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Abstract. We introduce the notion of a Social Secret Sharing Scheme, in which shares are allocated based on
a player’s reliability and the way he interacts with other participants. During the share refresh phase, weights of
participants are adjusted in a way that participants who cooperate will end up with more shares than those who
defect. On the other hand, corrupted players will be disenrolled immediately for the computation safety. Our
motivation is that, in real world applications, components of a secure multiparty computation framework may
have different levels of importance as well as credibility. Therefore, a robust construction should balance these
two factors respectively, that is adjusting the responsibility based on the reliability. The proposed construction
has a variety of desirable properties. It is an unconditionally verifiable scheme in the sense that it can detect
malicious participants without relying on any computational assumptions. The scheme proactively renews shares
at each cycle without changing the secret, and allows trusted participants to gain more authority in the scheme,
i.e., a dynamic access structure. The other prominent property of the scheme is that, it gradually reduces the
influence of irresponsible players due to the self-reinforcement property of social interactions among players1.

1 Introduction

The growth of Internet has created amazing opportunities for secure multiparty computations where various
users, intelligent agents, or computer servers cooperate in order to conduct computation tasks based on
the private data they each provide [10]. Since these computations could be among untrusted participants
or competitors, therefore, the privacy of each participant’s input is an important factor.

As mentioned in the literature [11], a fundamental method used in secure multiparty computations
is the secret sharing scheme [21, 5], where a secret divided into different shares for distribution among
participants (private data), and a subset of participants then cooperate in order to reveal the secret
(computation result). In particular, Shamir proposed the (t, n)-threshold secret sharing scheme, in which
the secret is divided into n shares for distribution among players. The shares are constructed such that
any t participants can combine their shares to reveal the secret, but any set of t − 1 participants cannot
learn anything about the secret.

Sample applications of such schemes are: joint signature or decryption, where a group of participants
sign documents or decrypt messages with the intention that only if all of them or a subset of participants
cooperate then a signature or a message can be generated [11], shared RSA keys, in which a number of
players collaborate to jointly construct an RSA key [7], electronic auctions with private bids, where a group
of agents perform sealed-bid electronic auctions while preserving the privacy of the submitted bids [12].

1.1 Motivation

Our motivation is that, in real world applications, components of a secure multiparty computation frame-
work may have different levels of importance, i.e., the number of shares a player has, as well as credibility,
i.e., cooperation with other players for the secret recovery. Therefore, a robust construction should balance
these two factors respectively, that is adjusting the responsibility based on the reliability. Assume a major
shareholder has been attacked, if the scheme is not re-arranged the security cost would be severe. On the
other hand, if a player with a small number of shares is working reliably for some period of time, it might

1 This paper is a preprint of a paper submitted to IET Information Security and is subject to Institution of Engineering and
Technology Copyright. If accepted, the copy of record will be available at IET Digital Library
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be rational to assign him more shares. Although our goal is to focus on the theoretical aspects of such a
construction, we motivate the proposed scheme by the following scenario.

Suppose shares of a secret have been distributed among various servers based on their weights in a
secure computing environment, consequently, revealing the secret will trigger an action. Three possible
behaviors can be considered for each player. Cooperation: the server is available at the secret recovery
time and sends correct shares. Defection: the server is not available at the time of recovery or probably
responds with delay. Corruption: the server has been compromised by an active adversary and sends wrong
shares to prevent the recovery process. The aim is to monitor participants’ behavior over time to regulate
servers’ responsibility. As an example of this scenario, we can refer to real time systems that are subject
to operational deadlines.

1.2 Our Contributions

The contributions of this paper are as follows: Initially, we modify the first unconditionally secure proactive
and verifiable secret sharing model [24, 9] to construct a novel secret sharing scheme with dynamic weighting
based on the players’ credibility analysis over time, i.e., having different number of shares in various time
intervals after the initial setting. In the literature, there exist dynamic schemes with different properties
than our construction, such as schemes in which one can activate various access structures [6], enroll or
disenroll participants [28], or change the threshold [25]. After that, we construct an unconditionally secure
dealer-free protocol for enrolling new participants in a threshold secret sharing scheme. This protocol is
extended to a verifiable scheme by using bivariate polynomials. Finally, we propose required techniques for
the weight escalation and/or reduction based on the existing trust computation model [17].

In our construction, each player is assigned an initial weight, which then is adjusted based on his
behaviors in subsequent periods. Participants who cooperate will end up with more shares than those who
defect. On the other hand, corrupted players will be disenrolled immediately for the computation safety.
The reason for a corruption might be an active attack or a computational failure, therefore, the corrupted
server is able to come back to the scheme only after being fixed, and will be treated as a newcomer. The
scheme is called a social secret sharing scheme since it can be visualized in terms of players collaborating
to recover the secret in a social network based on their reputations; similar to human social life in which
people share more secrets with whom they really trust and vice versa.

