
New logic minimization techniques with
applications to cryptology.

Joan Boyar∗

joan@imada.sdu.dk
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Abstract

A new technique for combinational circuit optimization is described in the
context of S-boxes. The technique is a two-step process. In the first step, the
non-linearity of the circuit – as measured by the number of non-linear gates it
contains – is reduced. The second step reduces the number of gates in the linear
components of the already reduced circuit. The technique can be applied to
arbitrary circuits, and seems to yield improvements even on circuits that have
already been optimized by standard methods. We apply our technique to the
S-box of the Advanced Encryption Standard (AES). The result is, as far as we
know, the smallest circuit yet constructed for this function.

Keywords: AES; S-box; finite field inversion; circuit complexity; multiplica-
tive complexity.

1 Introduction

Constructing an optimal circuit for an arbitrary function is an intractable problem
under almost any meaningful metric (gate count, depth, energy consumption, etc.). In
practice, no known techniques can necessarily find optimal circuits for functions with
as few as eight Boolean inputs and one Boolean output (there are 2256 such functions).
For example, the multiplicative circuit complexity of the Boolean function E8

4 , which
is true if and only if exactly four of its eight input bits are true, is unknown [1]. In
practice, we build circuit implementations of functions using a variety of heuristics.
Many of these heuristics have exponential time complexity and thus can only be
applied to small components of a circuit being built. This works reasonably well
for functions that naturally decompose into repeated use of small components. Such
functions include arithmetic functions (which we often build using full adders), matrix
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multiplication (which decomposes into multiplication of small submatrices), and more
complex functions such as cryptographic functions based on substitution-permutation
networks.

This work presents a new technique for circuit optimization. The technique can
be applied to arbitrary circuits, and seems to yield improvements even on circuits
that have already been optimized by standard methods. We apply our technique to
the S-box of AES, which, in addition to being used in AES, has been used in several
proposals for a new hash function standard1. The result is, as far as we know2, the
smallest circuit yet constructed for this function. The circuit contains 32 AND gates
and 83 XOR/XNOR gates for a total of 115 gates.

Our circuits are over the basis {⊕,∧, 1}. This basis is logically complete: any
Boolean circuit can be transformed into this form using only local replacements. The
circuit operations can be viewed either as performing Boolean logic or arithmetic
modulo 2. The number of ∧ gates is called the multiplicative complexity of the cir-
cuit. Connected components of the circuit containing ∧ gates are called non-linear.
Components free of ∧ gates are called linear.

2 Combinational circuit optimization

The techniques described here would generally be applied to subcircuits of a larger
circuit, such as an S-box in a cryptographic application, which have relatively few
inputs and outputs connecting them to the remainder of the circuit. The key observa-
tion that led us to our techniques is that circuits with low multiplicative complexity
will naturally have large sections which are purely linear (i.e. contain only ⊕ gates).
Thus

it is plausible that a two-step process, which first reduces multiplicative
complexity and then optimizes linear components, leads to small circuits.

We have, of course, no way of proving this hypothesis. But the constructions in this
paper support it.

First step

The first step of our technique consists of identifying non-linear components of the
subcircuit to be optimized and reducing the number of ∧ gates. This is not easy to
do. For example, the two circuits below compute the same function. But it is not
obvious how to algorithmically transform one into the other.

1See the first round candidates at:
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions rnd1.html

2We have been told that Intel has a new small implementation, but the details have not been
made available.
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Finding circuits with minimum multiplicative complexity is, in all likelihood, a
highly intractable problem. However, recent work on multiplicative complexity con-
tains an arsenal of reduction techniques that in practice yield circuits with small,
and often optimal, multiplicative complexity [1]. That work focuses exclusively on
symmetric functions (those whose value depends only on the Hamming weight of the
input). In this paper, however, we use ad-hoc heuristics to construct a circuit with
low multiplicative complexity for inversion in GF (24). The technique is partially
described in Section 3.

