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2 IBM T.J. Watson Research Center – Hawthorne, New York 10532. rosario@us.ibm.com

Abstract. This paper presents a new identity based key agreement protocol. In id-based cryptography
(introduced by Adi Shamir in [23]) each party uses its own identity as public key and receives his secret
key from a master Key Generation Center, whose public parameters are publicly known.
The novelty of our protocol is that it can be implemented over any cyclic group of prime order, where
the Diffie-Hellman problem is supposed to be hard. It does not require the computation of expensive
bilinear maps, or additional assumptions such as factoring or RSA.
The protocol is extremely efficient, requiring only twice the amount of bandwith and computation of
the unauthenticated basic Diffie-Hellman protocol. The design of our protcol was inspired by MQV
(the most efficient authenticated Diffie-Hellman based protocol in the public-key model) and indeed its
performance is competitive with respect to MQV (especially when one includes the transmission and
verification of certificates in the MQV protocol, which are not required in an id-based scheme). Our
protocol requires a single round of communication in which each party sends only 2 group elements: a
very short message, especially when the protocol is implemented over elliptic curves.
We provide a full proof of security in the Canetti-Krawczyk security model for key exchange, including
a proof that our protocol satisfies additional security properties such as perfect forward secrecy, and
resistance to reflection and key-compromise impersonation attacks.

1 Introduction

Identity-based cryptography was introduced in 1984 by Adi Shamir [23]. The goal was to simplify
the management of public keys and in particular the association of a public key to the identity of
its holder. Usually such binding of a public key to an identity is achieved by means of certificates
which are signed statements by trusted third parties that a given public key belongs to a user. This
requires users to obtain and verify certificates whenever they want to use a specific public key, and
the management of public key certificates remains a technically challenging problem.

Shamir’s idea was to allow parties to use their identities as public keys. An id-based scheme
works as follows. A trusted Key Generation Center (KGC) generates a master public/secret key
pair, which is known to all the users. A user with identity ID receives from the KGC a secret key
SID which is a function of the string ID and the KGC’s secret key (one can think of SID as a
signature by the KGC on the string ID). Using SID the user can then perform cryptographic tasks.
For example in the case of id-based encryption any party can send an encrypted message to the user
with identity ID using the string ID as a public key and the user (and only the user and the KGC)
will be able to decrypt it using SID. Note that the sender can do this even if the recipient has not
obtained yet his secret key from the KGC. All the sender needs to know is the recipient’s identity
and the public parameters of the KGC. This is the major advantage of id-based encryption.

Id-Based Key Agreement and its Motivations. This paper is concerned with the task of id-
based key agreement. Here two parties Alice and Bob, with identities A,B and secret keys SA, SB
respectively, want to agree on a common shared key, in an authenticated manner (i.e. Alice must be
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sure that once the key is established, only Bob knows it – and viceversa). Since key agreement is
inherently an interactive protocol (both parties are “live” and ready to establish a session) there is
a smaller gain in using an id-based solution: indeed certificates and public keys can be easily sent
as part of the protocol communication.

Yet the ability to avoid sending and verifying public key certificates is a significant practical
management advantage (see e.g. [26]). Indeed known shortcomings of the public key setting are the
requirement of centralized certification authorities, the need for parties to cross-certify each other
(via possibly long certificate chains), and the management of some form of large-scale coordination
and communication (possibly on-line) to propagate certificate revocation information. Identity-
based schemes significantly simplify identity management by bypassing the certification issues. All
a party needs to know in order to generate a shared key is its own secret key, the public information
of the KGC, and the identity of the communication peer (clearly, the need to know the peer’s identity
exists in any scheme including a certificate-based one).

Another advantage of identity-based systems is the versatility with which identities may be
chosen. Since identities can be arbitrary string, they can be selected according to the the function
and attributes of the parties (rather than its actual “name”). For example in vehicular networks a
party may be identified by its location (“the checkpoint at the intersection of a and b”) or in military
applications a party can be identified by its role (“platoon x commander”). This allows parties to
communicate securely with the intended recipient even without knowing its “true” identity but
simply by the definition of its function in the network.

Finally, identities can also include additional attributes which are temporal in nature: in par-
ticular an “expiration date” for an identity makes revocation of the corresponding secret key much
easier to achieve.

The reasons described above, explain why id-based KA protocols are very useful in many systems
where bandwith and computation are at a premium (e.g. sensor networks), and also in ad-hoc
networks where large scale coordination is undesirable, if not outright impossible. Therefore it is
an important question to come up with very efficient and secure id-based KA protocols.

Previous work on id-based key agreement. Following Shamir’s proposal of the concept of
id-based cryptography, some early proposals for id-based key agreement appeared in the literature:
we refer in particular to the works of Okamoto [19] (later improved in [20]) and Gunther [13]. A
new impetus to this research area came with the breakthrough discovery of bilinear maps and their
application to id-based encryption in [2]: starting with the work of Sakai et al. [24] a large number
of id-based KA protocols were designed that use pairings as tool. We refer the readers to [3] and
[8] for surveys of these pairing-based protocols.

The main problem with the current state of the art is that many of these protocols lack a proof
of security, and some have even been broken. Indeed only a few (e.g., [5, 27]) have been proven
according to a formal definition of security.

Our Contribution. By looking at prior work we see that provably secure id-based KA requires
either groups that admit bilinear maps [5, 27], or to work over a composite RSA modulus [20].

This motivated us to ask the question if an efficient and provably secure id-based KA could
be found that can be implemented over any cyclic group in which the Diffie-Hellman problem is
supposed to be hard. The advantages of such a KA protocol would be several, in particular: (i) it
would avoid the use of computationally expensive pairing computations; (ii) it could be implemented
over much smaller groups (since we could use ’regular’ elliptic curves, rather than the supersingular
ones that admit pairings, or the group Z∗N for a composite N needed for Okamoto-Tanaka).
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Our new protocol presented in this paper, achieves all these features.
In addition our new protocol is extremely efficient, requiring an amount of bandwith and com-

putation similar to the unauthenticated basic Diffie-Hellman protocol. Indeed our protocol requires
a single round of communication in which each party sends just two group elements (as opposed
to one in the Diffie-Hellman protocol). Each party must compute four exponentiations to compute
the session key (as opposed to two in the Diffie-Hellman protocol).

A similar favorable comparison holds with the Okamoto-Tanaka protocol in [20]. While that
protocol requires only two exponentiations, it does work over Z∗N therefore requiring the use of a
much larger group size, which almost totally absorbs the computational advantage, and immediately
implies a much larger bandwith requirement. The protocol is also competitive vs. KA protocols (such
as MQV) in the public key model, particularly when one includes the transmission and verification
of certificates which are not required in an id-based scheme. Detailed comparisons to other protocols
in the literature are discussed in Section 5.

We present a full proof of security of our protocol in the Canetti-Krawczyk security model. Our
results hold in the random oracle model, under the Gap Diffie-Hellman Assumption (see details
below). Our protocol can be proven to satisfy additional desirable security properties such as perfect
forward secrecy3, and resistance to reflection and key-compromise impersonation attacks.

Our Approach. The first direction we took in our approach was to attempt to analyze the pro-
tocol by Gunther [13], which also works over any cyclic group where the Diffie-Hellman problem
is assumed to be hard, but was presented without a formal proof of security. In the [13] proto-
col the KGC provides each user with an ElGamal signature of its identity. The parties then use
these signatures, and the KGC’s public key to authenticate a basic Diffie-Hellman exchange. The
protocol requires two rounds (four messages) of interaction, and several exponentiations. For these
performance reasons, the protocol was already not a very attractive candidate. Moreover we were
not able to prove the protocol, as described in [13]. However we devised some modifications to the
protocol, and prove such modified version under some strong non-standard assumption, such as
knowledge of exponent [9], in the random oracle model.

We then turned our attention to a modification of Gunther’s protocol presented by Saeednia
[22], but also without a proof of security. The protocol in [22] utilizes a variation of ElGamal
signatures for the KGC to issue secret keys to the users. This allows a single round protocol, which
still however requires several exponentiations. Moreover, here too we were not able to prove the
protocol as stated in [22]. Again, we were able to find several modifications to this protocol and
find a proof for this modified version under the Gap-DH assumption, in the random oracle model.

For lack of space these modified Gunther and Saeednia protocols and their proofs are presented
in Appendix D.

Our protocol improves over these two protocols by using Schorr’s signatures [25], rather than
ElGamal, to issue secret keys to the users. The simpler structure of Schnorr’s signatures permits a
much more efficient computation of the session key, resulting in less exponentiations and a single
round protocol. Our approach was inspired by the way the MQV protocol achieves implicit au-
thentication of the session key. Indeed our protocol can be seen as an id-based version of the MQV
protocol.