1.3 Organization

This paper is organized as follows. Section 2 provides some background on different types of secret sharing
schemes. Section 3 illustrates the proposed constructions in details. Section 4 demonstrates required tech-
niques for weight tuning based on players’ past behaviors. Section 5 proves the security of the constructions.
Finally, Section 6 outlines concluding remarks and future work.

2 Preliminaries

2.1 Threshold Schemes

Given a set of participants P, we want to protect a secret so that some participants can recover the secret,
while other subsets cannot. If we let 2P denote the set of subsets of P, then we can define Γ ⊆ 2P to be
the subsets of users who are authorized to access the secret; we call Γ an access structure [22]. A perfect
secret sharing scheme realizing Γ has the property that, for any A ⊆ P: (1) If A ⊆ Γ , then A can recover
the secret, in this case, A is an authorized subset of Γ . (2) If A 6⊆ Γ , then A can learn nothing about the
secret. In a (t, n)-threshold secret sharing scheme, Γ has the property that for all A ⊆ P , A ∈ Γ if and
only if |A| is equal or larger than some threshold value t. Intuitively, threshold schemes require action on
the part of some number of participants to retrieve the secret. This idea of distribution of responsibility is
widely used in practice, and motivated the first secret sharing schemes [21].
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2.2 Verifiable Schemes

In verifiable secret sharing schemes, participants can check that their shares are consistent with those of
the other participants in the system. Unconditionally secure verifiable secret sharing schemes must satisfy
the following properties: the information used to verify shares must not reveal any information about the
secret, and the shares must be consistent if and only if every user verifies their share successfully. The first
complete definition of verifiability is given by Chor et al. [8], but their solution assumes honest participants
and makes computational assumptions. Tompa and Woll [27] consider the case of dishonest participants,
but assume an honest dealer.

Ben-Or et al. [2] illustrate that no unconditionally secure verifiable scheme is protected against more
than n/3 colluders; if more protection is needed, the scheme must either make computational assumptions
or allow for a small probability of error. By allowing for a small probability of error, the scheme proposed
by Rabin and Ben-Or [19] makes no computational assumptions, and allows for both a dishonest dealer
and dishonest participants. The verifiable proactive scheme constructed by Stinson and Wei [24] is uncon-
ditionally secure and protects against n/4− 1 colluders. While this resistance is less than optimal, it both
simplifies the scheme and prevents secret information from being shared when participants are dishonest.

2.3 Proactive Schemes

Consider a mobile adversary [18], who may be able to infiltrate and gather the shares of an increasing
number of participants over time. How can we protect our scheme against such an attacker? One possible
approach is to refresh the secret periodically, but such an approach may not be desirable if the secret is
difficult or expensive to change. If one imagines a document being encrypted with a key, and that key being
used as the secret, refreshing the secret would require that the document be decrypted and re-encrypted
with the old key, exposing it for a brief period each time the secret was changed. To address this problem,
the notion of proactive secret sharing schemes was introduced by Herzberg et al. [13].

However, their approach relies on the computational difficulty of the discrete logarithm problem. Given
the rapid rate at which previous cryptographic schemes have become obsolete because of technological
advances, significant effort has been expended on the development of schemes that do not depend on any
computational assumptions. Given that proactive secret sharing schemes are aimed to protect secrets that
are difficult or expensive to change, it would seem especially beneficial in this scenario to choose a scheme
whose security is unconditional.

2.4 Weighted Schemes

Broadly speaking, weighted threshold secret sharing schemes are designed so that participants deemed more
powerful can recover the secret with the aid of fewer other participants. Instead of requiring t participants
to recover the secret in a (t, n)-secret sharing scheme, we assign each participant a weight wi and set up the
scheme such that a set of participants A can recover the secret if and only if

∑
Pi∈AwPi ≥ t. For example, it

may be policy that the president and chief executive of the company have the collective authority to open
the company safe, but that any two vice-presidents can substitute for a missing party in their absence.

A weighted scheme can be trivially constructed from any threshold scheme by assigning more shares to
more powerful participants [3]. However, much of the work on weighted secret sharing schemes has focused
on improving the ratio of the secret size to maximum share size, also known as the information rate [16].

2.5 Dynamic Schemes

The goal is to modify the access structure after the initialization. In fact in dynamic secret sharing schemes,
there exist different access structures and the scheme is able to activate various of them at subsequent times
[6]. If the dealer remains active for the entire duration of the scheme and has uninterrupted access to the
participants through private channels, the access structure can be modified by simply creating shares for
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a new scheme with the desired access structure. Two more restricted variants of this approach have been
studied: one in which the dealer is still functional, but only has access to a public broadcast channel, and
one in which the dealer is no longer available after the scheme is initialized, but a private channel exists
between each pair of participants.

In the former case, schemes have been proposed for single changes to threshold access structures,
including the removal of a participant, known as disenrollment [4], or the modification of the threshold
[1]. In the latter situation more progress has been made. One trivial solution has the participants each
transfer the shares of their personal scheme to the corresponding shareholders of the new scheme [14]. Any
authorized set of participants will be able to recombine all of the participants’ shares, and thus recover
the secret. However, such an approach results in each participant storing significantly more share data
with each change in access structure; if repeated changes were made, both the storage requirements and
recombination times would be unreasonable [15].