Second step

The second step of our technique consists of finding maximal linear components of
the circuit and then minimizing the number of XOR gates needed to compute the
target functions computed in these linear components. A new heuristic for this com-
putationally intractable problem is described in Section 4.

3 AES’s S-box

The non-linear operation in AES’s S-box is to compute an inverse in the field GF (28).
A recursive method for building a circuit for inverses in GF (2mn), given a circuit
for inverses in GF (2m), is due to Itoh and Tsujii [4]. The circuits produced by
this method are said to have a tower fields architecture. Since there are multiple
possible representations for Galois fields, several authors have concentrated on finding
representations that yield efficient circuits under the tower fields architecture. We
use the same general technique for the reduction from inversion in GF (28) to GF (24)
inversion, but we use a completely different technique for computing the inversion in
GF (24). We then place the optimized circuit for GF (24) inversion in its appropriate
place in AES’s S-box and apply a novel optimization technique on the linear parts of
the resulting circuit.
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GF (24) inversion – A non-linear component

The tower fields architecture for inversion in GF (28) has (non-trivial) easily identi-
fiable non-linear components corresponding to inversion in subfields. The first step
in our method is to focus on one of these components and derive a circuit that uses
few gates. The component for inversion in GF (22) is too small for us to benefit
significantly from optimizing it. Instead we focus on inversion in GF (24).

Using the representation Canright [3] has concluded is best for his techniques,
GF (24) is represented using the normal basis (Z2, Z8) over GF (22). An element
δ ∈ GF (24) would be written as δ1Z

2 + δ2Z
8, where δ1, δ2 ∈ GF (22). The four

elements of GF (22) are represented using the normal basis (W,W 2), so an element
γ would be written as γ1W + γ2W

2, where γ1, γ2 ∈ GF (2). Both Z2 and Z8 satisfy
z2+z+W 2 = 0, and W and W 2 satisfy w2+w+1 = 0. From these two equations, one
can calculate that Z4 = Z2 +W , Z8 = Z2 + 1, Z10 = Z4 +Z2 = W , Z16 = Z8 +W 2,
W 3 = W 2 + W , W 4 = W , and W 5 = W 2. These equations can be used to reduce
expressions to check equalities.

Using this representation, an element of GF (24) can be written as ∆ = (x1W +
x2W

2)Z2 + (x3W + x4W
2)Z8, where x1, x2, x3, x4 ∈ GF (2). The inverse of this

element, ∆′ = (y1W + y2W
2)Z2 + (y3W + y4W

2)Z8, can then be calculated using the
following polynomials over GF (2):

• y1 = x2x3x4 + x1x3 + x2x3 + x3 + x4

• y2 = x1x3x4 + x1x3 + x2x3 + x2x4 + x4

• y3 = x1x2x4 + x1x3 + x1x4 + x1 + x2

• y4 = x1x2x3 + x1x3 + x1x4 + x2x4 + x2

The fact that ∆′ is the inverse of ∆ can be verified by multiplying the two elements
together and reducing using the equations mentioned above (along with x2 = x and
x + x = 0). The symbolic result is (QW + QW 2)Z2 + (QW + QW 2)Z8, where
Q = x1x2x3x4 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x1x2 + x1x3 + x1x4 + x2x3 +
x2x4 + x3x4 + x1 + x2 + x3 + x4. The fact that the value of Q is 1 unless all four
variables have the value 0, when it is 0, can be seen by observing that it is the
symmetric function Σ4

1 + Σ4
2 + Σ4

3 + Σ4
4. If exactly one variable is set, then the first

term gives the value 1 (and the others 0); if exactly two are set, then only the second
gives the value 1; if three are set, then the first, second and third terms give the value
1; and if all four are set, then only the last gives the value 1. Hence, the result is 1,
except for the zero input.3

Thus the task at hand is to construct a circuit with four inputs and four outputs
that calculates the above system of equations using as few ∧ gates as possible. Cur-
rently, our heuristic search programs can handle functions with one output and up to
eight inputs. This means that we can directly construct optimal circuits for each of

