CoCl₂处理组比较 , # P < 0.05(n=6)

Fig. 2 Growth inhibition ratio of FU to SW480 cells Group 1 : control group ; Group 2 : cultivate in medium containing 100 μ mol/L CoCl₂ ; Group 3 : cultivate in medium containing 200 μ mol/L CoCl₂ ; * * P < 0.01 (n = 6) vs Group 1 ; # P < 0.05 (n = 6) vs Group 2

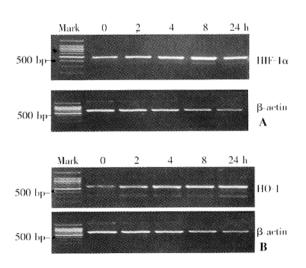


图 4 200 μmol/L CoCl₂ 处理后 HIF-1α 和 HO-1 mRNA 的表达 A:HIF-1α mRNA β HO-1 mRNA

Fig. 4 HIF- $I\alpha$ and HO-I mRNA levels of SW480 cells cultivated in the medium containing 200 μ mol/L $CoCl_2$ for different time A HIF- $I\alpha$ mRNA B HO-I mRNA

2.3 $CoCl_2$ 缺氧处理后 HIF-1 和 HO-1 mRNA 的表达 RT-PCR 结果显示,未经 $CoCl_2$ 处理的细胞中 $HIF-1\alpha$ mRNA 和 HO-1 mRNA 水平很低,随着 $CoCl_2$ 浓度增高 $HIF-1\alpha$ mRNA 和 HO-1 mRNA 水平表达逐渐增加(图3)。在 $200 \mu mol/L CoCl_2$ 的作用下,随着 $CoCl_2$ 作用时间的延长, $HIF-1\alpha$ 和 HO-1 mRNA 的表达量亦有不同程度的上调(图 4)。 $CoCl_2$ 与 $HIF-1\alpha$ 和 HO-1 mRNA 表达间表现出较好的剂量和时间依赖性关系。

3 讨 论

结肠癌发生发展时,随着实体瘤的增大,肿瘤内部不能得到足够的血液供应,导致局部处于缺血缺氧状态,使肿瘤组织内局部氧分压改变。肿瘤细胞存在着对缺血缺氧的自身调节和适应,其机制主要通过提高葡萄糖转运、糖酵解(Warburg效应)及肿瘤血管形成,另外,细胞周期由增殖旺盛的S期向 G_1/G_0 期转换。本实验中,用 $CoCl_2$ 处理SW480细胞模拟肿瘤体内缺氧模型,采用MTT法测定SW480细胞的生长曲线,结果表明随着 $CoCl_2$ 浓度增加,SW480细胞的增殖速度减慢。同时,在不同的 $CoCl_2$ 浓度下观察FU对SW480细胞的杀伤作用,发现经过100μmol/L 和200μmol/L $CoCl_2$ 处理后的SW480细胞对FU的敏感性下降,说明缺氧增加了肿瘤细胞的耐药性。

回顾既往研究,缺氧引起肿瘤对放、化疗产生 抗性可能的机制有(1)缺氧肿瘤细胞生长缓慢 或处于 G。期的细胞 (2)缺氧细胞由于远离血管, 导致获得的药物浓度降低 (3)肿瘤内缺氧区域 细胞内外形成一个相对"外酸内碱"的 pH 梯度, 抑制了弱碱类化合物在胞内的聚集 ;(4)缺氧环 境通过诱导基因点突变、缺失、DNA 链断裂和增加 基因组的不稳定性等机制使一些原癌基因激活或 抑癌基因失活,如抑癌基因 p53 缺失、凋亡抑制蛋 白 Bel-2 过表达,使肿瘤细胞凋亡减少,从而对抗 癌药物产生耐药性[45](5)经缺氧诱导表达的一 系列蛋白或酶类能影响药物抗癌活性的发挥,如 DT-硫辛酰胺脱氢酶 ,葡萄糖调节蛋白的增加则分 别会导致肿瘤对顺铂和多柔比星的抗性[67],缺氧 诱导的多耐药基因 1(multiple drug-resistance 1, MDR1)的编码产物 P-糖蛋白是一种能量依赖性药 物排出的跨膜蛋白,它一旦与抗肿瘤药物相结合, 就会将药物从细胞内泵出细胞,降低胞浆内药物 的浓度从而产生耐药。

