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Abstract

In the present paper construction of algorithms for two - point ray tracing, 2P - RT, has been carried
out. The methods are based on direct optimization of the Fermat functional (OFRT). The constructed
algorithms are the following: The FF - algorithm for the evaluation of the Fermat functional, the GFF -
algorithm for the evaluation of the path gradient of the F ermat functional, and finally the CGFF - algorithm
for the evaluation of the constrained path gradient. In this case, the construction has been carried out under
two - sided inequality constraints on the path segments. By the present paper, however, the author has
completed the method only for a single constraint of the above mentioned type. The idea behind the use of
contraints is twofold. From one side an effort will be made to avoid the eventual flaws in computability that
are caused by the method of approximation. On the other side the convergence properties of OFRT as an
iterative process will be aided by an appropriate constraining.

1. Introduction

In isotropic media two - point ray tracing, or 2P - RT shortly, may be considered as
an optimization (minimization) of the travel - time integral, ot as favored by the present
paper, the Fermat functional (FF)

AT m)=| mdo )
r

In (1);

e T is a path (ray) connecting the two end points which are supposed to be fixed for 2P
- RT,

. J is an integral along the path T,
T

e m =lv is the slowness field, and
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e do is the differential path length.

Considered as a variational problem the methods of solution of seismic 2P - RT may
be classified as follows;

¢ as methods based on direct optimization of the FF (1).In the present paper approaches
of this type will be referred to as optimal Fermat ray tracing, or OFRT shortly.

e or as methods based on solution of of the Euler equation, associated to FF, as a two -
point boundary value problem.

There exist an abundance of published articles on seismic 2P - RT where the
"Eulerian"' point of view has been preferred over the OFRT one. For a good reference to
works on this field see Farra (1992). As to works of OFRT type, see Wesson (1971),
Chander (1975), Kanasewich et al. (1985), and Chiu et al. (1986) and Um et al. (1987).

By the results of the referred works one may conclude that the approaches of OFRT
type fo seismic 2P - RT might provide fast and versatile alternatives to the Eulerian ones.

The aims of the present paper "Construction of algorithms of optimal Fermat ray
tracing" are condensed as follows: Firstly, as a working frame for constructions, a method
of approximation has been developed. After that three algorithms; the FF - algorithm for
path evaluation of FF, the GFF - algorithm for evaluation of the path gardient of FF and
the CGFF - algorithm as an algorithm of constrained GFF will be presented.

2. Method of approximation and construction of algorithms

2.1 Method of approximation

In order to increase the consistency and systematization of the treatment it seems
adviceable to introduce a formal basis for the method of approximation used in the present
paper. Accordingly, two linear spaces; a path segment space (PSS) and a path coordinate
space (PCS) will be introduced. Further, after a description of interrelations between the
spaces to provide the path coordinate space with an inner product and a norm.

To define PSS consider a smooth and slowly varying path T connecting the two end

points, the initial point x and the final point x . Under these assumptions the path may be
0 N+l

approximated to a sufficient accuracy by a piecewise smooth segment path composed of

the set { ,T,...7L, F} of linear segments. Further, to construct a definite mathematical
12 N N+l

object to represent the approximate path, the segments are arranged as the (Cartesian)
product,

. .
I'={I,T,...0T] 2
1 2

N N+l
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As an element of PSS, the product (2), will be referred to as a segment path. The path
segment space P itself is constructed as the linear span

A A

P=span{1"}.

of segment paths of the type (2).

In the context of the present paper the PSS P has only a conceptual meaning.
Algorithmic constructions for computational purposes will be carried out in a path
coordinate space PCS X. As to a definition of PCS consider the set of nodal points

Xy Xyerreean Xy X
01 N N+l

of a segment path. Arranged as the product,

01 N N+l

3= (x, XyeeeeresXy X ) . 3)

the nodal points form a coordinate path, an element of PCS. The path coordinate space
X. itself will be constructed as the linear span,

X =span |} .. 4

of the coordinate paths of the form (3).
As a coordinate space for 2P - RT the PCS X hasa special structure. Firstly, the

e e " . A
initial and the final components, x, and x , respectively, of each x € & are common to all
0 N+l

elements of X. Secondly, by (3) and (4) b may be considered as a subspace of the product
space

N+1

IR =R"%...xR"
=0

Each of the component spaces R" has been specified as R” in 2 - D and as R’ in 3 -
D case.