3A circuit for finite field inversion must have some output for the non-invertible zero element. In
the following constructions we follow the AES convention that the output on input zero is zero.
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t1 = x1 + x2 t2 = x1 × x3 t3 = x4 + t2
t4 = t1 × t3 y4 = x2 + t4 (∗) t5 = x3 + x4

t6 = x2 + t2 t7 = t6 × t5 y2 = x4 + t7 (∗)
t8 = x3 + y2 t9 = t3 + y2 t10 = x4 × t9
y1 = t10 + t8 (∗) t11 = t3 + t10 t12 = y4 × t11

y3 = t12 + t1 (∗)

Figure 1: Inversion in GF (24).

the four equations individually, but not for the system itself. For the full system we
took the following approach:

• pick an equation and construct an efficient circuit for it;4

• store intermediate functions computed in the previous steps for possible use in
constructing a circuit for the next equation to be tackled;

• iterate until all equations have been computed.

We did this for each of the 24 orderings of {y1, y2, y3, y4}. The ordering (y4, y2, y1, y3)
gave the best results. The resulting circuit, expressed as a straight-line program over
GF(2), is shown in Figure 1 (outputs are indicated by an (*) ).

This circuit contains 5 ∧ gates and 11 ⊕ gates. It is a significant improvement
over previous constructions, e.g. Paar’s construction [5] has a gate count of 10 ∧
gates and 15 ⊕ gates for the same function. It is harder to compare to Canright’s
construction [3]. In his original, he had 9 ∧ gates (and NAND gates) and 14 ⊕ gates
(and XNOR gates), but he optimized, allowing NOR gates. After this, he had 8
NAND gates, 2 NOR gates, and 9 XOR/XNOR gates.

The multiplicative complexity of a function is the number of GF(2) multiplications
necessary and sufficient to compute it. Under the given representation for GF (24),
the multiplicative complexity of inversion is 5. This can be argued as follows: the
upper bound is clearly given by the construction. The four outputs that have to be
computed all have degree 3. One ∧ is needed to compute a polynomial of degree 2.
Then, an additional ∧ is necessary to produce each of the four linearly independent
polynomials, since each is of degree 3.

A view of the structure of AES’s S-box

In the previous section, using the tower fields architecture, we identified and opti-
mized (with respect to multiplicative complexity) a major non-linear component in
an implementation of the AES S-box. That completes the first step of our technique

4This step is non-trivial for arbitrary functions. The heuristic we used is inspired by methods
from automatic theorem proving. We omit its description here due to space constraints.
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for circuit optimization, but in other circuits, one may be able to identify more non-
linear components with few enough inputs that they can also be optimized before
continuing. In the case of AES, after the non-linear portions of the circuit are op-
timized, as expected, a bird’s-eye view of the resulting circuit reveals large linear
connected components. In fact, from a cryptanalyst’s point of view, the topology of
the resulting circuit is potentially of interest: the S-box of AES consists of an initial
linear expansion U from 8 to 22 bits, followed by a non-linear contraction F from 22
to 18 bits, and ending with a linear contraction B from 18 to 8 bits. The U and B
matrices are given below. AES’s S-box is S(x) = B · F (U · x) + [11000110]T , where
· is matrix multiplication and x is the 8-bit S-box input. We do not know if there
are any cryptanalytic implications to the structure of these matrices. The first row
and last columns of U should raise and eyebrow, as should the 12th and last three
columns of B. Note that the initial linear expansion and the linear contraction were
defined to contain as much of the circuit as possible while still being linear. Thus, the
portion of the circuit defined by U , for example, overlaps with the GF (28) inversion.
The next step was to minimize the circuits for computing U and B.