除此之外,缺氧诱导表达的 $HIF-1\alpha$ 在缺氧肿 瘤细胞的耐药中发挥了重要作用。Piret 等[8]研究 发现缺氧或氯化钴可以诱导 HIF-1α 的表达 ,进而 抑制叔丁基过氧化氢或去血清引起的肝癌细胞的 凋亡。Ghafar 等[9] 发现前列腺癌细胞处于短期缺 氧时 ,HIF-1α 表达显著升高且对凋亡促进剂佛波 酯的敏感显著降低。本研究发现,受 HIF-1α调控 的基因 HO-1 在缺氧的肿瘤细胞表达也上调。 HO-1 是一个分子量 32kD 的热休克蛋白,具有抗 细胞凋亡作用[10]。HO-1 在多种肿瘤细胞中过量 表达被认为是肿瘤细胞适应较恶劣生长条件和放 化疗抗性产生的主要原因之一。Berberat 等[11]通 过小 RNA 干扰技术抑制 HO-1 基因表达,证明可 以增加胰腺癌细胞对放化疗的敏感性。HO-1和 p21 表达上调可以显著地降低乳头状甲状腺癌对 凋亡刺激的敏感性,及增加胃癌细胞的抗凋亡能 力[12,13]。HO-1表达水平可以用于评价舌鳞状细 胞癌向颈部淋巴结转移的能力[14]。HO-1基因启 动子多态性与男性吸烟者肺腺癌,及口腔鳞状细 胞癌的发生相关,其中长(GT)n 重复片段可以增 加癌症发生的危险性,短(GT)n 重复片段则对肿 瘤细胞有保护作用[15,16]。根据本研究结果,作者 认为缺氧环境中,HO-1表达上调可能增加SW480 细胞的抗凋亡能力,从而对化疗药物产生抗性。 可以进一步采用反义寡核苷酸技术干扰缺氧时 HO-1 的表达 ,观察 FU 处理后 SW480 细胞的凋亡 情况,有助于探讨 HO-1 在缺氧诱导肿瘤细胞耐药 中的作用。

参考文献:

- [1] Thomlinson RH. An experimental method for comparing treatments of intact malignant tumours in animals and its application to the use of oxygen in radiotherapy [J]. Br J Cancer, 1960,14(6):555-576.
- [2] Semenza GL. Hypoxia inducible factor 1 : oxygen homeostasis and disease pathophysiology[J]. Trends Mol Med , 2001 , 7 (8) :345-350.
- [3] Fan LF ,Diao LM ,Chen DJ ,et al. Expression of HIF-1 alpha and its relationship to apoptosis and proliferation in lung cancer [J]. Ai Zheng , 2002 ,21(3):254-258.
- [4] Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical ,biologic, and molecular aspects J. J. Natl Cancer Inst., 2001, 93(4):266-276.
- [5] Airley RE, Monaghan JE, Stratfod IJ, et al. Hypoxia and disease :opportunities for novel diagnostic and therapeutic prodrug strategies [J]. Pharm J, 2000, 264 (7094):666-

673.

- [6] Comerford KM , Wallace TJ , Karhausen J , et al. Hypoxia-in-ducible factor-1-dependent regulation of the multidrug resistance(MDR1) gene[J]. Cancer Res , 2002 ,62(12): 3387-3394.
- [7] Wartenberg M ,Ling FC ,Muschen M , et al. Regulation of the multidrug resistance MDR transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species [J]. FASEB J , 2003 ,17(3):503-505.
- [8] Piret JP ,Mottet D ,Raes M ,et al. CoCl₂ ,a chemical inducer of hypoxia inducible factor-1 , and hypoxia reduce apoptotic cell death in hepatoma cell line HepG₂[J]. Ann NY Acad Sci , 2002 , 973(5):443-447.
- [9] Ghafar MA ,Anastasiadis AG ,Chen MW ,et al. Acute hypoxia increases the aggressive characteristics and survival properties of prostate cancer cells[J]. Prostate , 2003 ,54(1):58-67.
- [10] Petrache I , Otterbein L E , Alam J , et al. Heme oxygenaselinhibits TNF-α-induced apoptosis in cultured fibroblast[J].