3 We can prove PFS only in the case the adversary was passive in the session that he is attacking – though he can be
active in other sessions. As proven by Krawczyk in [17], this is the best that can be achieved for 1-round protocols
with implicit authentication, such as ours.
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Probably for this reason, the proof of our protocol heavily uses techniques developed by Krawczyk
in the security proof of the HMQV protocol (the provably secure version of MQV) [17]. In par-
ticular our proof uses the notion of challenge-response signatures introduced in [17], though with
substantial changes to adapt it to the identity-based scenario.

2 Preliminaries

In this section we present some standard definitions needed in the rest of the paper.
Let N the set of natural numbers. We will denote with ` ∈ N the security parameter. The

partecipants to our protocols are modeled as probabilistic Turing machines whose running time is
bounded by some polynomial in `. If S is a set, we denote with s

$← S the process of selecting an
element uniformly at random from S.

Definition 1 (Negligible function). A function ε(`) is said to be negligible if for every polyno-
mial p(`) there exists a positive integer c ∈ N such that ∀` > c we have ε(`) < 1/p(`).

Our results are proved secure in the Canetti-Krawczyk (CK) [6, 7] model for key agreement,
adpated to the identity-based setting. For lack of space we postpone the description of the model
in Appendix B.

2.1 Computational Assumptions

In the following assume G to be a cyclic multiplicative group of order q where q is a `-bit long
prime. We assume that there are efficient algorithms to performe multiplication and membership
test in G. Finally we denote with g a generator of G.

Assumption 1 (Computational Diffie-Hellman [10]) We say that the Computational Diffie-
Hellman (CDH) Assumption (for G and g) holds if for any probabilistic polynomial time adversary
A the probability that A on input (G, g, gu, gv) outputs W such that W = guv is negligible in `. The
probability of success of A is taken over the uniform random choice of u, v ∈ Zq and the coin tosses
of A.

The CDH Assumption has a Decisional version in which no adversary can actually recognize
the value guv when given gu, gv. In our proofs we are going to need the ability to perform such
decisions, while still assuming that the CDH holds. The assumption below basically says that the
CDH Assumption still holds in the presence of an oracle O that solves the decisional problem.

Assumption 2 (Gap-DH Assumption) We say that the Gap-DH Assumption holds (for G and
g) if the CDH Assumption holds even in the presence of an oracle O that on input three elements
U = gu, V = gv,W = gw in the group generated by g, output ”yes” if and only if W = guv.

The oracle O for the Decisional DH problem exists for some groups G, e.g. the ones that admit
a bilinear map. We stress, however that we need the oracle only for the proof of security, and it is
not needed in the execution of the protocol by the real-life parties. This means that we can efficiently
implement our protocol over any cyclic group G.

The question, then, is the real-life meaning of a proof under the Gap-DH assumption. We
prove the security of our protocol under the Gap-DH assumption, which means that if a successful
adversary can be constructed one of two things must be true:
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1. either the CDH Assumption is false
2. or we have a proof that the hardness of the Decisional problem is implied by the CDH Assump-

tion (in other words the CDH and DDH Assumptions are equivalent). Indeed in this case the
CDH holds, and the protocol is insecure, which means that the oracle O cannot exists (if it
existed, given that the CDH holds, the protocol should be secure).

3 The new protocol IB-KA

This section presents our new identity-based key-agreement protocol IB-KA whose security relies
on the Gap-DH assumption in the random oracle model.
Protocol setup. The Key Generation Center (KGC) chooses a group G of prime order q (where
q is `-bits long), a random generator g ∈ G and two hash functions H1 : {0, 1}∗ → Zq and
H2 : Zq × Zq → {0, 1}`. Then it picks a random x

$← Zq and sets y = gx. Finally the KGC outputs
the public parameters MPK = (G, g, y,H1, H2) and keeps the master secret key MSK = x for
itself.
Key Derivation. A user with identity ID receives, as its secret key, a Schnorr’s signature [25]
of the message m = ID under public key y. More specifically, the KGC after verifying the user’s
identity, creates the associated secret key as follows. First it picks a random k

$← Zq and sets
rID = gk. Then it uses the master secret key x to compute sID = k +H1(ID, rID)x. (rID, sID) is
the secret key returned to the user. The user can verify the correctness of its secret key by using
the public key y and checking the equation gsID

?= rID · yH1(ID,rID).
A protocol session. Let’s assume that Alice wants to establish a session key with Bob. Alice owns
secret key (rA, sA) and identity A while Bob has secret key (rB, sB) and identity B.

Alice selects a random tA
$← Zq, computes uA = gtA and sends the message 〈A, rA, uA〉 to Bob.

Analogously Bob picks a random tB
$← Zq, computes uB = gtB and sends 〈B, rB, uB〉 to Alice.

After the parties have exchanged these two messages, they are able to compute the same session
key Z = H2(z1, z2). In particular Alice computes

z1 = (uBrByH1(B,rB))tA+sA and z2 = utAB .

On the other hand Bob computes

z1 = (uArAyH1(A,rA))tB+sB and z2 = utBA .

It is easy to see that both the parties are computing the same values z1 = g(tA+sA)(tB+sB) and
z2 = gtAtB .

Theorem 3. Under the Gap-DH Assumptions, if we model H1 and H2 as random oracles, then
protocol IB-KA is a secure identity-based key agreement protocol.

4 Proof of security

We prove the theorem by a usual reduction argument. We show how to reduce the existence of
an adversary breaking the protocol into an algorithm (i.e. the simulator) that is able to break
the CDH Assumption with non-negligible probability. The adversary is modeled as a CK attacker
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(see Appendix B for details): in particular it will choose a test session among the complete and
unexposed sessions and will try to distinguish between its real session key and a random one.

The proof of Theorem 3 considers two different cases: if the test session has a matching session
or not. Recall that if two sessions are matching then there are two peers that have identical views of
the joint session. So a test session with a matching session implies that the adversary was passive,
and not injecting any messages during the test session. The case in which the test session does not
have a matching session, instead corresponds to the case in which the adversary is actively injecting
messages and trying to impersonate a honest user.

Either case will be reduced to an algorithm that solves the CDH problem. Only in the case
the test session does not have a matching session we make use of the Gap-DH Assumption, and
therefore need an oracle O to solve the DDH.

In the proof the simulator guesses a-priori the session that will be chosen by the adversary as
the test session. More precisely it guesses the owner of the session and the order number of the test
session among all the sessions hold by that party. The probability of a correct guess is 1/n where
n is an upper bound to the number of sessions run by the adversary.

4.1 Passive Adversary during the test session

For sake of contradiction let us suppose there exists a PPT adversary A that is able to break the
protocol IB-KA with non-negligible advantage ε in the case the test session has a matching session.
Let n be an upper bound to the number of sessions of the protocol run by A and Q1 and Q2 be
the number of queries made by the adversary to the random oracles H1, H2 respectively. We show
how to build a simulator S that uses A to solve the CDH problem with probability at least ε/nQ2.
S receives in input a tuple (G, g, U, V ) where U = gu, V = gv and u, v are random exponents in Zq.
The simulator plays the role of the CDH solver and its goal it to compute the value W = guv. S
sets up a simulated execution of the protocol, with simulated KGC, users and sessions.

First of all S sets up the public parameters of the protocol simulating the KGC. So it chooses
a random x

$← Zq and sets y = gx. Then it provides the adversary with input (G, g, y) and oracle
access to H1 and H2. Since H1 and H2 are modeled as random oracles, S can program their output.
For each input (ID, rID) S chooses a random eID

$← Zq and sets H1(ID, rID) = eID.
Since S knows the master secret key x, it can simulate the KGC in full, and give secret keys to

all the parties in the network, including answering private key queries from the adversary.
At the beginning of the game S guesses the test session and its peers Alice and Bob.
Sessions different from the test session are easily simulated since S knows all the informations

needed to compute the session keys and answer any query ( including session key queries) from the
adversary.

We now show how to simulate the test session in order to extract W = guv from the adversary.
Since the test session has a matching session, this means that the parties (i.e. the simulator in this
case) choose the messages exchanged in the test session.

Let (A, rA, sA), (B, rB, sB) be the identity information and the secret keys of Alice and Bob
respectively (S knows these values). The simulator sets Alice’s message as (A, rA, uA = U) while
the one from Bob is (B, rB, uB = V ). S is implicitly setting tA = u, tB = v. In this case the correct
session key is Z = H2(g(sA+u)(sB+v), guv). Since H2 is modeled as a random oracle, if the adversary
has success into distinguishing Z from a random value, it must have queried H2 on the correct
input (z1 = g(sA+u)(sB+v), z2 = guv). Thus S can choose a random value among all the queries
that it received from the adversary. Since the number of queries Q2 is polynomially bounded, the
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simulator can find the correct z2 = W with non-negligible probability ε/nQ2. This completes the
proof of this case4.