U =



0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
1 1 1 0 0 0 0 1
1 1 1 0 0 1 1 1
0 1 1 1 0 0 0 1
0 1 1 0 0 0 1 1
1 0 0 1 1 0 1 1
0 1 0 0 1 1 1 1
1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0
1 1 1 1 1 0 1 0
0 1 0 0 1 1 1 0
1 0 0 1 0 1 1 0
1 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0
1 0 0 1 1 0 1 0
0 0 1 0 1 1 1 0
1 0 1 1 0 1 0 0
1 0 1 0 1 1 1 0
0 1 1 1 1 1 1 0
1 1 0 1 1 1 1 0
1 0 1 0 1 1 0 0


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B =



0 0 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0
1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1
1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0
0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0
1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0
0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0
1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0


4 Minimizing linear components

Gate optimization of circuits for linear functions has been extensively studied. It
has been shown that the problem of linear-circuit optimization is NP-hard [2]. That
paper further shows that unless P=NP, this problem does not even have efficient ε-
approximation schemes. Thus, our goal in this research is restricted to improving on
known heuristics. As far as we know, the most successful heuristics are variations on
a greedy algorithm due to Paar [6].

A linear straight-line program over a field F is a variation on a straight-line pro-
gram which does not allow multiplication of variables. That is, every line of the
program is of the form u := λv + µw where λ, µ are in F and v, w are variables.
Constructing a linear circuit for a given function f is equivalent to constructing a
linear straight-line program over GF(2) which computes f . (Note that over GF(2) λ
and µ are always one and thus are never written explicitly.)

A linear straight-line program over GF(2) is said to be cancellation-free if, for
every line of the program u := v+w, none of the variables in the expression for v are
also present in the expression for w, i.e., there is no cancellation of variables in the
computation.

Previous work on circuit minimization for AES S-boxes (e.g. [5, 7, 3]) only con-
sider cancellation-free straight-line programs for producing a set of linear forms over
GF(2). Some authors appear to make the incorrect assumption that there always ex-
ists a cancellation-free optimal linear program over GF(2). A small counter-example
showing this is not the case over GF(2) is the following:

x1 + x2; x1 + x2 + x3; x1 + x2 + x3 + x4; x2 + x3 + x4.

It is not hard to see that the optimum cancellation-free straight-line program has
length 5. A solution of length 4 which allows cancellations is

v1 = x1 + x2 v2 = v1 + x3 v3 = v2 + x4 v4 = v3 + x1.

More generally, it was shown in [2] that any algorithm for computing linear programs,
which only produces cancellation-free programs, is at most 3

2
-approximating. Thus,

even optimal cancellation-free circuits can be far from optimal in the unrestricted
model. The heuristic we present below is not restricted to producing cancellation-
free circuits.
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A new heuristic

Let S be a set of linear functions. For any linear predicate f , we define the distance
δ(S, f) as the minimum number of additions of elements from S necessary to obtain
f .

The problem is to find a short linear program that computes f(x) = Mx where
M is an m × n matrix over GF(2). The heuristic is as follows. We keep a “base” S
of “known” functions. Initially S is just the set of variables x1, . . . , xn. We maintain
the vector Dist[] of distances from S to the functions given by the rows of M . That
is, Dist[i] = δ(S, fi) where fi is the ith row of M multiplied by the input vector x.
Initially, Dist[i] is just one less than the Hamming weight of row i. We then perform
the following loop

• pick a new basis element by adding two existing basis elements;

• update Dist[];

until Dist[i] = 0 for all i.
The current criterion for picking the new basis element is

• pick one that minimizes the sum of new distances;

• resolve ties by maximizing the Euclidean norm of the vector of new distances.

The tie resolution criterion may seem counter-intuitive. The basic idea is that we
prefer a distance vector like 0,0,3,1 to one like 1,1,1,1. In the latter case, we would
need 4 more gates to finish. In the former, 3 might do it.

The bulk of the time of the heuristic is spent on picking the new basis element. Our
experiments show that the following “pre-emptive” choice usually improves running
time without increasing the size of the output circuit:

• if any two bases S[i], S[j] are such that S[i]⊕S[j] is a row in M then pick this
sum as the new basis element.