3 Our Construction

3.1 Setting

The proposed model consists of n participants, P1, P2, . . . , Pn, and a dealer. The dealer will be present only
during the initial set-up of the scheme. We assume the existence of private channels between each pair of
participants, and that the dealer can communicate privately with participants in the dealing stage. We also
consider the existence of an authenticated public broadcast channel, on which information is transmitted
instantly and accurately to all participants. Each server must have a source of randomness. Finally, we
need a synchronized source of time, to enable the periodic share update process.

In the model, the dealer and thus the information used to initialize the scheme, is no longer present
after the initialization. Thus, all information used in the weight tuning process will be recovered from the
participants of the scheme. Our objective is to protect the scheme against b colluders, we assume that
the refreshing phase is instantaneous, and thus that the adversary cannot corrupt additional participants
while shares are being updated and the weight tuning is taking place. A corrupted participant may send
incorrect data to other players, both through the public broadcast channel or through the private channels.

3.2 Social Secret Sharing Scheme

In this construction, participants are assigned weights based on their behaviors in the model. Consequently,
each participant receives a number of shares corresponding to its trust value which is the representation of
a player’s reliability over time. During the share refresh phase, the weights of players are adjusted in a way
that players who cooperate receive more shares than those who defect. In addition, the scheme is able to
disenroll corrupted players entirely or enroll newcomers to the system. To recover the secret, total weight
of authorized players must be equal or bigger than the threshold. On the other hand, the weight of each
participant must be less than the threshold. i.e.,

∑
Pi∈AwPi ≥ t and wPi < t for 1 ≤ i ≤ n.

We consider a n × m matrix for the participants’ identifiers, where n is the maximum number of
participants and m is the maximum weight of each participant. As an example presented in Figure 1,
assume we have four participants with different weights. After some period of time, suppose we observe
defection (e.g., not being available to send S4) from the first participant and cooperation from the fourth
one. In that case, the system will decrease w1 to 3 and increase w4 to 2, that is the inactivation of the
id = 4 and activation of the id = 14. The weight adjustment procedure is discussed in detail in Section 4.

In the next three discussions, we review the proposed constructions in [24, 9] and modify those protocols
accordingly in order to fit them to our social secret sharing scheme with dynamic weighting. Let GF (q) be
a finite field and let ω be a primitive element in this field; all the computations are performed in the field
GF (q). In the descriptions below, a particular participant’s identifiers are denoted by m.ids: meaning my
ids, and the identifiers of other participants are denoted by c.ids: meaning colleagues’ ids.
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321

14
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Fig. 1. Social secret sharing scheme

Verifiable Initialization. The presented protocol for initialization is an unconditionally secure verifiable
secret sharing with b ≤ n

4 − 1 and t > b + 1. In our construction b is the total weight of colluders. This
scheme will be used in the share renewal phase afterward. It also has a property that any coalition of
t − 1 participants cannot get any information about the secret. Moreover, the dealer is not required to
participate in the scheme after the initial distribution of secret information.

1. Dealer chooses a random symmetric polynomial of degree t− 1 to generate shares for participants.

f(x, y) =
t−1∑
i=0

t−1∑
j=0

aijx
iyj

where a00 = Secret and aij = aji for all i, j. Then, dealer sends hid(x) = f(x, ωid) to Pid through a
private channel. For instance, if the first participant’s weight is 2, then it has two activated ids and
consequently receives two shares from the dealer.

2. In order to verify distributed shares, each player sends the value of hm.ids(ωc.ids) to other players and re-
ceives the value of hc.ids(ωm.ids) from them, all through secure channels, where all ids ∈ {activated.ids}.

3. Then, each participant checks to see whether hm.ids(ωc.ids) = hc.ids(ωm.ids). If a participant finds that
they are not equal, then he broadcasts (m.ids, c.ids).

4. Each Pid computes the subset G ⊆ {1, ..., n} such that any ordered pair (ids, ids) ∈ G × G is not
broadcasted, i.e. subset of good players. If |G| ≥ n − b, then Pid outputs verid = 1, i.e. by excluding
bad participants the verification has been satisfied. Otherwise, Pid outputs verid = 0.

If at least n − b players output verid = 1, then dealer erases all info on his end; otherwise, the dealer
reboots the system for another initialization. As an example, consider the following parameters: total
number of activated ids or weights n = 4, threshold t = 3, primitive element ω = 2, prime number q = 13,
and weights w1 = 2 (ids : 1, 2), w2 = 1 (id : 3), and w3 = 1 (id : 5). We randomly generate the following
bivariate symmetric polynomial with the constant term a00 = 11 as the secret value, and replace ωids with
y to generate shares for activated ids: f(x, y) = 11 + 3x+ 3y + 2x2 + 2y2 + xy2 + x2y + 2xy + x2y2, e.g.,
f(x, 25) = 10 + 12x+ 5x2: first share of the third participant. As stated earlier, each participant then plugs
in ωc.ids into x in order to send some values to his colleagues in the verification step, Figure 2.

h1 (x) = 12 + 11x + 8x2

h2 (x) = 3 + x + 9x2

h3 (x) = 7 + 5x + 9x2

h5 (x) = 10 + 12x + 5x2
h3 (25) = 9383 ≡

 

10 h5 (23) = 426 ≡

 

10653
432
211

IDs

Fig. 2. Verifiable initialization
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Verifiable and Proactive Share Renewal. After the initial step, we need to update participants’ shares
periodically in order to reduce the adversary power and change the number of shares each participant
receives based on its new trust value. As stated in [9], the following procedure is used.