4.2 Exponential Challenge-Response Signatures

Before proving the case in which the adversary is active during the test session, we introduce the
notion of Challenge-Response Signatures which are instrumental in obtaining a reduction for that
case.

Exponential Challenge-Response (XCR) Signatures were introduced by Krawczyk in [17] as a
building block for the proof of the HMQV key-exchange protocol. Roughly speaking XCR signatures
consist of an interactive signing process where the recipient of a signature gives a challenge to the
signer and the latter generates the signature on a message with respect to this challenge. Only who
creates the challenge will be able to verify the correctness of the purposed signature.

We propose a variation of the XCR signature scheme given by Krawczyk in [17] which uses a
double challenge instead of a single one.

2XCR signature scheme Our Exponential Challenge-Response Signature scheme 2XCR is defined
by three algorithms: XKG,XSIG,XV ER.

The key generation algorithm XKG(1`) takes as input the security parameter `, chooses a `-bit
prime q and a group G of order q. Then it picks a random x

$← Zq and outputs the verification key
y = gx and the secret key x.

A user wishing to receive a signature, first generates two challenge values T1 = gt1 and T2 = gt2

for random t1, t2
$← Zq and gives (T1, T2) to the signer. To produce a signature on a message

m the signer runs XSIG(x,m, T1, T2) which chooses random k, t
$← Zq, sets w = gt, r = gk

and s = k + H(m, r)x where H : {0, 1}∗ → Zq is an hash function. Finally it computes z1 =
(T1T2)s+t, z2 = T t2 and outputs the pair (w, r, z1, z2) as the signature for m.

The recipient can verify the signature (w, r, z1, z2) with respect to a message m, public key y,
and challenge (T1 = gt1 , T2 = gt2) for which it knows t1, t2 by checking if z1

?= (wryH(m,r))t1+t2 and
z2

?= wt2 (this is the verification algorithm XV ER).
A novel property of this scheme (not present in Krawczyk’s scheme) which is important in our

protocol is that a signer can pre-compute (or receive) a signing-token (r = gk, s = k + H(m, r)x)
for a message m and then is able to generate signatures on that message for every challenge (T1, T2)
(i.e. to compute the signature it chooses t $← Zq and outputs (w, r, z1 = (T1T2)s+t, z2 = T t2)).

Definition 2 (Security of 2XCR ). The 2XCR signature scheme is said to be secure if any PPT
forger algorithm F has at most negligible probability of winning the game below.

Setup The Challenger runs the key generation algorithm (y, x)← XKG(1`), generates a challenge
(T1 = gt1 , T2 = gt2) for random t1, t2

$← Zq and runs the forger F on input (y, T1, T2).
Signing queries F is provided access to a token-signing oracle TokSig(x, ·) that, given in input

a message m, outputs a signing-token (r, s) for m.

4 We could give the simulator access to the Gap-DH oracle O, and then S could use it to “test” all queries to H2 to
find the correct W . The reduction would be tighter (removing the factor of Q−1

2 from the success probability) but
would require the Gap-DH Assumption also in this case.
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Forgery The forger wins the game if it outputs a tuple (m∗, w∗, r∗, z∗1 , z
∗
2) such that: (i) (w∗, r∗, z∗1 , z

∗
2)

is a valid signature with respect to the message m∗ and the challenge (T1, T2) and (ii) m∗ was
not queried to the oracle TokSig(x, ·).

We point out that this definition of security is slightly different from the one given in [17].
Apart having the “double” challenge, we provide the forger with access to the more generic oracle
TokSig(x, ·) instead of an oracle that outputs signatures when queried on a message-challenge
pair. The following theorem proves the security of the scheme (for lack of space its proof appears
in Appendix C.1).

Theorem 4. The 2XCR signature scheme is secure according to Definition 2 under the CDH As-
sumption if H is modeled as a random oracle.

4.3 Shared Challenge Response Signatures

Here we introduce the notion of Shared Challenge Response (SCR) signatures. Let A and B be two
parties that share the same signing key. Very informally, an SCR signature of A and B on messages
m1,m2 respectively is jointly computed by the two parties and cannot be forged by a third party
that does not know the secret key.

In some sense the notion of SCR signatures is similar to that one of Dual Challenge-Response
(DCR) signatures introduced by Krawczyk in [17] with the difference that a DCR signature is
computed by two parties A and B, each with its own secret key.

As in the case of XCR signatures we define the notion of SCR signatures directly by presenting
the construction of the scheme.

SCR signature scheme Let SKG(1`) be the key generation algorithm that chooses a `-bit prime
q and a group G of order q. It picks a random x

$← Zq and outputs the verification key y = gx and
the secret key x.

Let A and B be two parties that share the signing key x and want to compute a signature
on messages m1,m2 where m1 is chosen by A and m2 is chosen by B. The signature is com-
puted interactively as follows. First A and B generate the values uA = gtA , rA = gkA and uB =
gtB , rB = gkB respectively. After having exchanged these values and the messages, the signature
is defined by uA, rA, uB, rB and the pair (z1 = g(tA+kA+H(m1,rA)x)(tB+kB+H(m1,rB)x), z2 = gtAtB ).
In particular A can compute (z1 = (uBrByH(m2,rB))(tA+kA+H(m1,rA)x), z2 = utAB ) while B computes
(z1 = (uArAyH(m1,rA))(tB+kB+H(m2,rB)x), z2 = utBA ). As they can compute the same signature string,
then each party is also able to verify the signature produced by the other party.

We observe that a SCR signature can be seen as a 2XCR signature by party A on message
m1 under challenge (uBrByH(m2,rB), uB) and at the same time a 2XCR signature by party B on
message m2 under challenge (uArAyH(m1,rA), uA). In this sense A and B interact with each other
to compute a 2XCR signature, each playing both the roles of challenger and signer.

Moreover the SCR scheme has the interesting property that a party can pre-compute (or receive)
a signing-token (r = gk, s = k+H(m, r)x) for a message m and then participate with another party
choosing m′ to the generation of a SCR signature on messages (m,m′).

We define the security of the SCR signature scheme as follows.
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Definition 3 (Security of the SCR signature scheme). The SCR signature scheme is said
to be secure if any PPT forger algorithm F has at most negligible probability of winning the game
below.

Setup The Challenger generates a pair of keys (y, x) ← SKG(1`) and then runs the forger F on
input y.

Signing queries F is provided access to a token-signing oracle TokSig(x, ·) that, given in input
a message m, outputs a signing-token (r, s) for m. If the same message m is queried more than
once, the same (r, s) is returned.

Challenge At some point F outputs a message m1 as the one for which it wants to produce a
forgery. The Challenger returns to F the signature token (r1 = gk1 , s1) for m1 and a random
value u1 = gt1 .

Forgery The forger wins the game if it outputs a tuple (m2, u2, r2, z1, z2) such that: (i) (u1, r1, u2, r2, z1, z2)
is a valid SCR signature for the messages m1,m2 where m1 is the message related to the Chal-
lenger and (ii) m2 was not queried to the oracle TokSig(x, ·).

In the definition above we observe two facts. First, the forger is allowed to choose even the
message m1 related to the Challenger. Second, we consider valid a forgery for messages m1,m2

even if F has asked m1 to the token signing oracle.
The following theorem proves the security of the SCR signature scheme (for lack of space its

proof appears in Appendix C.2).

Theorem 5. The SCR signature scheme is secure according to Definition 3 under the CDH As-
sumption if H is modeled as a random oracle.

The relationship between SCR signatures and IB-KA . It is not hard to see that in the IB-KA
protocol, the two parties compute a SCR signature on their identities (seen as messages) and then
set the session key as the hash of part of the signature string (z1, z2). The parties do not share the
signing key (which in this case is the master secret key of the KGC), but each of them has a signing
token for its identity. As we have seen, a signing token for a message m is sufficient for participating
to the generation of a signature for m without knowing the secret key. The proof below shows that
this intuition is correct, by showing that a successfull impersonation attack yields a forger for the
SCR scheme.

4.4 Active adversary during the test session

We are now finally able to prove the security of IB-KA in the case the test session does not have a
matching session. We do this by showing that we can build a forger for the SCR signature scheme
above. The construction of this forger requires an oracle that solves the DDH, and therefore the
reduction holds under the Gap-DH Assumption.

For sake of contradiction, let A be a PPT adversary that is able to break the protocol IB-KA
within time T with non-negligible advantage ε in the case the test session does not have a matching
session. Then we show how to exploit such A to solve the CDH problem in expected polynomial time
via the construction of a forger for SCR signatures. A is assumed to be a probabilistic polynomial
time (PPT) Turing machine with random tape ω that during its run asks a polynomial number of
queries to the random oracles H1 and H2 and to the key derivation oracle.
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The simulator is given as input G, g, y,H where y is the public key of the SCR signature scheme
and H is the hash function used in the SCR signature.