 Am J Physiol Lung Cell Physiol , 2000 ,278(2):312-319.
- [11] Berberat PO, Dambrauskas Z, Gulbinas A, et al. Inhibition of heme oxygenase-1 increases responsiveness of pancreatic cancer cells to anticancer treatment[J]. Clin Cancer Res, 2005, 11 (10):3790-3798.

- [12] Liu ZM , Chen GG , Ng EK ,et al. Upregulation of heme oxygenase-1 and p21 confers resistance to apoptosis in human gastric cancer cells[J]. Oncogene , 2004 ,23(2):503-513.
- [13] Chen GG, Liu ZM, Vlantis AC, et al. Heme oxygenase-1 protects against apoptosis induced by tumor necrosis factor-al-pha and cycloheximide in papillary thyroid carcinoma cells
 [J]. J Cell Biochem, 2004, 92(6):1246-1256.
- [14] Yanagawa T , Omura K , Harada H ,et al. Heme oxygenase-1 expression predicts cervical lymph node metastasis of tongue squamous cell carcinomas[J]. *Oral Oncol* , 2004 , 40(1): 21-27.
- [15] Kikuchi A , Yamaya M , Suzuki S ,et al. Association of susceptibility to the development of lung adenocarcinoma with the heme oxygenase-1 gene promoter polymorphism [J]. Hum Genet , 2005 ,116(5):354-360.
- [16] Chang KW, Lee TC, Yeh WI, et al. Polymorphism in heme oxygenase-1 (HO-1) promoter is related to the risk of oral squamous cell carcinoma occurring on male areca chewers [J].

 Br J Cancer, 2004, 91(8):1551-1555.

(本文编辑 傅希文)

(上接第344页)

- [3] Zhao Y , You H , Liu F , et al. Differentially expressed gene profiles between multidrug resistant gastric adenocarcinoma cells and their parental cells[J]. Cancer Lett , 2002 , 185(2): 211-218.
- [4] 樊代明,何风田,聂永战,等. MG7Ag 在胃癌细胞系 SGC 7901 及其耐药亚系中的表达及功能[J]. 解放军 医学杂志,2001,26(6):396-398.
- [5] Kang HC, Kim IJ, Park JH, et al. Identification of genes with differential expression in acquired drug-resistant gastric cancer cells using high-density oligonucleotide microarrays
 [J]. Clin Cancer Res., 2004, 10(1 Pt 1):272-284.
- [6] Sinha P, Poland J, Kohl S, et al. Study of the development of chemoresistance in melanoma cell lines using proteome analysis[J]. Electrophoresis, 2003, 24(14):2386-2404.
- [7] 刘定胜,张广森. Celecoxib 对羟基脲抗 K562 细胞增殖作用的增敏效应和机制[J].中南大学学报(医学版), 2004,29(5):495-499.
- [8] Kondo C, Onuki R, Kusuhara H, et al. Lack of improvement

- of oral absorption of ME3277 by prodrug formation is ascribed to the intestinal efflux mediated by breast cancer resistant protein (BCRP/ABCG2)[J]. Pharm Res , 2005 , 22(4): 613-618.
- [9] 陈主初,梁宋平. 肿瘤蛋白质组学[M]. 长沙:湖南科学技术出版社,2002. 1-7.
- [10] Meyers MB. Sorcin: a calcium-binding protein overproduced in many multidrug-resistant cells [A]. Smith VL, Dedman JR. Stimulus response coupling: the role of intracellular calcium-binding proteins [M]. Boca Raton: CRC Press, 1990. 159.
- [11] Lee WP. Purification , cDNA cloning and expression of human sorcin in vincristine-resistant HOB1 lymphoma cell lines[J].

 Arch Biochem Biophysic ,1996 ,325(2):217-226.
- [12] Parekh HK. Overexpression of sorcin , a calcium-binding protein , induces a low level of paclitaxel resistance in human ovarian and breast cancer cells [J]. Biochem Pharmacol , 2002 , 62(6):1149-1158.

(本文编辑 陈丽文)