1. Each Pid selects a random symmetric polynomial of degree t− 2 to generate new shares for himself and
other participants, Figure 3.

rid(x, y) =
t−2∑
i=0

t−2∑
j=0

rijx
iyj

where a00 = 0 and rij = rji for all i, j.
2. Pid sends rid(x, ωk) to Pk through a private channel, where k ∈ {activated.ids}, Figure 3.

r3 (x, y) = 3 x + 3 y + x y r5 (x, y) = x + y + 2 x y
r1 (x, y) = x + y + 3 x y

r2 (x, y) = 2 x + 2 y + 4 x y

r5 (x, 21) = 2 + 5 x

r5 (x, 22) = 4 + 9 x

r5 (x, 23) = 8 + 4 x
r5 (x, 25) = 6

Fig. 3. New share generations

When the share distribution procedure is completed, Figure 4, each Pid has an original share of degree
t− 1 and as many new shares as activated ids with degree of at most t− 2.

h1 (x) = 12 + 11x + 8x2 ,  h2 (x) = 3 + x + 9x2 h3 (x) = 7 + 5x + 9x2 h5 (x) = 10 + 12x + 5x2

r1 (x, 21) = 2 + 7 x 

r2 (x, 21) = 4 + 10 x

r3 (x, 21) = 6 + 5 x 

r5 (x, 21) = 2 + 5 x

r1 (x, 22) = 4

r2 (x, 22) = 8 + 5 x

r3 (x, 22) = 12 + 7 x 

r5 (x, 22) = 4 + 9 x

r1 (x, 23) = 8 + 12 x

r2 (x, 23) = 3 + 8 x

r3 (x, 23) = 11 + 11 x 

r5 (x, 23) = 8 + 4 x

r1 (x, 25) = 6 + 6 x

r2 (x, 25) = 12

r3 (x, 25) = 5 + 9 x 

r5 (x, 25) = 6

Fig. 4. New share distributions is completed

3. In order to verify new distributed shares, each player sends the value of rl(ωc.ids, ωm.ids) to other
players and receives the value of rl(ωm.ids, ωc.ids) from them, all through secure channels, where l ∈
{activated.ids}, Figure 5.

r1 (x, 23) = 8 + 12 (25) = 392 ≡

 

2

r2 (x, 23) = 3 + 8 (25) = 259 ≡

 

12

r3 (x, 23) = 11 + 11 (25) = 363 ≡

 

12

r5 (x, 23) = 8 + 4 (25) = 136 ≡

 

6

r1 (x, 25) = 6 + 6 (23) = 54 ≡

 

2

r2 (x, 25) = 12

r3 (x, 25) = 5 + 9 (23) = 77 ≡

 

12

r5 (x, 25) = 6

id=5id=3

h3 (x) = 7 + 5x + 9x2

8 + 12 x
3 + 8 x

11 + 11 x 
8 + 4 x

h5 (x) = 10 + 12x + 5x2

6 + 6 x
12

5 + 9 x 
6

Fig. 5. Verification procedure
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4. After that, each participant checks to see whether rl(ωc.ids, ωm.ids) = rl(ωm.ids, ωc.ids). If the equation
is not true for more than b times (i.e., excluding colluders), then he broadcasts an accusation of Pl.
For example, suppose values that Pid=3 is generating with his second share: r2(x, 23) = 3 + 8x, does
not match with its corresponding values that he has received from other players: r2(x, 21) = 4 + 10x,
r2(x, 22) = 8 + 5x, and r2(x, 25) = 12 for more than b times, then Pid=3 broadcasts an accusation of
Pid=2, Figure 6.

5. if Pid is accused by at most b players, the accusations could be from colluders. In this case, the par-
ticipant can defend himself by broadcasting all the shares that he gave to those accusers rid(x, ωac),
where ac ∈ {accusers′ids}. As an example showed in Figure 6, suppose Pid=3 broadcasts an accusation
of Pid=2. In that case, Pid=2 can broadcast his second share, 3 + 8x, to other players, so that they
can judge who is being honest. Then, other players whose ids do not belong to the conflicting parties,
check those values and broadcast Yes or No. If there are at least n − b − c players broadcasting Yes,
then Pid=2 is not a bad participant, where c is the number of activated ids belonging to the conflicting
parties, e.g., Pid=1 and Pid=2 cannot judge since they belong to the first participant.