AftEI;\ definition of the path coordinate space R the subspace of allowable path
variations X, is defined by

A

A
Xo={xeX|x=0andx=0]}
0 N+l
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For actuzj\l constructions of the /a\dgorithms it is helpful to introduce an innet product
and a norm in X. The inner product, X - IP, is defined by

N4l
A A
(x| xz),\=2xl.x2. &)
x j=0j j

A
The norm, in turn, will be defined with the aid of X- IP as follows
A Ay AW
Il = (Il %)

A A
As the final topic of the present section a coordinate mapping between X and P will
be defined componentwise, for each j = 1,2,.......N,N+1, by

F=x—x.
i i pl

2.2 Construction of FF- algorithm

The Fermat functional was defined as the path integral (1). Its algorithmic construc-
tion means its representation by the adopted approximation. Consequently, it is natural to
refer to the following PCS - representation

©

X—Xx
joj

n

R

N+1
f@=Ym
7

as the FF - algorithm. In (6), the lengths || x —x l of the path segments are defined for j
-l |R"
=1,2,.....,N,N+1 by
Y
xX—x ={x—x)-(x—x 7)
i g joji Jooj1

where || ”R,. is the R" - norm and the "dot" is the R" - dot product.

The FF - algorithm (6) is computationally fast. The reliability of the algorithm as a
representation of the Fermat functional is dependent both on a dense and uniform
distribution of the nodal points.



Construction of Algorithms for Optimal Fermat Ray Tracing 35

2.3 Construction of the GFF - algorithm

The construction is started by representing the FF - algorithm (6) with the aid of (7)
in the form,

n+l y
f(?c):zm: x—x - ({x—x !
- J i 1 i
Applying first variation to both sides of the above expression results in
n+l .
Y,
5f(§)22m8= x—x\-({x—x ', ®)
i j i i

1t is not difficult to see that the variation of the expression with the braces in (8) is
of the form

x—x |6 x—x

5{(&)‘).()‘*"]}%: T ©)
i i X—Xx

i FU|R

A substitution of (9) in (8) and carrying out the the obvious manipulations results in
the following expression;

N
Sf(Q):Z{I;(Q)—}Ifl(Q)}-SJ; : (10)

=

A
In (10), 8 x s are the components of an allowable variation 8x° € X, of the path
i

coordinates. Further, as notational convenience, the weighted segment direction vectors

X—X
k(xy=m 71— )
i XX
J ol

7

R

Fina/l\ly, the relation between the FF and its path gradient will be expressed with the
aid of the X - TP (5) by
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SF(3) =@l 8x ); - (12)

Itis easy to verify by (10), (11) and (12) that the path gradient, the GFF - algorithm,
is determined by the product expression

n

v (Q) = (0':/ @)y v Gy (Q),O] , (13)
J

where the components, for j = 1,2.......,N, are defined by

TE=kE-kE) . (14)
7

J Faa!
Further, k (%) s in (14) are the WSDV s (11).
j

As to the computational aspects of the GFF - algorithms (11), (13) and (14) it is seen
firstly that their implementation in computer is simple. Further, their evaluation by a
computer is fast. However, with respect to reliability, an iterative optimization process
may favor an uneven distribution of nodal points. Consequently, either too long or too
short path segments may appear at certain iteration steps. These phenomena may cause
difficulties of several types; either computational problems, or lack of convergence of the
optimal iterations, or appearance of "artifacts" of some kind as a result of the iterations of
OFRT.

By the present paper the author has suggested a method to control these phenomena.
For the representation of the method as well as its application to construction of constrained
gradient algorithms, the CGFF - algorithms, see the next section.

24 Construction of CGFF - algorithms

The construction of the algorithms of constrained path gradients will be carried out
by the following three stages. At the first stage, on the basis of certain inequality
constraints, the segments are separated into feasible and infeasible ones. The second stage
consists of introduction tangentiality constraints, again, a constraint per segment. The
actual costruction of the CGFF - algorithms will be completed at the third stage.