First we describe how S simulates the environment for a run of A. S sets the public parameters
of the KGC as MPK = (G, g, y,H1, H2) where (G, g, y) is its input, H1 = H, and H2 is a random
oracle controlled by S as described below. At the beginning of the game the simulator guesses the
test session by choosing at random the user (let us call him Bob) and the order number of the test
session. If n is an upper bound to the number of all the sessions initiated by A then the guess is
right with probability at least 1/n.

In order to simulate party corruption S must provide the adversary with the secret keys of any
party the adversary corrupts (except Bob who cannot be corrupted). S does this by querying the
“signature token oracle” for the SCR signature scheme. Given in input an identity ID of a user
who is not Bob (ID 6= B), S queries ID to the signature token oracle and receives r, s such that
gs = ryH1(ID,r).

For the case of Bob, the simulator simply chooses the rB component of Bob’s private key by
picking a random kB

$← Zq and setting rB = gkB . We observe that in this case S is not able to
compute the corresponding sB. However, since Bob is the user guessed for the test session, we can
assume that the adversary will not ask for his secret key.

For each pair (z1, z2) received in input, the random oracle H2 is simulated by choosing a random
string Z ∈ {0, 1}` and storing each triple (z1, z2, Z) in a table H2.

First we describe how to simulate sessions different from the test session. Here the main point
is that the adversary is allowed to ask session-key queries and thus the simulator must be able to
produce the correct session key for each of these sessions.

The simulator has full information about all the users’ secret keys except Bob. Therefore S can
easily simulate all the protocol sessions that do not include Bob, and answer any of the attacker’s
queries about these sessions. Hence we concentrate on describing how S simulates interactions with
Bob.

Assume that Bob has a session with Charlie (whose identity is the string C). If Charlie is an
uncorrupted party this means that S will generate the messages on behalf of him. In this case S
knows Charlie’s secret key and also has chosen his ephemeral exponent tC . Thus it is trivial to see
that S has enough information to compute the correct session key.

The case when the adversary presents a message 〈C, rC , uC〉 to Bob as coming from Charlie is
more complicated. Here is where S makes use of the Gap-DH oracle to answer a session-key query
about this session. The simulator replies with a message 〈B, rB, uB = gtB 〉 where tB is chosen by
S. Recall that the session key is H2(z1, z2) where z2 = utBC which the simulator can compute since
it knows tB. On the other hand z1 = g(sC+tC)(sB+tB). Notice that

gsC = rCy
H1(C,rC) and gsB = rBy

H1(B,rB)

which can be computed by the adversary. So z1 is the Diffie-Hellman result of the values uCgsC
and uBg

sB , therefore the adversary checks if the table H2 contains a tuple (z1, z2, Z) such that
z2 = utBC and DH(uCrCyH1(C,rC), uBrBy

H1(B,rB), z1) = “yes′′. If S finds a match then it outputs
the corresponding Z as session key for Bob. Otherwise it generates a random ζ

$← {0, 1}` and gives
it as response to the adversary. Later, for each query (z1, z2) to H2, if (z1, z2) satisfies the equation
above it answers with ζ. This makes oracle’s answers consistent.

Now we describe the simulation of the test session between Alice and Bob, If there is no matching
session at Bob, it means that the incoming message 〈B, ρB, uB = gtB 〉 from Bob to Alice is not sent
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by Bob, but it is originated by the adversary who is trying to impersonate Bob. Notice that the
adversary may use a value ρB = gλB of its choice as the public component of Bob’s private key (i.e.
different than rB = gkB which S simulated and for which it knows kB). The simulator announces
that he will forge on message m1 = A, Alice’s identity. It then receives A, rA (which could have been
queried before) and uA = gtA from the challenger. The simulator sends the message 〈A, rA, uA〉
as coming from Alice. The correct session key for the test session is the hash Z = H2(z1, z2)
where z1 = (uArAyH1(A,rA))(tB+λB+xH1(B,ρB)) and z2 = utBA . If the adversary has success into
distinguishing Z from a random value it must necessarily query the correct pair (z1, z2) to the
random oracle H2. This means that S can efficiently find the pair (z1, z2) in the table H2 using the
Gap-DH oracle. The tuple (B, uB, ρB, z1, z2) is a forgery for the SCR signature scheme.

4.5 Other security properties of IB-KA

In this section we show that the protocol IB-KA satisfies the other security properties described in
Appendix B.3.

Resistance to reflection attacks Here we extend the proof of security given in Section 4 to
support reflection attacks. We observe that in the case when the test session has a matching session
the proof remains valid even if the test session is between Bob and himself.

On the other hand, when there is no matching session we have to show a little modification of
the proof. In fact the proof actually does not work when the adversary sends a message with the
same value rB provided by the KGC (for which the simulator knows the discrete logarithm kB, but
cannot compute the corresponding sB). The issue is that the knowledge of sB is needed to extract
the solution of the CDH problem.

We point out that a reflection attack using a value ρB 6= rB is captured by the current proof.
Moreover it is reasonable to assume that a honest party refuses connections from itself that use a
“wrong” key.

In this section we show how to adapt the proof in this specific case. In particular, we show that
a successful run of the adversary enables the simulator to compute gu

2
instead of guv. As showed

in [18] by Maurer and Wolf, such an algorithm can be easily turned into a solver for CDH.
Let us consider the following modification of the proof given in Section 4. If in the test session the

adversary sends a message from Bob to Bob of type 〈IDB, rB, uB = gtB 〉 then the simulator picks
a random e

$← Zq and replies with message 〈IDB, rB, u
′
B = U e〉. We observe that in this case the

correct session key is the hash Z = H2(z1, z2) where z1 = g(kB+ud∗+ue)(kB+ud∗+tB) and z2 = guetB . If
the adversary has success into distinguishing Z from a random value it must necessarily query the
correct pair (z1, z2) to the random oracle H2. This means that S can efficiently find the pair (z1, z2)
in the table H2 using the Gap-DH oracle. Once it has recovered these values, it can compute:

gu
2

=

(
z1

gk
2
BU2kBd∗U ekBukBB z2z

d∗/e
2

) 1
d∗(d∗+e)

as desired.

Forward secrecy The protocol IB-KA satisfies the notion of weak forward secrecy described in
Appendix B.3, which means that IB-KA has forward secrecy only against passive attackers. In order
to prove this property, we show that it is just captured by the proof given in Section 4.1 in the
case when the test session has a matching session. Let Alice and Bob be the two parties involved in
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the test session. Observe that the simulator knows the master secret key. Hence it can provide the
private keys of Alice and Bob to the attacker whenever it asks for party corruption and it is also
able to give the master secret key of the KGC. This does not affect the rest of the proof, because
if the attacker succeeds into distinguishing the correct session key from a random one, we are still
able to use it to solve the CDH problem.

Though weak forward secrecy is a weaker notion of forward secrecy, we stress that it is the best
one can achieve in 2-message protocols that are implicitely authenticated (i.e. protocols where the
exchanged DH values do not carry authentication information with them, see [17] for details).

Resistance to Key Compromise Impersonation To see that the protocol IB-KA is resistant
to KCI attacks it suffices to observe that in the proof given in Section 4.4 (when the test session
has no matching session), when the adversary tries to impersonate Bob to Alice, we are able to
output Alice’s private key whenever it is asked by the adversary. It means that the proof continues
to be valid even in this case.

5 Comparisons with other IB-KA protocols

In this section we compare IB-KA with other id-based KA protocols from the literature. In par-
ticular, we consider the protocol by Boyd et al. [5] (BMP), which is the most efficient (among
pairing-based protocols) according to the survey of Chen et al. [8] and two protocols proposed very
recently by Boyd et al. [4] (BCNP1, BCNP2).

BMP is a three-round three-pass protocol that makes use of pairings. It is proved secure in
the CK model using random oracles under the Bilinear Diffie-Hellman Assumption, provides weak
forward secrecy but it is not resistant to KCI attacks. BCNP1 and BCNP2 are generic constructions
based on any CCA-secure IB-KEM. When implemented (as suggested by the authors of [4]) using
one of the IB-KEMs by Kiltz [15], Kiltz-Galindo [16] or Gentry [12] they lead to a two-pass single-
round protocol with (CK) security in the standard model. BCNP2 provides weak FS and resistance
to KCI attacks, while BCNP satisfies only the former property.

For our efficiency comparisons we consider a security parameter of 128 and implementations of
BMP, BCNP1 and BCNP2 with Type 3 pairings which are the most efficient pairings for this kind
of security level (higher than 80). Our protocol is assumed to be implemented in an elliptic curves
group G with the same security parameter. In this scenario elements of G and G1 need 256 bit to
be represented, while 512 bits are needed for G2 elements and 3072 bits for an element of GT .

We estimate the computational cost of all the protocols using the costs per operation for Type
3 pairings given by Chen et al. in [8]. The bandwidth cost is expressed as the amount of data in
bits sent by each party to complete a session of the protocol5.