Pid = 3 r2 (x, 23) = 3 + 8 x

r2 (x, 25) = 12

r2 (x, 21)  = 4 + 10 x

r2 (x, 22) = 8 + 5 x

Pid = 1 can’t judge

Pid = 2 can’t judge

Pid = 5 12

P id = 2 3 + 8 x
Broadcasted

Fig. 6. Accusation and defense

6. Finally, each participant updates the list of good players G and his share as follows:

hid(x)←− hid(x) + (x+ ωid)
∑
g∈G

rg(x, ωid)

For instance, if {1, 2, 3, 5} ∈ G, then the updated share of the Pid=3 would be as follows: h3(x) =
7 + 5x+ 9x2 + (x+ 23)[(8 + 12x) + (3 + 8x) + (11 + 11x) + (8 + 4x)] = 5x2 + 3x. As you can see, the
new share is a polynomial in x of degree t− 1.

Secret Recovery. To recover the secret either after the initialization or at any time later on, the following
steps must be done:

1. Each Pid send hid(0) to Pk, where id ∈ G: good players.
2. Then, Pk computes a polynomial fk(0, ωid) = hid(0) for at least n− 2b of the data he received.
3. Finally, Pk computes the secret = fk(0, 0).

Now, we present a new construction for enrolling new players to a threshold secret sharing scheme.

Activating Players’ Identifiers. To update shares in a proactive scheme, a participant must have its
previous share. Suppose we intend to activate a new id in period p while we do not have its corresponding
share in period p − 1. This problem can be resolved only if t participants cooperate together in order to
generate the old share for the newcomer, where t is the threshold. The first solution to this problem, named
share recovery, was proposed in [13]. This solution is not efficient because of its random shuffling procedure.
Saxena et al. [20] propose a better non-interactive solution by using bivariate polynomials, named bivariate
admission control, but this protocol is secure under the discrete logarithm assumption. Our protocol is an
efficient solution which is both unconditionally secure and verifiable. For the sake of simplicity, suppose
each participant has only one identifier.
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1. First, each participant P i computes its corresponding Lagrange interpolation constant:

Ci =
∏

1≤j≤t,j 6=i

x− xj

xi − xj

where x is the newcomer’s id, xi is the id of P i, and xj represents other participants’ ids.
2. Second, participants multiply their shares in related Lagrange interpolation constants. Afterward, each

participant randomly splits the result into t portions:

S1 × C1 = s1,1 + s2,1 + · · ·+ st,1

S2 × C2 = s1,2 + s2,2 + · · ·+ st,2

...
St × Ct = s1,t + s2,t + · · ·+ st,t

3. Third, each participant keeps one share-portion for himself, and exchanges the rest of them with other
t− 1 players. As a result, each player P j holds t values; so, he adds those values together and sends the
result to the new participant: vj =

∑t
i=1 sj,i, where sj,i is the jth share-portion of the ith participant.

4. Finally, the new participant adds all these values together in order to construct his share: S =
∑t

j=1 vj .

For instance, assume t = 3 and we have generated required shares for three participants with ids = 1, 2, 3
based on f(x) = 3 + 2x+ x2 in period p− 1, f(1) = 6, f(2) = 11, and f(3) = 18. After some time, we are
asked to create a share for a new player, id = 4, without having access to the original polynomial. First
each player Pi computes Si × Ci as follows: S1 × C1 = 6 × (4−2)(4−3)

(1−2)(1−3)
= 6, S2 × C2 = 11 × (4−1)(4−3)

(2−1)(2−3)
= −33, and

S3×C3 = 18× (4−1)(4−2)
(3−1)(3−2)

= 54. Then, they cooperate to create a share for the newcomer, as shown in Figure 7.

+       +       = 6

+       +       = 13

+       +       = 8

P1
2

P2
-11

P3 18

3

1

-13

-9

2214

-13 181P1

-11 222P2

-9 143P3

27
P1

-13
P2

-11

P3 3

18

1

2

22

-914

Fig. 7. New id activation

We can extend this approach to the situation where the share generator is a bivariate polynomial.
Consider the bivariate Lagrange interpolation formula, where p is a prime, x1, x2, ..., xt are distinct elements
in Zp, and a1(x), a2(x), ..., at(x) ∈ Zp[x] are polynomial of degree at most t − 1. Then there is a unique
polynomial r(x, y) ∈ Zp[x, y] having degree at most t− 1 in x and y [23].

r(x, y) =
t∑

i=1

ai(x)
∏

1≤j≤t,j 6=i

y − yj

yi − yj

Suppose t = 2, p = 13, ω = 2, activated ids = {1, 2}, and f(x, y) = 11 + 2y + 2x + 3xy is the
share generator. Therefore, the subsequent shares for the first and second ids are f(x, 21) = 2 + 8x and
f(x, 22) = 6 +x, which can be divided into pieces for distribution. If we intend to activate id = 6, then the
corresponding share is as follows:

r(x, 26) = [(2 + 8x)× 26 − 22

21 − 22
] + [(6 + x)