The tie resolution criterion is a critical part of the heuristic. It does well on
most matrices we have tried, but we have found specific matrices for which other
decision rules do better. Intuitively, no one simple rule should work for all matrices.
The effectiveness of the heuristic most likely depends on the topology of the digraph
represented by the input matrix. We have not pursued this line of inquiry. We have,
however tested our heuristic against standard methods. On random matrices, our
heuristic gives significant improvements (see Appendix A).

The tie resolution step is also a good randomization point. If this step fails to
resolve a tie between two choices, we can simply flip a coin. We can perform several
runs of the algorithm and pick the best solution found.

The distance vector is computed by exhaustive search. The reason the heuristic
is practical for moderate-size matrices is that the distance can only decrease. In fact,
it can only decrease by 1. So when a new base is being considered, if a distance is d,
then only combinations of exactly d− 1 old basis elements and the new basis element
need to be considered.
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A small example using the heuristic

Suppose we need a circuit that computes the following system of equations.

y0 = x0 + x1 + x2

y1 = x1 + x3 + x4

y2 = x0 + x2 + x3 + x4

y3 = x1 + x2 + x3

y4 = x0 + x1 + x3

y5 = x1 + x2 + x3 + x4

Equivalently, we need a circuit for multiplication by the following 6× 5 matrix

M =


1 1 1 0 0
0 1 0 1 1
1 0 1 1 1
0 1 1 1 0
1 1 0 1 0
0 1 1 1 1


The target signals to be computed are simply the rows of M . The initial base is

{x0, x1, x2, x3, x4}, which corresponds to

S = {
[

1 0 0 0 0
]
,
[

0 1 0 0 0
]
,
[

0 0 1 0 0
]
,[

0 0 0 1 0
]
,
[

0 0 0 0 1
]
}

The initial distance vector is

D =
[

2 2 3 2 2 3
]

The heuristic must find two basis vectors whose sum, when added to the basis,
minimizes the sum of the new distances. It turns out the right choice is to calculate
x1 + x3. So the new basis S is expanded to contain the signal[

0 1 0 1 0
]

=
[

0 1 0 0 0
]

+
[

0 0 0 1 0
]

The new distance vector is

D =
[

2 1 3 1 1 2
]

The full run of the program is below. The tie breaking criteria is used in Step
2. If one had chosen x1 + x2 instead of x0 + t5, the new distance vector would be
[ 1 1 3 1 1 2 ], which has norm 17, while the one found has norm 19. Note that
there is cancellation in the last step.
Step 1 : t5 = x1 + x3. New D : [2 1 3 1 1 2].
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Step 2 : t6 = x0 + t5 (found target signal y4 = [1 1 0 1 0]). New D : [2 1 3 1 0 2].
Step 3 : t7 = x2 + t5 (found target signal y3 = [0 1 1 1 0]). New D : [2 1 3 0 0 1].
Step 4 : t8 = x4 + t5 (found target signal y1 = [0 1 0 1 1]). New D : [2 0 3 0 0 1].
Step 5 : t9 = x2 + t8 (found target signal y5 = [0 1 1 1 1]). New D : [2 0 2 0 0 0].
Step 6 : t10 = x0 + x1. New D : [1 0 1 0 0 0 ].
Step 7 : t11 = x2 + t10 (found target signal y0 = [1 1 1 0 0]) . New D : [0 0 1 0 0 0].
Step 8 : t12 = t8 + t11 (found target signal y2 = [1 0 1 1 1]). New D : [0 0 0 0 0 0].
(DONE!)