As a notational convention the segment index set I'* will be defined by

PE={jlj=12u..N+1]

2
} X (15)

j ol
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Next, for each seqment j € I'*® , an inequality constraint is defined by

e (16)

As seen by (15), the inequalities (16) set upper and lower bounds to the lengths of
the segments. Further, £° and ¢/ are certain control parameters. By the present paper the
inequality constraints (16) have been suggested to be used to control the iterations of OFRT
in the following way; the segments, or equivalently the segment index set I'*® will be
separated into feasible and infeasible segments, F° and "™, respectively. A segment is
called feasible if the inequality (16) is satisfied, otherwise it is infeasible. The result of the
separation may be represented by the union,

seg __ fe infe
re=rF I
The second stage in constructing algorithms of CGFF‘s consists of an introduction

of tangentiality constraints for the path gradient. Thus, consider the CF‘s (15) which by
(7) take, for each j € I"*”, the form

J 1
c)==(x—x\)({x-x].
205 |y om
It is not difficult to verify that the first variation of each CF is defined by
i A
Sc(x)={x—x)-dx—(x—x)-dx . an
Jo i AR )
A
Further, by the X - IP (5) the variation (17) may be represented as follows

52@:(}5@ I 59(() (18)

J A
In (18), g ()/2) is the gradient of the CF (GCF) and dx, € X, is an allowable path

variation. A comparison of (17) and (18) results in the following expressions of the GCF:

i j j
g ®)=(000,..g (), g ®).-.0,0)
Jj-1 ]

where the components are defined by



38 Pekka T. Saastamoinen

TN i
g)=x-x=-g @) . (19)
J J -1 J-1

After these preliminary determinations, the tangentiality constraints (TC) will be

defined. For OFRT it is natural to consider path updates of gradient type; i.e. those of the
form

8% =0 (%) . Q0)

In (20), o is a scaling factor and 'y(x) is the path gradient GFF. The tangentiality
constraint (TC), for j € I'*, to 8x, € XO and by (20) to the GFF 'y(x) is defined by

(2 @ vo“c))fo : @1

By (20) and (21) it is seen that the role of the TC"s is to prevent an "increase of
infeasibility" of path segments.

It was stated previously that by the present paper the construction of the CGFF -
algorithms will be carried out only for a single infeasible segment. The multi - infeasible
case will be treated as a topic of the forthcoming paper. Consider now an infeasible segment
Jje 1™ With the aid of (13), (19) and (20) the TC (21) may be represented in the
componentwise form

é()“c)-{vé) v(x)} 22)
7

j!

However, it is easy to verify that, besides (22), even the simpler relation

YE=y® 23)

j 1

satisfies the TC (21). As a conclusion of the previous derivations one may add that in the

present case only the components vy (x) and y (x) of the GFF are constrained by the TC (21)
fal j

through (23). The other components of the GFF will remain their algorithmic expressions

(14).

As to the constrained components 7y (x) and y (x) it is seen that by (14)
J-1 J

(x) k(x) k

J1 Al



Construction of Algorithms for Optimal Fermat Ray Tracing 39

and 24)

YE=k-k@)
J

J ol

where k is an unknown WSDV for j e I"*. To determine k substitute (24) in (23) to find
i j

that

=s(k®+E®)) . (25)
j 24 I
Consequently, by (25) the constrained WSDV of an infeasible segment has to be
determined as the arithmetic mean of the adjacent WSDV's. Finally, the constrained

components Y (Q) andy (Q) of the CGEF are by (24) and (25) seen to be given by
1 j

v(x\)zv(?)=—%{k(?c)—k@)}- (26)
1 j 1 [
3. Conclusions

The following conclusions are drawn by the results of the paper:
e An approximation method for path integrals has been developed as a working frame

e On the basis of the approximation method the following algorithms have been
constructed; the FE - algorithms (6) and (7) for evaluation of the Fermat functional,
the GFE - algorithms (11), (13) and (14) for the evaluation of the path gradient of the
Fermat functional and the CGFE - algorithms (11), (13), (14) and (26) for the evaluation
of the constrained path gradient of the Fermat functional.

¢ A new method has been developed for a control of the lengths of the path segments.
The method consists of two stages. At the first stage the path segments are divided into
feasible and infeasible ones. A segment is considered feasible if it satisfies the two -
sided length inequality (16). Otherwise it is infeasible. At the second stage the path
gradient will be constrained tangentially with respect to the equi - surfaces of the
constraint functions associated with the infeasible segments.

e In the present paper the author has applied the controlling - by - constraining method
in the simplest case of a single infeasible segment. The general case will be presented
as a topic of the forthcoming paper "A method for constrained optimal two - point ray
tracing'. ’
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