26 − 21

22 − 21
] = 9 + 12x

In the case of using symmetric bivariate polynomial for the share creation, the new player is able to
verify the correctness of his share by checking hm.ids(ωc.ids) = hc.ids(ωm.ids) values with all other players.
As an example mentioned earlier, the first player Pid=1 sends 2 + 8(26) ≡ 7 to the newcomer Pid=6, and
then he verifies that with 9 + 12(21) ≡ 7. The security proof of this protocol is presented in Section 5.
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4 Weight Adjustment

Our scheme provides a mechanism for assigning new weights to participants based on their behaviors at
the end of each time period, by behavior we refer to a participant’s credibility. We intend to apply a weight
adjustment technique that supports reliable participants because of their repeated cooperation, reduces
the influence of unreliable players due to their past defection, and protects the scheme from malicious
players or active adversary. Since players’ weights and trust values are public information, therefore, the
trust computation and weight adjustment can be done by any authority or a committee of players.

4.1 Computing Trust Function

We first define a reliability function, Ri(p) : N → {0, 1} for a participant P i. In the following arguments,
we use superscript i in order to refer to the ith participant not players’ ids.

Ri(p) =

{
1 if P i is cooperating in period p

0 if P i is defecting in period p

To define how participants’ trust values change over time, we need a function that determines an appropriate
trust value given past behaviors, we call this the trust function.

Definition: Given a participant P i and a reliability function Ri for that, a function T i : N→ R is called
a trust function for Ri, if it satisfies the following properties:

1. −1 ≤ T i(p) ≤ +1 ∀p ∈ N
2. T i(p) ≥ T i(p− 1) whenever Ri(p) = 1
3. T i(p) ≤ T i(p− 1) whenever Ri(p) = 0

In fact, the trust function illustrates how reputable or trustworthy each participant is. We then let
T i(p) represents user-i’s trust value during period p. The definition for T i(p) must depend on T i(p − 1).
The function’s recursive definition also requires that we set initial trust values T i(0) for participants; a
solution would be to give each player the same initial value. One simple method is to assign an initial value
to newcomers, increase the trust value by a constant factor if the participant is cooperating, and decrease
it otherwise. However, this approach does not consider various scenarios when making the adjustment.

A new approach for trust management demonstrated by Nojoumian and Lethbridge [17], which supports
good players strongly, blocks bad ones, and creates opportunities for newcomers or players who want to
show their merit in a social network. They considered the following six scenarios in order to compute a trust
function T (x) based on players’ historical behaviors, where −1 ≤ T (x) ≤ +1 and α, β define boundaries
on trust values for bad, good, and new players, Figure 8.

1. If a bad player cooperates, then encourage him a little bit by the encouragement factor XEnc, e.g.,
XEnc ∈ (0.01, 0.05).

2. If the scheme encounters a player who is looking for a chance by cooperating, then give him an oppor-
tunity by the factor XGive, e.g., XGive = 0.05.

3. If a good player cooperates, then reward him more than the encouragement factor by the reward factor
XRew, e.g., XRew ∈ (0.05, 0.09) > XEnc ∈ (0.01, 0.05).

4. If a good player defects, then discourage him a little bit by the discouragement factor XDis, e.g.,
XDis ∈ (−0.05,−0.01).

5. If the scheme encounters a player who cannot be judged while he is defecting, then take an opportunity
from him by the factor XTake, e.g., XTake = −0.05.

6. If a bad player defects, then penalize him more than the discouragement factor by the penalize factor
XPen, e.g., |XPen| ∈ |(−0.09,−0.05)| > |XDis| ∈ |(−0.05,−0.01)|.
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Fig. 8. Trust calculation in social networks [17]

By assigning different values to the above parameters, we can define various points and construct an
appropriate trust function via regression. It is also desirable to bound the trust value, both above and
below, so that a participant cannot continually build up reputation in order to be the main shareholder
and form a monopoly; this also protects the scheme in a scenario where a malicious player cooperates for
a while in order to gather most of the shares for a severe damage. Moreover, since the scheme detects
corruptions and disenrolls bad players immediately, there is not any chance for an active adversary to
continuously harm the scheme by sending wrong shares.

Furthermore, in scenarios where cooperation or defection is a decision on the part of the participant,
such a transition function is still reliable. Consider the scenario in which a player cooperates on secret
recoveries in regular situations (cheap cooperations) until reaching a high trust value, at which point he
may defect the secret recovery in a sensitive situation (an expensive defection) without significant effect
on his reputation value. The authors in [17] define the parameter λ as the transaction cost. In that case,
the scheme would be able to fairly deal with the players’ cooperation and defection.

4.2 Inactivating Unreliable Players’ Identifiers or Disenrolling Bad Participants

Now that we have a trust value for each participant, we turn to the task of using that value to adjust the
scheme. Clearly, ids should be inactivated for players whose trust values have been dropped and activated
for those whose trust values are risen or for newcomers. The task is to determine how many ids should be
inactivated for unreliable participants, and how other ids should be activated for cooperative players and
new participants.