As mentioned earlier, when choosing a base pair to create a new base, the heuristics
we used computed for each possible pair, the sum of the new distances to the targets
and chose the pair giving the minimum. When there was more than one, a tie-
breaking rule was used. We have also tried other tie-breaking rules, but rules which
involve trying to maximize the Euclidean norm appear to do best. In Appendix A
we present some of our results comparing tie-breakers based partially on maximizing
the Euclidean norm. One of these tie-breakers also involved minimizing the largest
distance, since this largest distance is a lower bound on the number of extra gates
still needed. Another tie-breaker involved minimizing the difference between the two
largest distances, since if one distance is much larger than another, there is a limit
to how many gates can be shared in computing those two targets. In both cases, we
used as the tie-breaking rule, to maximize the square of the Euclidean norm minus the
value which we are trying to minimize. There are clearly other possibilities. Among
these is using that Euclidean norm, instead of its square in the objective functions
where the largest distance, for example, is subtracted. This appears to give poorer
results.

5 A circuit for the S-box of AES

Our techniques yield a circuit for the AES S-box composed of three parts: a “top” lin-
ear transformation; a middle non-linear part; and a “bottom” linear transformation.
The linear transformations are defined by the matrices U and B of section 3.

For matrix U , the smallest circuits we found had 23 ⊕ gates. Among the many
such circuits, the shortest ones have depth 7. It is worthwhile to note that if 24 ⊕
gates are allowed, circuits with depth 4 exist for U . Figure 2 shows a circuit of size
23 and depth 7. The circuit maps inputs x0 . . . x7 to outputs x7, y1 . . . y21.

Figure 3 shows the non-linear middle part of the S-box circuit. It is a function
from 22 to 18 bits. The circuit contains 32 ∧ gates and 32 ⊕ gates. It maps inputs
x7, y1 . . . y21 to outputs z0 . . . z17.

For matrix B, the randomized version of our heuristic yields many circuits with
30 ⊕ gates. The heuristic is fast enough that we are able to pick a circuit which is
both small and short. Figure 4 shows a circuit of depth 6. The circuit maps inputs
z0 . . . z17 to outputs s0 . . . s7.
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y14 = x3 + x5 y13 = x0 + x6 y9 = x0 + x3

y8 = x0 + x5 t0 = x1 + x2 y1 = t0 + x7

y4 = y1 + x3 y12 = y13 + y14 y2 = y1 + x0

y5 = y1 + x6 y3 = y5 + y8 t1 = x4 + y12

y15 = t1 + x5 y20 = t1 + x1 y6 = y15 + x7

y10 = y15 + t0 y11 = y20 + y9 y7 = x7 + y11

y17 = y10 + y11 y19 = y10 + y8 y16 = t0 + y11

y21 = y13 + y16 y18 = x0 + y16

Figure 2: Top linear transformation: Inputs are x0, x1, ..., x7. Outputs to the next
level are x7, y1, y2, ..., y21.

t2 = y12 × y15 t3 = y3 × y6 t4 = t3 + t2
t5 = y4 × x7 t6 = t5 + t2 t7 = y13 × y16

