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Abstract. Tree hashing has several advantages over sequential hashing such as parallelism and a
lower cost of hash value recomputation when only a small part of the input changes. In this paper
we consider the general case of tree hashing modes that make use of an underlying (sequential) hash
function. We formulate a set of four simple conditions, which are easy to implement and to verify, for
such a tree hashing mode to be sound. We provide a proof that for any tree hashing mode satisfying
these four conditions, the advantage in differentiating it from an ideal monolithic hash function is
upper bound by q2/2n with q the number of queries to the underlying hash function and n the length
of the chaining values. We apply our results to sequential hashing modes calling a fixed-input-length
compression function and show for two examples of simple tree hashing modes that they are sound.
Finally we show a simple method to take the union of tree hashing modes that preserves soundness.
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1 Introduction

Most hash functions are iterated where the message blocks are processed sequentially and the
processing of a block requires all previous blocks to be processed. This severely limits the efficient
use of multi-processors when hashing a single (long) message. By adopting tree hashing, several
parts of the message may be processed simultaneously and parallel architectures can be used more
efficiently in the hashing of a single message. Tree hashing has other advantages: on the condition
that chaining values are kept, adapting the hash of a message after modifying only a small part of
it can be done with much less effort than for a sequential hash function.

Tree hashing was already introduced in [11]. Recently, in the SHA-3 competition, a number of
hash functions were proposed that have tree hashing built into their mode of use, i.e., the mode of
use is a tree hashing mode calling a fixed-input-length (FIL) compression function [9,12,14,8].

In this paper, we discuss tree hashing modes that call a hash function without restrictions on
its input (or output) length. These modes can be used to construct tree hashing when a sequential
hash function is available. Clearly, our treatment remains valid for FIL compression functions.

Our aim is to formulate a number of simple conditions for such a tree hashing mode to be sound.
For the soundness, we base ourselves on the indifferentiability framework introduced by Maurer et
al. in [10] and applied to hash functions by Coron et al. in [7]. To do that, we follow a proof technique
very similar to the one introduced in [4]. The remainder of this paper is organized as follows. After
providing a rigorous definition of tree hashing modes in Section 2, we introduce in Section 3 a set of
simple and easy-to-verify conditions for tree hashing modes that result in sound tree hashing. After
adapting the indifferentiability setting of [7] to tree hashing in Section 4, we provide in Section 5 a
clear indifferentiability proof valid for any tree hashing mode satisfying our criteria. In Section 6,
we discuss the choice of the underlying compression function and its implications. Independently
of the indifferentiability framework, we show in Section 7 that some properties of the underlying
compression function are preserved in the construction. We show in Section 8 the applicability of
our results by applying them to classical Merkle-Damg̊ard style hashing in Section 8.1, proving the



soundness of two examples in Section 8.2, and showing a simple method to take the union of tree
hashing modes that preserves soundness in Section 8.3.

Provable security of tree hashing was already investigated in [13] and indifferentiability proofs
have been given, e.g., for the mode used in MD6 [12]. Our paper expands the concepts presented
in [6] and was actually inspired by the proofs in [12] that were quite specific for the mode of use
adopted in MD6. Our goal was to formulate a set of simple conditions that should be easy to verify
and implement, sufficient for a tree hashing mode to be sound. In the meanwhile the authors of
[12] independently set out to do the same thing and the results of their work surfaced in the pre-
proceedings of Fast Software Encryption Workshop 2009 [15]. Not unsurprisingly, the conditions in
this paper and those in [15] turn out to be very similar.

Despite this similarity, we believe this paper has a substantial added value with respect to prior
work, including [15]. First, the bound we achieve on the success probability of differentiating the tree
hashing mode from an ideal hash function is tighter (and simpler to express) than the one in [15]. As
a matter of fact, it only depends on the length of the chaining values and is as tight as theoretically
possible. Second, the set of conditions and the corresponding indifferentiability proof in this paper
is short and easier to verify than those in many papers on provable security. Third, we treat a more
general case than prior work in several aspects. Our mode of use is parameterized, with parameters
specifying the way to build the tree. Also, our tree hashing modes can generate indefinite-length
outputs, allowing us to prove indifferentiability from an random oracle with indefinite output length,
rather than a truncated random oracle. Finally, in our construction the inner hash function is not
necessarily a compression function but can have variable output length. This is useful when building
a tree hash function using a variable output-length sequential hash function as component (see
Section 6).

2 Tree hashing mode

Most hash functions are constructed in a layered fashion. Typically, a hash function has a variable
input length and a fixed output length. There is a mode of use that processes the input and in
turn calls an underlying function F . Usually, this underlying function is a compression function,
i.e., a fixed-input-length (FIL) and fixed-output-length hash function with input length larger than
output length. The task of the mode is to call F with inputs composed from message bits and
output bits of previous calls to F .

In this section we generalize this idea. We do not impose limits to the input or output length of
the underlying function and consider a wide range of tree hashing modes. We call the underlying
hash function the inner hash function and denote it by F . Our generalization allows for dealing with
hierarchical hash functions obtained by applying a tree hashing mode to an inner hash function that
is itself sequential. Still, our treatment is generic enough to also cover the case of Merkle-Damg̊ard
style hashing with F a classical compression function (see Section 8.1).