One option for ids′ inactivation is simply to turn an id off for a player each time his trust value
decreases. However, such an approach does not take into account the number of shares in the system,
nor does it consider the number of shares the participant has: if the participant has a large number of
shares, inactivation of a single id will have a negligible effect. Moreover, a participant with only one share
remaining would effectively be removed from the system. One particular approach is to inactivate a number
of ids proportional to the amount that the users’ trustworthy dropped:

wi(p) =
⌊
wi(p− 1) · (1− γ

2
)
⌋

if Ri(p) = 0

where γ = T i(p − 1) − T i(p) is the coefficient of the weight reduction. If wi(p) becomes zero, then the
participant P i will be removed from the scheme, i.e. the release of a row in the matrix of participants’
identifiers. Consequently, the total number of ids to be activated is given as follows:
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δ(p) =
∑

{i : Ri(p)=0}

[wi(p− 1)− wi(p)]

As an example, suppose that trust values of a bad player P i and a good player P j have been dropped
from T i(p − 1) = −0.2 to T i(p) = −0.8 and T j(p − 1) = 0.8 to T j(p) = 0.2 accordingly. In that case,
the weight reduction’s coefficient γ = 0.6 would be the same due to the symmetric range of the trust
function, i.e., P j has done an expensive defection compared to the P i so that they got the same trust
value reduction. In other words, we deduct the weight of unreliable and reliable players with the same
coefficient since we have already considered their historical behaviors in the trust adjustment phase. Since
trust.value ∈ [−1,+1], we divide γ by 2 in order to compute the rate of the weight reduction in the [0,1]
interval.

4.3 Activating Reliable Players’ Identifiers or Enrolling New Participants

Given the number of ids to be activated, we now define which players should receive extra shares and how
many newcomers can enter into the scheme. For each participant P i, consider the ratio of a player’s trust
value T i(p) to the number of shares he is holding wi(p). This ratio increases with the participant’s trust
value enhancement, and decreases as the participant gains more shares.

As a result, it would be reasonable to activate ids in participants for whom this ratio is highest, but it
is not enough since we also need to consider newcomers whose trust values are equal to zero. Therefore, in
order to have a fair policy, we give the first priority to cooperative participants for whom the mentioned ratio
is both highest and positive, the second priority to newcomers, and the third priority to other cooperative
players, i.e., players with negative trust values. However, the re-distribution procedure must ensure that
no player ends up with t or more shares. All these considerations suggest a technical solution, Algorithm
1, to determine new weights for most deserving participants and to add new players with a trust value of
zero and a weight equal to one, where there are δ(p) ids to be activated.

Algorithm 1 Activating identifiers for cooperative players and newcomers
for i = 1 to k = δ(p) do

select P j {with one the following conditions}
if Rj(p) = 1 and wj(p) < t− 1 and T j(p) > 0 and T j(p)

wj(p)
is highest then

activate a new id for P j

wj(p) = wj(p− 1) + 1
else if P j ∈ {newcomers} then

assign a new row to P j

activate a new id for P j

wj(p) = 1
T j(p) = 0

else if Rj(p) = 1 and wj(p) < t− 1 and T j(p) < 0 and T j(p)

wj(p)
is highest then

activate a new id for P j

wj(p) = wj(p− 1) + 1
end if

end for

The proposed algorithm assumes that there will be enough cooperative players and newcomers to
activate their ids, who do not already have t−1 shares. Given that our underlying scheme handles at most
b colluders in a given time period, the scenario in which there are no cooperative participants or newcomers
to receive shares seems unlikely. However, our algorithm can easily be modified to handle this situation by
assigning the remaining shares to participants who, despite having behaved irresponsibly in the previous
time period, still have relatively high trust values. Doing so maintains a constant number of shares in the
system. As given, the complexity of the algorithm is O(kn) where k = δ(p) and n is required to locate the
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highest T j(p)/wj(p), but it could be modified to run in O(k + n log n) time by sorting the participants’
trust-to-shares ratios.

To add participants to the scheme, we have two options for assigning ids to new players in the identi-
fication matrix. The first solution is to add a row for each new player in the matrix. As time passes, this
approach leads to a big matrix with empty rows and consequently increases the size of identifiers. The
second alternative is to use released rows of former bad players. Since we first remove bad players from
the scheme and then remaining participants update their shares; therefore, the leaving players just hold a
number of old shares less than t−1, that is because of our initial assumption b < t−1. As a consequent, we
can reuse the released ids of bad players and assign them to newcomers without leaking any information
about the secret because new players will receive updated shares corresponding to those recycled ids.

5 Security Analysis

The security of the proposed protocols can be illustrated by the fact that the secret remains the same and
the updated shares in the consequent steps cannot be computed by colluders.