t8 = y5 × y1 t9 = t8 + t7 t10 = y2 × y7

t11 = t10 + t7 t12 = y9 × y11 t13 = y14 × y17

t14 = t13 + t12 t15 = y8 × y10 t16 = t15 + t12

t17 = t4 + t14 t18 = t6 + t16 t19 = t9 + t14

t20 = t11 + t16 t21 = t17 + y20 t22 = t18 + y19

t23 = t19 + y21 t24 = t20 + y18

t25 = t21 + t22 t26 = t21 × t23 t27 = t24 + t26

t28 = t25 × t27 t29 = t28 + t22 t30 = t23 + t24

t31 = t22 + t26 t32 = t31 × t30 t33 = t32 + t24

t34 = t23 + t33 t35 = t27 + t33 t36 = t24 × t35

t37 = t36 + t34 t38 = t27 + t36 t39 = t29 × t38

t40 = t25 + t39

t41 = t40 + t37 t42 = t29 + t33 t43 = t29 + t40

t44 = t33 + t37 t45 = t42 + t41 z0 = t44 × y15

z1 = t37 × y6 z2 = t33 × x7 z3 = t43 × y16

z4 = t40 × y1 z5 = t29 × y7 z6 = t42 × y11

z7 = t45 × y17 z8 = t41 × y10 z9 = t44 × y12

z10 = t37 × y3 z11 = t33 × y4 z12 = t43 × y13

z13 = t40 × y5 z14 = t29 × y2 z15 = t42 × y9

z16 = t45 × y14 z17 = t41 × y8

Figure 3: The middle non-linear section: Inputs are x7, y1, y2, ..., y21. Outputs to
the next level are z0, z1, ..., z17. Note that the computation of t25 through t40 is the
inversion in GF (24).
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t46 = z15 + z16 t47 = z10 + z11 t48 = z5 + z13

t49 = z9 + z10 t50 = z2 + z12 t51 = z2 + z5

t52 = z7 + z8 t53 = z0 + z3 t54 = z6 + z7

t55 = z16 + z17 t56 = z12 + t48 t57 = t50 + t53

t58 = z4 + t46 t59 = z3 + t54 t60 = t46 + t57

t61 = z14 + t57 t62 = t52 + t58 t63 = t49 + t58

t64 = z4 + t59 t65 = t61 + t62 t66 = z1 + t63

s0 = t59 + t63 s6 = t56 XNOR t62 s7 = t48 XNOR t60

t67 = t64 + t65 s3 = t53 + t66 s4 = t51 + t66

s5 = t47 + t65 s1 = t64 XNOR s3 s2 = t55 XNOR t67

Figure 4: Bottom linear transformation: Inputs are z0, z1, ..., z17. Outputs are
s0, s1, ..., s7.
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Appendix A: Experimental results for the linear cir-

cuit optimization heuristic

In order to compare the effects of using different tie-breakers, we created random
matrices defining which sets of linear forms should be computed by the circuits pro-
duced. Each row of the matrix corresponds to a linear form in the natural way. We
generated random matrices as follows

• we first chose a size (for example, 10 × 20 matrices, which represent 10 linear
forms on 20 distinct variables);

• we then picked a bias ρ between 0 and 1;

• for each entry of the matrix, we set the bit to 1 with probability ρ and to 0
with probability 1−ρ. Thus ρ is the expected fraction of variables that appears
in each linear form. The “srand()” pseudorandom number generator in C++
(using the g++ compiler) was used to choose bits with the given probability.

• Matrices with rows which are all zeros (representing the form 0) were discarded,
as were duplicate rows (producing the same form twice).

We compared the different heuristics on one hundred 15× 15 matrices, with each
of the biases 1/4, 1/2, 3/4, and 9/10, on ten 20 × 20 matrices with bias 3/4, on
twenty 20×10 matrices with bias 3/4, on twenty 10×20 matrices with bias 3/4. The
experience with 15× 15 matrices showed that the heuristics were all slower when the
bias was larger. This was expected, since the initial “distances” (number of operations
on the basis vectors to obtain the target vectors) were then larger on average when
there were more ones in the matrices. Note that the heuristics were slower for bias
9/10 than for bias 3/4, even though fewer gates were used in the resulting circuits.
For the first three heuristics, all one hundred 15×15 matrices were processed within a
few minutes for small biases and within half an hour for the larger biases. In contrast,
the ten 20× 20 matrices took several hours, though less than a day to complete. The
running times on 20 × 10 matrices was closer to that of the 15 × 15 matrices, while
the running times on 10 × 20 matrices was closer to that of the 20 × 20 matrices,
despite the fact that the total number of ones in these matrices was similar. This
again reflects the fact that the average (or possibly maximum) initial “distances”
determine the running time.