The results are summarized in Table 1 assuming protocols BCNP1 and BCNP2 to be imple-
mented with Kiltz’s IB-KEM (the most efficient for this application according to the work of Boyd
et al. [4]). We defer to the original papers of BMP [5] and BCNP1, BCNP2 [4] for more details
about these costs.

Our protocol has the minimal bandwidth requirement, and its computational efficiency would
only be matched by the Okamoto-Tanaka protocol [20]. However we do not consider [20] in our
comparisons because we currently do not know a formal proof of security of it.

5 We do not consider the identity string sent with the messages as it can be implicit and, in any way, appears in all
the protocols.
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weak
KCI

Standard Efficiency
FS model Bandwidth Cost per party

BCNP1 7 3 3 768 56
BCNP2 3 3 3 1024 59
BMP∗1 3 7 7 512 23
IB-KA 3 3 7 512 6

∗1 While the other protocols are 2-pass and single-round, BMP has 3 rounds.

Table 1. Comparisons between IB-KA protocols.
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A The Forking Lemma

The Forking Lemma was proven by Pointcheval and Stern in [21] as a tool to prove the security of
signature schemes based on the Fiat-Shamir paradigm. For a message m, such a signature is a tuple
(σ1, h, σ2). The Forking Lemma states that if this type of signatures satisfies certain simulatability
requirements, then if there exist a forger that output a valid signature (σ1, h, σ2) for a message m,
then there exists another machine that outputs another valid signature for m which has the same
σ1 component.

Theorem 6 (Forking Lemma [21]). Let A be a probabilistic polynomial time Turing machine
whose input only consists of public data. We denote respectively by Q and R the number of queries
that A can ask to the random oracle and the signing oracle respectively. Assume that, within time
T , A produces, with probability ε ≥ 10(R + 1)(R + Q)/2k, a valid signature (m,σ1, h, σ2). If the
triples (σ1, h, σ2) can be simulated without the knowledge of the signing key, with an indistinguish-
able distribution probability, then there is another machine which has control over the machine ob-
tained from A replacing interaction with the signer by simulation and produces two valid signatures
(m,σ1, h, σ2) and (m,σ1, h

′, σ′2) such that h 6= h′ in expected polynomial time T ′ ≤ 120686QT/ε.

Roughly speaking the Forking Lemma shows that if an adversary succeeds into finding a forgery
against a signature scheme, then a “rewind” of this adversary is likely to succeed into finding a
second forgery for the same message with non-negligible probability, with the same first component.
More precisely this result applies to signatures of the form (m,σ1, h, σ2) derived via the Fiat-
Shamir methodology when the signing oracle can be simulated without knowledge of the secret
key and produces signing keys with an indistinguishable distribution probability. In other words
Pointcheval and Stern [21] generalized in a non-interactive fashion the technique of rewinding a
three-pass honest-verifier zero-knowledge identification protocol. In fact, as described by Fiat and
Shamir [11], these protocols can be turned into generic digital signature schemes in the random
oracle model.

We apply the Forking Lemma to our Shared Challenge-Response Signature SCR, which although
different from a “standard” signature scheme, still satisfies all the requirements of the Forking
Lemma.
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B Definitions for identity-based key agreement

The security of our protocols is analyzed in a version of the Canetti-Krawczyk (CK) [6, 7] model
for key agreement, adapted to the identity-based setting. We present an informal summary of the
model and we refer the reader to [6, 7] for details.

An identity-based key-agreement protocol is runned by parties interacting in a network where
each party is identified by a unique identity which is publicly known to all the other parties (e.g.
Alice’s identity is a string IDA). In addition there exists a trusted entity called Key Generation
Center (KGC) that generates the public parameters of the system and also issues secret keys to
users associated with their public identities, e.g. the KGC generates a secret key SKA associated
to IDA.

An instance of the protocol is called a session. The two parties participating in the session are
called its peers. Each peer maintains a session state which contains incoming and outgoing messages
and its random coins. If the session is completed then each party outputs a session key and erases
its session state. A session may also be aborted. In this case no session key is generated.

Each party assigns an unique identifier to a session he is participating in. For simplicity, we
assume it to be the quadruple (Alice,Bob,mOut,mIn) where Alice is the identity of the party, Bob
its peer, mOut and mIn are the outgoing and incoming messages, respectively, for Alice. If Alice
holds a session (Alice,Bob,mOut,mIn) and Bob holds a session (Bob,Alice,mIn,mOut) then the
two sessions are matching.

B.1 The adversary

The CK definition models a very realistic adversary which basically controls all communication in
the network. In particular it can intercept and modify messages exchanged by parties, delay or block
their delivery, inject its own messages, schedule sessions etc. The adversary is allowed to choose the
identities of the parties, and obtain private keys from the KGC for identities of its choice.

Finally we allow the adversary to access some of the parties’ secret information, via the following
attacks: party corruption, state-reveal queries and session-key queries. When an adversary corrupts
a party, it learns its private information (the private key and all session states and session keys
currently stored), and it later controls its actions. In a state-reveal query to a party running a
session, the adversary learns the session state for that session (since we assume that session states
are erased at the end of the session, such query makes sense only against sessions that are still
incomplete). Finally a session-key query allows the adversary to learn the session key of a complete
session. A session is called exposed if it or its matching session (if existing) is compromised by one
of the attacks above.

B.2 Security Definition

Let A be a probabilistic polynomial time adversary modeled as described above. Then consider the
following experiment running A.

At the beginning of the game the adversary receives in input the public parameters of the system
(generated by the KGC) and then can perform all the actions described in the section before.

At some point, A chooses a test session among all the completed and unexposed sessions. We
toss a random bit b $← {0, 1}. If b = 0 we give A the session key K0 of the test session. Otherwise
we take a random session key K1 and provide A with K1.
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After having received Kb, the adversary can continue to perform its actions against the protocol
with the exception that it cannot expose the test session. At the end of the game A outputs a bit
b′ as its guess for b.

Definition 4. An identity-based key-agreement protocol is said to be secure if for any PPT adver-
sary A the following holds:

1. if two uncorrupted parties complete matching sessions then they output the same session key
with overwhelming probability;

2. the probability that A guesses the correct b in the above experiment is at most 1/2 plus a negligible
fraction of the security parameter.

We define the advantage of A as AdvIB−KAA = |Pr[b = b′]− 1/2|.

B.3 Additional security properties

In addition to the notion of session key security presented above, an identity-based key-agreement
protocol should satisfy other important properties: resistance to reflection attacks, forward secrecy
and resistance to key-compromise impersonation attacks.

A reflection attack occurs when an adversary can compromise a session in which the two parties
have the same identity (and the same private key). Though, at first glance, this seems to be only of
theoretical interest, there are real-life situations in which this scenario occurs. For example consider
the case when Alice is at her office and wants to establish a secure connection with her PC at home,
therefore running a session between two computers with the same identity and private key.

We would also like to achieve resistance to key compromise impersonation (KCI) attacks. Sup-
pose that the adversary learns Alice’s private key. Then, it is trivial to see that this knowledge
enables the adversary to impersonate Alice to other parties. A KCI attack can be carried out when
the knowledge of Alice’s private key allows the adversary to impersonate another party to Alice.

Finally, Forward secrecy is probably the most important additional security property we would
like to achieve. We say that a KA protocol has forward secrecy, if after a session is completed and
its session key erased, the adversary cannot learn it even if it corrupts the parties involved in that
session. In other words, learning the private keys of parties should not jeopardize the security of
past completed sessions.

A relaxed notion of forward secrecy (which we call weak) assumes that only past sessions in
which the adversary was passive (i.e. did not choose the messages) are not jeopardized.

C Proofs

C.1 Proof of Theorem 4

Let F be a PPT algorithm that can break the security of 2XCR with non-negligible probability.
Then we show how to use the forger F to build an efficient solver S for the CDH problem. S receives
as input (G, g, U = gu, V = gv) and wants to compute W = guv.

The simulator chooses a random t1
$← Zq, sets y = U, T1 = gt1 , T2 = V and runs the forger F

on input (y, T1, T2).
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The random oracle H and the token-signing oracle TokSig are simulated as follows. When
queried on a message m, S chooses random s, d

$← Zq, sets r = gs/yd, outputs (r, s) as the signing-
token for m and H(m, r) = d as the random oracle response. Note that these tokens are distributed
exactly as in the real scheme.