Regarding the first property, the secret is the constant term of the original bivariate symmetric poly-
nomial at the initialization step, let say f1. Subsequently, each participant Pid generates a new random
symmetric polynomial of degree t− 2 with a constant term equal to zero, i.e., rid(x, y). At the end, when
participants add their original shares, hid(x), to the new shares they have received from other players,
rj(x, ωid), the constant term of the original polynomial stays the same. As a result, the secret will be en-
coded in a new bivariate symmetric polynomial, let say f2. Therefore, shares exposed by security breaches
do not reveal any information about the secret unless an adversary collects t shares belonging to the same
edition of the symmetric bivariate polynomial.

Concerning the second property, a group of colluders with total weight of b can compute at most
b < t−1 points which give no information about the secret. In addition, because of the random polynomial
generation at each share renewal phase, the adversary cannot use the information he gained in period p
during period p+ 1 or in any other period.

There are two other concerns regarding the defense protocol and ids′ activation procedure. First, a
good player Pid broadcasts at most b polynomials in order to defend himself. Since t > b + 1; therefore,
the broadcasted polynomials, rid(x, ωac) where ac ∈ {accusers′ids}, give no information about rid(x, y).
Second, when t participants want to activate a new id, each player randomly splits his share, keeps a
fraction for himself, and exchanges t− 1 portions with others. Even if t− 1 players collude, the proposed
procedure does not reveal a participant’s share and consequently the secret, we prove this issue with the
following theorem.

Theorem: The proposed protocol for activating players’ identifiers is an unconditionally secure scheme.

Proof : Suppose each participant P i first multiplies his share in corresponding Lagrange interpolation
constant Ci. For the sake of simplicity, we consider this multiplication’s result as the share of participant
P i. Since, each player splits his share into t pieces, we define a n ×m matrix, where each column shows
various fractions of a single share and each row represents portions of different shares that each player
receives from other participants. In the other word, all values in jth column, i.e., s1,j , s2,j , · · · , st,j , belongs
to a single player P j and all entries in ith row, i.e., si,1, si,2, · · · , si,t, represent values that player P i receives
from other participants.

St,t =


s1,1 s1,2 · · · s1,t

s2,1 s2,2 · · · s2,t
...

...
. . .

...
st,1 st,2 · · · st,t


We consider the following two scenarios to see if a coalition of t−1 participants can reveal any information
regarding the secret.
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Case-I: t− 1 of t cooperating participants collude. In this case, colluders have access to all entries of
t− 1 rows. In addition, they also know t− 1 entries of the unknown row because t− 1 columns belong to
them. Therefore, just one entry remains unknown which prevents colluders to find the newcomer’s share
and consequently the secret. As presented in Figure 7, if P 1 and P 2 collude, 14 in the third row remains
unknown.

Case-II: t − 2 of t cooperating participants plus the newcomer collude. In this case, colluders have
access to all entries of t − 2 rows, in addition, they also know t − 2 entries of two unknown rows because
t− 2 columns belong to them; thus, four entries remain unknown. On the other hand, the newcomer also
knows the summation of rows’ entries for all rows, therefore, he can just construct two equations with
four unknowns which does not reveal any information about the secret. As presented in Figure 7, if P 1

and the newcomer P 4 collude, the values -11 and 22 in the second row and the values -9 and 14 in the
third row remain unknown and P 4 can only construct the following two equations: 2 + x1 + x2 = 13 and
3 + x3 + x4 = 8.

6 Conclusions and Future Work

The scheme that we have presented is an unconditionally secure, proactive secret sharing scheme with a
dynamic access structure. Since a players’s weight and consequently his influence on the entire scheme
is dependent on the historical behaviors and participants interaction, we have termed our construction a
social secret sharing scheme, where shares are allocated based on the trust value of each player and the
way he interacts with other participants.

The proposed construction has a variety of desirable properties: it is unconditionally secure, meaning
that it does not rely on any computational assumptions; verifiable, detecting defection of irresponsible
players and cooperation of reliable players; proactive, refreshing shares at each cycle without changing the
secret; dynamic, allowing changes to the access structure after the initialization; and weighted, allowing
trusted participants to have more authority in the scheme. The other prominent property of the scheme
is that, it gradually reduces the influence of unreliable players due to the self-reinforcement property of
social interactions among players. In other words, players collaborate with those whom they really trust;
conversely, they tend not to cooperate with those whom they do not trust. This issue creates an increasing
gap between reliable and unreliable players unless a participant undergoes a sustained change in behavior.
Applications of such a paradigm are: electronic auctions with private bids running by intelligent agents,
joint signature, and shared decryption keys.

Future work could focus on extending the proposed scheme to other constructions. The initial scheme
is based on bivariate symmetric polynomials, therefore, we would like to apply other mathematical models
to form new constructions. The paradigm will be then extended to threshold changeable and non-threshold
schemes, and other access structures such as hierarchy frameworks, where players are assigned to different
levels in a hierarchy. In such schemes, a set of participants is authorized to recover the secret only if they
are at sufficiently high levels of authority [26]. It would be also interesting to consider a scheme where the
weight adjustment was done in a manner that allowed each participant to form an opinion of others, with
each participant’s opinions affecting the redistribution process. As a result, players could use a referral
chain, allowing them to exchange their opinions or past experiences with respect to a specific player.
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