The tie-breakers we compared were the following:

• Norm: maximizing the Euclidean norm

• Norm-largest: maximizing the square of the Euclidean norm minus the largest
distance

• Norm-diff: maximizing the square of the Euclidean norm minus the difference
of the largest two distances
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• Random: If there is a tie with respect to sum of distances then flip an unbiased
coin. If heads then keep current choice. If tails then apply the Euclidean norm
criterion for tie-breaking. This heuristic may end up choosing a pair with non-
maximum Euclidean norm. On the other hand, it allows substitution of one
optimum (by sum-of-distances and Euclidean norm) pair by another found later
in the search.

In all cases, except the “Random” one, when there were still ties after applying the
“tie-breaker”, the first pair, with both the minimum sum of distances and the optimal
value for the tie-breaker, was chosen. This was the basis pair with lexicographical
minimum indices (i, j). The exception to this is when there is a target with distance
1, meaning that using one extra gate will produce a target. Since it can never be
wrong to use such a gate, a check is made for this case, by scanning the distances
and choosing the first with distance 1 when such exists. This check is efficient, and
when there is a target of distance one, it saves lengthy computations of new distances
for each possible pair of bases. Note that this optimization gives a different ordering
from what is shown in the example in Section 4 (though one still gets a circuit with
eight gates).

Randomized tie-breaking allows running the heuristic several times and picking
the best result. In our tests we ran the heuristic with “Random” tie-breaking three
times.

We also compared these heuristics to Paar’s heuristic [6] on the same matri-
ces. Paar’s heuristic is significantly faster than our heuristic, but it produces only
cancellation-free circuits. Its performance, relative to the heuristics proposed here,
decreases as the bias increases, using more than 30% extra gates when the bias is 3/4
and 40% extra when the bias is 9/10.

Among the biases tried, the number of gates in the circuits found by our heuristics
is largest with bias 3/4. It is not a strictly increasing function of the bias, since when
nearly all of the variables are used in nearly all of the forms, the outputs from many
of the gates can be reused for many targets.

All of the heuristics do fairly similarly, with Random apparently doing slightly
better, presumably because it tries three different circuits and uses the best. It also
runs for about three times as long as the others.

In the table below, the column headings specify the matrix size, the bias, and the
number of matrices of that size and bias tested.

For each tie-breaker rule and Paar’s heuristic, for each matrix size and bias, the
total number of gates used (the sum over all the matrices having those characteristics)
and the number of matrices where that heuristic did not obtain the minimum value
of all of the heuristics is given. Note that this means the Paar heuristic was beaten by
at least one of the other heuristics on all matrices except for 16 of the 100 with bias
1/4. In fact, for the tests with bias larger than 1/4, Paar’s heuristic did worse than
any of the other heuristic on every one of the matrices; usually the values obtained
for the newer heuristics were similar, with Random possibly being marginally better,
but with the value for Paar’s heuristic being significantly larger.
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The last row shows the sums of the values which are the minimum of those cal-
culated by the different heuristics for each matrix. This shows that for each of the
tie-breakers, there are cases where it gets a better result than the others.

15× 15 (100) Bias=1
4

15× 15 (100) Bias=1
2

Heuristic Total Not min Total Not min

Norm 2965 16 4421 48
Norm-largest 2963 14 4423 49

Norm-diff 2965 15 4428 51
Random 2965 10 4428 23

Paar 3107 83 5170 100
Minimum 2948 0 4350 0

15× 15 (100) Bias=3
4

15× 15 (100) Bias= 9
10

Heuristic Total Not min Total Not min

Norm 4082 47 3028 31
Norm-largest 4082 46 3028 31

Norm-diff 4082 46 3029 32
Random 4082 23 3029 14

Paar 5327 100 4311 100
Minimum 4011 0 2986 0

20× 20 (10) Bias=3
4

20× 10 (20) Bias=3
4

10× 20 (20) Bias=3
4

Heuristic Total Not min Total Not min Total Not min

Norm 684 7 618 6 839 6
Norm-largest 684 7 617 5 848 10

Norm-diff 684 7 617 5 850 10
Random 676 3 612 1 840 5

Paar 926 10 864 20 995 20
Minimum 673 0 611 0 832 0
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