At some point F will output a forgery (m∗, w∗, r∗, z∗1 , z
∗
2) such that m∗ was not queried to

the token-signing oracle, z∗1 = (w∗r∗yH(m∗,r∗))t1+v and z∗2 = (w∗)v. Let d∗ be the value chosen
by the simulator as the output of the query H(m∗, r∗). Given this forgery, S can compute τ =

z∗1
z∗2 (w∗r∗yd∗ )t1

= (r∗)vW d∗ .
We observe that our scheme and this simulation fit the requirements needed for applying the

Forking Lemma [21]. First, our signatures are almost standard Fiat-Shamir type signatures. Second,
in our security proof S is able to generate signatures (i.e. signing token) without the knowledge of
the secret key and each with an indistinguishable distribution probability. Thus, if we apply the
result of the Forking Lemma to our case we obtain that if F has output a successfull forgery in its
first run, then a second run of F will do so with non-negligible probability (for completeness we
recall the statement of the Forking Lemma in Appendix A).

Therefore the simulator runs again F on the same input (y, T1, T2) and with the same random
coins as in the previous successful run. The only difference is that H(m∗, r∗) now is answered with
a new random value d′∗. Subsequent queries to H are answered with different random values as
well. At the end of the second run F will output a successful forgery (m∗, w′∗, r∗, z′∗1 , z

′∗
2 ) with

non-negligible probability. So S can compute τ ′ = z′∗1
z′∗2 (w′∗r∗yd′∗ )t1

= r∗vW d′∗ and then extract

W = (τ/τ ′)(d
∗−d′∗)−1

.
In conclusion, we showed an efficient algorithm S that is able to solve the CDH problem using

an efficient forger F for the 2XCR signature scheme, which turns out to be secure according to
Definition 2.

C.2 Proof of Theorem 5

The proof of this theorem is similar to that of Theorem 4 for the 2XCR scheme.
Let F be a PPT algorithm that can break the security of SCR with non-negligible probability.

Then we show how to use the forger F to build an efficient solver S for the CDH problem. S receives
as input (G, g, U = gu, V = gv) and wants to compute W = guv.

The simulator runs the forger F on input y = U . The random oracle H and the token-signing
oracle TokSig are simulated as follows. When queried on a message m, S chooses random s, d

$← Zq,
sets r = gs/yd, outputs (r, s) as the signing-token for m and H(m, r) = d as the random oracle
response. Note that these tokens are distributed exactly as in the real scheme.

At some point F will output a message m1 and the simulator will respond with u1 = V and
(r1, s1) generated as in signing oracle queries. Finally F will output a forgery (m2, u2, r2, z1, z2)
such that m2 was not queried to the token-signing oracle, z1 = g(v+s1)(s2+t2) and z2 = (u2)v. Let d
be the value chosen by the simulator as the output of the query H(m2, r2). Given this forgery, S
can compute τ = z1

z2(u2r2yd)s1
= rv2W

d.
We observe that our scheme and this simulation fit the requirements needed for applying the

Forking Lemma [21]. First, our signatures are almost standard Fiat-Shamir type signatures. Second,
in our security proof S is able to generate signatures (i.e. signing token) without the knowledge of
the secret key and each with an indistinguishable distribution probability. Thus, if we apply the
result of the Forking Lemma to our case we obtain that if F has output a successfull forgery in its
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first run, then a second run of F will do so with non-negligible probability (for completeness we
recall the statement of the Forking Lemma in Appendix A).

Therefore the simulator runs again F on the same input y and with the same random coins as
in the previous successful run. The only difference is that H(m2, r2) now is answered with a new
random value d′. Subsequent queries to H are answered with different random values as well. At
the end of the second run F will output a successful forgery (m2, u

′
2, r2, z

′
1, z
′
2) with non-negligible

probability. Note that in its second run F may choose a different message m′1, but this does not
affect the proof because the simulator always knows the corresponding signing token r′1, s

′
1. So S

can compute τ ′ = z′1

z′2(u′2r2y
d′ )s
′
1

= rv2W
d′ and then extract W = (τ/τ ′)(d−d

′)−1
as desired.

In conclusion, we showed an efficient algorithm S that is able to solve the CDH problem using
an efficient forger F for the SCR signature scheme, which turns out to be secure according to
Definition 3.

D Security analysis of related protocols

As an additional contribution of the paper, in this section we present a formal security analysis of
two id-based KA protocols that use techniques that inspired our work: the first by Gunther [13]
and the second by Saeednia [22] (which is is an improvement of the previous one). In particular we
show variants of these protocols that allow to prove their security in the CK model while only an
intuition of security was stated in the original works [13, 22].

D.1 Gunther’s protocol

We present a slightly different variant of Gunther’s protocol [13] which we prove secure under the
Gap-DH and KEA assumptions.

The Knowledge of Exponent Assumption (KEA) was first stated by Damg̊ard in [9] and later
discussed in [1, 14]. Let G be a group of prime order q with generator g. Then we say that KEA
holds over G if: for any efficient algorithm A that on input (g, ga) outputs a pair (B,C) such that
C = Ba there exists an efficient “extractor” algorithm A′ that given the same input of A outputs
(B,C, b) such that C = Ba and B = gb.

The modified protocol is summarized in Figure 1. We recall that the session key in the original
protocol was just z1z2z3 and the key generation process computed the hash only on the identity
string H(ID). So what we change is: to hash the session key and include the value rID when hashing
the identity. Since the key derivation process is essentially an El Gamal signature on the identity
string, the latter modification follows what Pointcheval and Stern proposed in [21] to prove the
security of the El Gamal signature scheme.

The following theorem proves the security of the protocol.

Theorem 7. If H1 and H2 are modeled as random oracles and the Gap-DH and KEA assumptions
hold, then Gunther’s protocol is secure according to definition Definition 4.

Proof. As in the proof of IB-KA we distinguish between the case when the adversary chooses a test
session that has a matching session and the other case when the test session hash no matching
session. In the former we show that we can break directly the CDH Assumption, while the latter
requires the Gap-DH and KEA assumptions.
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Gunther’s protocol

Setting: A Key Generation Center (KGC) chooses a group G of prime order q together with a

random generator g ∈ G and an exponent x
$← Zq. KGC publishes G, q, g, y = gx and two hash func-

tions H1, H2. It distributes to each user with identity U a private key (rU , sU ) computed as follows:

rU = gk, sU = k−1(H1(U, rU )− xrU )mod q for random k
$← Zq.

Key agreement: A and B choose ephemeral private exponents tA, wA and tB , wB , respectively.

A IDA, rA - B

IDB , rB�
uA = rtAB , vA = gwA

-
uB = rtBA , vB = gwB

�

z1 = usA
B z1 = (gH1(IDA,rA)/y−rA)tB

z2 = (gH1(IDB ,rB)/y−rB )tA z2 = usB
A

z3 = vwA
B z3 = vwB

A

Z = H2(z1z2z3)

Fig. 1. A and B share session key Z.

The test session has a matching session For sake of contradiction assume there exists an
adversary A that is able to break with non-negligible advantage the security of Gunther’s protocol
choosing a test session that has a matching session. Then we can build an efficient algorithm S
that can solve the CDH problem with non-negligible probability.

S receives in input a tuple (G, q, g, U = gu, V = gv) and wants to compute W = guv. First S
simulates the KGC setting up the public parameters of the protocol. It chooses a random x

$← Zq
and sets y = gx. Then it provides the adversary with input (G, q, g, y) and oracle access to H1 and
H2. Since H1 and H2 are modeled as random oracles, S can program their output. For each input
(ID, rID) S chooses a random eID

$← Zq and sets H1(ID, rID) = eID. Similar work is done for H2.
As it is described in Appendix B the adversary is allowed to ask the KGC for the secret keys of

users of its choice (except for the two parties involved in the test session). Hence S must be able to
simulate the key derivation process. If the adversary asks for the secret key of a user, the simulator
is always able to respond, since it has chosen the master secret key x by itself.

At the beginning of the game S guesses the test session and its holder (let us call him Bob). Also
let Alice be the other party of the session. If n is an upper bound to the number of all the sessions
initiated by A then the guess is right with probability at least 1/n. Sessions different from the test
session are easily simulated since S knows all the informations needed to compute the session keys
and answer to session key queries.

Without loss of generality we assume that the test session is at Bob (thus the corresponding
matching session is at Alice). As pointed out in the proof of IB-KA if the sessions at Alice and Bob
are matching, it means that the adversary was passive and not injecting any message during the
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test session. Thus the parties (i.e. the simulator in this case) choose the messages exchanges in this
session.

Let (A, rA, sA), (B, rB, sB) be the identity informations and the secret keys of Alice and Bob
respectively. The simulator uses these values to create the first two messages between the parties.
To generate the other ones S chooses random tA, tB

$← Zq and sets 〈uA = rtAB , vA = U〉 and
〈uB = rtBA , vB = V 〉. Thus S is implicitly setting wA = u,wB = v. Since H2 is modeled as a random
oracle, if the adversary has success into distinguishing the real session key from a random value,
it must have queried H2 on the correct input z̄ = usAB usBA guv. Thus S can choose a random value
among all the queries that it received from the adversary and then extract W = z̄/(usAB usBA ) from
it. In conclusion S can find W with non-negligible probability ε/nQ2. This completes the proof of
this case.

Remark 1. If we would assume the simulator having access to a Gap-DH oracle O, S might use
the oracle to test, for all queries z made by the adversary, if DH(U, V, z3) = “yes′′ (where z3 is
computed as z/z1z2) and then output z3 for which the test is satisfied. In this case the security of
Gunther’s protocol would reduce to the Gap-DH Assumption instead of CDH, but we would not
have the Q2 loss factor.

Test session does not have a matching session For sake of contradiction, let A be a PPT
adversary that is able to break Gunther’s protocol with non-negligible advantage ε in the case the
test session does not have a matching session. Then we show how to exploit such A to solve the CDH
problem with non-negligible probability. S is given in input an instance (G, q, g, U = gu, V = gv)
of the CDH problem and wants to output W = guv.

First, S sets the public parameters of the KGC as MPK = (G, q, g, y = U,H1, H2) where H1

and H2 are random oracles controlled by S as described below. Let n be an upper bound to the
number of all the sessions initiated by A, then the simulator guesses with probability at least 1/n
the test session chosen by the adversary. We assume Bob to be its peer.

In order to simulate party corruption S provides the adversary with access to a key derivation
oracle that given in input a user’s identity outputs the associated secret key. The random oracle H1

and the key derivation oracle are programmed as follows. Given in input an identity ID of a user
different from Bob (ID 6= B), S chooses random e, d

$← Zq, sets r = geyd, s = −rd−1, H1(ID, r) =
es, outputs (r, s) as private key for the user ID. We assume that the simulator outputs the same
answer whenever it is queried on the same input. For the case of Bob the simulator chooses the rB
component of Bob’s provate key by picking a random kB

$← Zq and setting rB = gkB . It also sets
H1(B, rB) = eB for a random eB ∈ Zq. We observe that in this case S is not able to compute the
corresponding sB. However, since Bob is the user guessed for the test session, we can assume that
the adversary will not ask for his secret key.

For each value z̄ received in input, the random oracle H2 is simulated by choosing a random
string Z ∈ {0, 1}` and storing the pair (z̄, Z) in a table H2.

First we describe how to simulate sessions different from the test session. The simulator has full
information about all the users’ secret keys except Bob. It turns out that S can easily run protocol
sessions and answer to attacker’s queries about all parties but Bob. Hence we will concentrate on
describing how S simulates interactions with Bob.

Assume that Bob has a session with Charlie. If Charlie is an uncorrupted party this means that
S will generate the messages on behalf of him. In this case S knows Charlie’s secret key and also
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has chosen his ephemeral exponents tC , wC . Thus it is trivial to see that S has enough information
to compute the correct session key.

The case when the adversary presents messages 〈C, rC〉, 〈uC , vC〉 to Bob as coming from Charlie
is more complicated. The simulator replies with messages 〈B, rB〉, 〈uB = rtBC , vB = gwB 〉 where
tB, wB are chosen by S. To answer to a session-key query to Bob, S makes use of the Gap-DH oracle
as follows. Recall that the session key is H2(z1z2z3) and that the simulator can compute z1 = rsCtBC

and z3 = vwBC since it knows tB and wB. Notice that:

rsBB = gH1(B,rB)y−rB and rtCB = uC .

So z2 = rsBtCB is the Diffie-Hellman result of the two values above. Thus the simulator can check if
the table H2 contains a tuple (z̄, Z) such that DH(uC , gH1(B,rB)y−rB , z̄/z1z3) = “yes′′. If S finds a
match then it outputs the corresponding Z as session key for Bob. Otherwise it generates a random
ζ

$← {0, 1}` and gives it as response to the adversary. Later, for each query z̄ to H2, if z̄ satisfies
the equation above it answers with ζ. This makes oracle’s answers consistent.

Now we describe the simulation of the test session between Alice and Bob, assuming Alice as the
owner of the session. If there is no matching session at Bob, it means that the incoming messages
〈B, ρB〉, 〈uB, vB〉 from Bob to Alice are not sent by an honest party, but they are originated from
the adversary. Notice that the adversary may use a value ρB = gλB of its choice as the public
component of Bob’s private key (i.e. different than rB = gkB which S simulated and for which
it knows kB). The simulator replies with the messages 〈A, rA〉, 〈uA = V, vA = gwA〉 outgoing
from Alice, implicitely setting tA = v/λB. The correct session key for the test session is the hash
Z = H2(z̄) where z̄ = usAB (geBy−ρB )v/λBvwAB . We notice that S is able to compute z1 and z3. If
the adversary has success into distinguishing Z from a random value it must necessarily query the
random oracle H2 on z̄. This means that S can efficiently find z̄ in the table H2 using the Gap-DH
oracle and then exctract z2 = z̄/z1z3 = V eB/λBW−ρB/λB .

Thus, if A succeeds with advantage ε, then S can find z2 with probability at least ε/n. If the
adversary has used ρB = rB then S can extract W = (z2/(V kB/eB ))−kB/rB , otherwise it proceeds
as follows.

The simulator runs again A with the same input and the same random coins as in the previous
successful run. The only difference is that H1(B, ρB) is answered with a new random value e′B.
Subsequent queries to H1 are answered with different random values as well.

Changing random oracle responses after H1(B, ρB) can lead A to make different random tosses
after it sees that. Hence we assume that in the test session it creates a message 〈u′B, v′B〉. The
adversary may also choose a different peer for the test session. Without loss of generality we
continue to call her Alice, but assume she has a different secret key (r′A, s

′
A).

If we apply the result of the Forking Lemma, we obtain that A is likely to succeed in this
“repeat” experiment with non-negligible probability. Thus, using the same procedure as in the
first run, S obtains from A a second value z′2 = V e′B/λBW ρB/λB from which it can compute τ =(
z2
z′2

)(eB−e′B)−1

= V 1/λB . In other words we have an algorithm that given in input a pair (g, gv) is

returning in output (ρB = gλB , τ) such that τ = V 1/λB . If the KEA assumption holds, then there
exists an extractor algorithm that given the same input (g, gu) outputs (ρB, τ, λB). If S runs such

algorithm can obtain λB and use it to extract W =
(

z2
V λB/eB

)−ρ−1
B .
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Vulnerability to reflection attack In this section we show that Gunther’s protocol is vulnerable
to the reflection attack. We recall that this attack occurs when an adversary tries to impersonate a
party, e.g. Bob to Bob himself. In the case of Gunther’s protocol we can restrict this attack to the
case when an adversary presents to Bob the first message containing Bob’s identity B and the key
rB. In particular, we do not consider the case in which the adversary uses a value r′B 6= rB because
one can imagine that the honest Bob (who knows his secret key rB) refuses the connections from
himself with r′B 6= rB.

In this scenario, when (the honest) Bob generates uB = gtB , vB = gwB and the adversary sends
u′B = gt

′
B , v′B = gw

′
B the session key will be (rsBB )tB+t′BgwBw

′
B . Thus an adversary, after seeing the

message from Bob, can set u′B = gt/uB and v′B = gw
′
B and then is able to compute the session key

H(z̄) where z̄ = (rsBB )t · vw
′
B

B = (gH(B,rB)y−rB )t · vw
′
B

B .

Other security properties Following arguments similar to those used for protocol IB-KA in
Section 4.5, it is possible to show that Gunther’s protocol is resistant to KCI attacks and has weak
forward secrecy.

D.2 Saeednia’s protocol

Saeednia proposed in [22] a variant of Gunther’s protocol that allows to reduce to 2 the number of
messages exchanged by the parties. The idea of Saeednia was basically to use a different equation for
computing the El Gamal signature to generate users’ keys. Here we propose a variant of Saeednia’s
protocol that can be proved secure in the CK model under the Gap-DH assumption. The modified
protocol is summarized in Figure 2.

Saeednia’s protocol

Setting: A Key Generation Center (KGC) chooses a group G of prime order q together with a

random generator g ∈ G and an exponent x
$← Zq. KGC publishes G, q, g, y = gx and two hash func-

tions H1, H2. It distributes to each user with identity U a private key (rU , sU ) computed as follows:

rU = gk, sU = kH1(U, rU ) + xrU mod q for random k
$← Zq.

Key agreement: A and B choose ephemeral private exponents tA and tB , respectively.

A IDA, rA, uA = gtA - B

IDB , rB , uB = gtB�

z1 = usA
B z1 = (r

H1(IDA,rA)
A yrA)tB

z2 = (r
H1(IDB ,rB)
B yrB )tA z2 = usB

A

z3 = utAB z3 = utBA

Z = H2(z1z2, z3)

Fig. 2. A and B share session key Z.
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We did almost the same modifications proposed for Gunther’s protocol in Appendix D.1, namely
adding the value r when hashing the identity and hashing the session key. We recall that the session
key in the original version of the protocol is the value z1z2z3 where z3 is needed to obtain (weak)
FS. In our variant we include z3 in the hash of the session key as H2(z1z2, z3).

The following theorem proves the security of the modified Saeednia’s protocol.

Theorem 8. Saeednia’s protocol is secure according to Definition 4 under the Gap-DH assumption
if H1 and H2 are modeled as random oracles.

Proof. To prove the theorem we distinguish between the case when the adversary chooses a test
session that has a matching session and the other case when the test session hash no matching
session. In the former we show that we can break the CDH Assumption, while the latter relies on
the Gap-DH Assumption.

The test session has a matching session For sake of contradiction assume there exists an
adversary A that is able to break with non-negligible advantage the security of Saeednia’s protocol
choosing a test session that has a matching session. Then we can build an efficient algorithm S
that can solve the CDH problem with non-negligible probability.

S receives in input a tuple (G, q, g, U = gu, V = gv) and wants to compute W = guv. First S
simulates the KGC setting up the public parameters of the protocol. It chooses a random x

$← Zq
and sets y = gx. Then it provides the adversary with input (G, q, g, y) and oracle access to H1 and
H2. Since H1 and H2 are modeled as random oracles, S can program their output. For each input
(ID, rID) S chooses a random eID

$← Zq and sets H1(ID, rID) = eID. Similar work is done for H2.
As it is described in Appendix B the adversary is allowed to ask the KGC for the secret keys of

users of its choice (except for the two parties involved in the test session). Hence S must be able to
simulate the key derivation process. If the adversary asks for the secret key of a user, the simulator
is always able to respond, since it has chosen the master secret key x by itself.

At the beginning of the game S guesses the test session and its holder (let us call him Bob).
Also let Alice be the other party of the session. Sessions different from the test session are easily
simulated since S knows all the informations needed to compute the session keys and answer to
session key queries.

Without loss of generality we assume that the test session is at Bob (and thus the corresponding
matching session is at Alice). According to the definition of security, the two parties are uncorrupted
at the moment of the test session (i.e. not controlled by the adversary), thus the simulator gets to
choose the messages for both them, even for Bob.

Let (A, rA, sA), (B, rB, sB) be the identity informations and the secret keys of Alice and Bob
respectively. The simulator sets Alice’s message as (A, rA, uA = U) while the one from Bob is
(B, rB, uB = V ). S is implicitly setting tA = u, tB = v. Since H2 is modeled as a random oracle, if
the adversary has success into distinguishing the real session key from a random value, it must have
queried H2 on the correct input (z = usAB usBA , z3 = guv). Thus S can choose a random value among
all the queries that it received from the adversary. Since the number of queries Q2 is polynomially
bounded, the simulator can find z3 = W with non-negligible probability ε/nQ2. This completes the
proof of this case.

Remark 2. If we would assume the simulator having access to a Gap-DH oracle O, S might use
the oracle to test, for all queries (z, z3) made by the adversary, if DH(U, V, z3) = “yes′′ and then
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output z3 for which the test is true. In this case the security of Saeednia’s protocol would reduce
to the Gap-DH Assumption instead of CDH, but we would not have the Q2 loss factor.

Test session does not have a matching session For sake of contradiction, let A be a PPT
adversary that is able to break Saeednia’s protocol with non-negligible advantage ε in the case when
the test session does not have a matching session. Then we show how to exploit such A to solve the
CDH problem with non-negligible probability. S is given in input an instance (G, q, g, U = gu, V =
gv) of the CDH problem and wants to output W = guv.

First, S sets the public parameters of the KGC as MPK = (G, q, g, y = U,H1, H2) where H1

and H2 are random oracles controlled by S as described below. The simulator also guesses the test
session by choosing at random the user (let us call him Bob) and the order number of the test
session. If n is an upper bound to the number of all the sessions initiated by A then the guess is
right with probability at least 1/n.

In order to simulate party corruption S provides the adversary with access to a key derivation
oracle that given in input a user’s identity outputs the associated secret key. The random oracle H1

and the key derivation oracle are programmed as follows. Given in input an identity ID of a user who
is not Bob (ID 6= B), S chooses random e, d

$← Zq, sets r = geyd, H1(ID, r) = −rd−1, s = −erd−1,
outputs (r, s) as private key for the user ID. We assume that the simulator outputs the same
answer whenever it is queried on the same input. For the case of Bob the simulator chooses the rB
component of Bob’s private key by picking a random kB

$← Zq and setting rB = gkB . It also sets
H1(B, rB) = eB for a random eB ∈ Zq. We observe that in this case S is not able to compute the
corresponding sB. However, since Bob is the user guessed for the test session, we can assume that
the adversary will not ask for his secret key.

For each pair (z, z3) received in input, the random oracle H2 is simulated by choosing a random
string Z ∈ {0, 1}` and storing each triple (z, z3, Z) in a table H2.

First we describe how to simulate sessions different from the test session. The simulator has full
information about all the users’ secret keys except Bob. It turns out that S can easily run protocol
sessions and answer to attacker’s queries about all parties but Bob. Hence we will concentrate on
describing how S simulates interactions with Bob.

Assume that Bob has a session with Charlie. If Charlie is an uncorrupted party this means that
S will generate the messages on behalf of him. In this case S knows Charlie’s secret key and also
has chosen his ephemeral exponent tC . Thus it is trivial to see that S has enough information to
compute the correct session key.

The case when the adversary presents a message 〈C, rC , uC〉 to Bob as coming from Charlie is
more complicated. The simulator replies with a message 〈B, rB, uB = gtB 〉 where tB is chosen by
S. To answer to a session-key query to Bob, S makes use of the Gap-DH oracle as follows. Recall
that the session key is H2(z1z2, z3) and that the simulator can compute z1 = gsCtB and z3 = utBC
since it knows tB. Notice that:

gsB = r
H1(C,rC)
C yrC and gtC = uC .

So z2 = gsBtC is the Diffie-Hellman result of the two values above. Thus the simulator can check if
the table H2 contains a tuple (z̄, z3, Z) where DH(uC , gsB , z̄/z1) = “yes′′. If S finds a match then
it outputs the corresponding Z as session key for Bob. Otherwise it generates a random ζ

$← {0, 1}`
and gives it as response to the adversary. Later, for each query (z, z3) to H2, if (z, z3) satisfies the
equation above it answers with ζ. This makes oracle’s answers consistent.
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Now we describe the simulation of the test session between Alice and Bob, assuming Alice as
the owner of the session. If there is no matching session at Bob, it means that the incoming message
〈B, ρB, uB〉 from Bob to Alice is not sent by an honest party, but it is originated from the adversary.
Notice that the adversary may use a value ρB = gλB of its choice as the public component of Bob’s
private key (i.e. different than rB = gkB which S simulated and for which it knows kB). The
simulator replies with the message 〈A, rA, uA = V 〉 outgoing from Alice. The correct session key
for the test session is the hash Z = H2(z1z2, z3) where z1 = usAB , z2 = (ρeBB yρB )v and z3 = gvtB .
If the adversary has success into distinguishing Z from a random value it must necessarily query
the correct pair (z1z2, z3) to the random oracle H2. This means that S can efficiently find the pair
(z1z2, z3) in the table H2 using the Gap-DH oracle. Thus, if A succeeds with advantage ε, then S
can find the pair (z1z2, z3) with probability at least ε/n. If the adversary has used ρB = rB then S
can extract W = (z2/(V kBeB))r

−1
B , otherwise it proceeds as follows.

The simulator runs again A with the same input and the same random coins as in the previous
successful run. The only difference is that H1(B, ρB) is answered with a new random value e′B.
Subsequent queries to H1 are answered with different random values as well.

Changing the random oracle responses after H1(B, ρB) can lead A to make different random
tosses after he sees that. Hence we assume that in the test session it creates a message 〈B, ρB, u′B〉.
The adversary may also choose a different peer for the test session. Without loss of generality we
continue to call her Alice, but assume she has a different secret key (r′A, s

′
A).

If we apply the result of the Forking Lemma, we obtain that A is likely to succeed in this repeat
experiment with non-negligible probability. Thus S obtains from A a second successful pair (z′, z′3)

such that z′ = z′1z
′
2 where z′1 = gt

′
Bs
′
A and z′2 = V λBe

′
BW ρB . Then it computes τ =

(
z2
z′2

)(eB−e′B)−1

and finally extracts W =
(
z2
τeB

)ρ−1
B .

Other security properties Saeednia’s protocol with the modifications presented above satisfies
resistance to KCI and reflection attacks and has weak forward secrecy. To see this, it is possible to
observe that the same arguments given in Section 4.5 for the IB-KA protocol apply to this case. In
particular, resistance to reflection attacks can be proven under the Square-DH assumption as well,
namely we can build an algorithm that computes gu

2
when given in input g, gu.
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