The combination of a tree hashing mode T and an inner hash function F defines a hash function
T [F ] that we call the outer hash function. In general, the outer hash function has variable input
and output lengths.

A tree hashing mode and the resulting outer hash function may be parameterized. For example,
one may put as parameter the height of the tree or the degree of the nodes.

It is reasonable to assume that the way the message is cut into blocks and processed is indepen-
dent of the actual bit values of the message, although it can certainly depend on its length. In this
paper, we thus assume that the tree hashing mode can be formally expressed as a two-step process.
First, the tree template generator Z is a deterministic algorithm that constructs a tree template
Z = Z(|M |, A), which depends only on the length of the message |M | and on the tree parameters
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A. The tree template Z is a recipe for T [F ], which tells, e.g., how to cut M into blocks, how to
format the input to F and how to use the output of F to generate another input to F down the
tree. Second, T [F ] follows the template Z by instantiating it with the bits of the actual message
M and the intermediate chaining values.

A tree template Z is composed of node templates Zα, where α denotes the index of a node
template. The nodes form a directed acyclic graph and make a tree. The structure of the tree is
reflected in the way the nodes are indexed. The index α of a node template consists of a string of
integers and has the following properties:

– The node template Z∗, where ∗ denotes the empty string, is called the final node template. (By
contrast, the other nodes are called inner nodes.)

– In general, a node template Zα is connected to zero, one or more other nodes, called its sons.
The number of sons of a node is called its degree d. The sons of a node template Zα are the
nodes Zα||0, Zα||1 . . . Zα||d−1. We call a node template with no sons a leaf node template.

– The height of a node template is the number of integers in its index; it is also the distance to
the final node template, which has height 0. The height of a tree template is the maximum
height over all its nodes.

When instantiating the tree for a given value of M , the node templates become bitstrings called
node instances forming a tree instance. The definitions above can be translated to node instances,
replacing the word “template” by the word “instance”. We simply say “node” when it is clear from
the context if we refer to a node template or a node instance.

A node template Zα is a sequence of template bits Zα[x], 0 ≤ x < |Zα|, and specifies the way a
node template Zα becomes a node instance Sα when the value of M is fixed. There are three types
of template bits, which can be identified in a node template:

– Frame bits: a frame bit has a single attribute: its binary value. The value is fully determined
by A and |M |. When instantiating, each frame bit Sα[x] takes the value of Zα[x].

– Message bits: a message bit has a single attribute: its position. The position is an integer in the
range [0, |M | − 1] and points to a bit position in a message string M . When instantiating, we
assign the message bit M [y] to Sα[x], where y is the position attribute of Zα[x].

– Chaining bits: a chaining bit has two attributes: a son number and a position. The son number
is an integer in the range [0, d − 1] with d the degree of Zα and identifies a son node. The
position is an integer that points to a bit position in the output of F . When instantiating,
we set Sα[x] ← F(Sα||j)[y], where j is the son number attribute of Zα[x] and y is its position
attribute. (A chaining value is the set of all chaining bits coming from the same son.)

Computing the outer hash function T [F ] for a given input (M,A) can now be specified as follows.
First, the tree template is built Z = Z(|M |, A). Then, the node templates are instantiated and
subject to F starting with the leaves and ending with the final node, each node being processed
only after its sons are. Finally, the output of the outer hash function is obtained by applying F on
the final node instance, namely,

T [F ](M,A) = F(S∗).

3 Sufficient conditions for sound tree hashing

In this section we first show that collisions in chaining values result in behavior not observed in a
random oracle and hence impose an upper bound on the strength of the tree hashing mode. Then
we introduce four conditions that a tree hashing mode should satisfy. In Section 5 we will prove that
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the strength of a tree hashing mode that satisfies these four conditions equals this upper bound,
and hence is as tight as theoretically possible. The differentiability upper bound and the first three
conditions stem from the ability to generate collisions. The last condition prevents a generalization
of length extension.

Throughout the text, we assume that F is a random oracle, with infinite output, and that the
tree hashing mode can provide an output with indefinite length.

First, we try to produce a collision in the output of T [F ]. Consider two inputs (M,A) and
(M ′, A) with messages of equal length. As |M | = |M ′| they will have the same tree templates
Z = Z ′ = Z(|M |, A). For some fixed index α, we construct pairs of messages that differ only in bits
that are mapped to nodes with indices restricted to α||β,∀β (e.g., the two messages differ only in
one leaf). This difference can only propagate to the final node via the chaining bits referring to Zα
in its parent node. Let the number of these chaining bits be denoted by nα. For the two messages,
these chaining bits will consist of a selection of output bits from F(Sα) and F(S′α) respectively.
Hence, a collision in the output of F restricted to these nα bits implies an output collision in T [F ].

Assuming that F behaves like a random oracle, the success probability of having a collision in
its output restricted to n bits after trying N inputs for N < 2−n/2 is

N(N − 1)
2n+1

.

This reasoning is independent of the value of α, so an upper bound to this success probability
imposes a lower bound on the length of the shortest chaining value in the tree. We can therefore
logically expect a tree hashing mode to have the same length for all chaining values.

Our definition of templates allows for composing chaining values using bits of arbitrary positions
of the output of F . If we assume F generates its bits in a sequential fashion, the most efficient way
is to take the first n output bits of F ; we denote by Fn the truncation of F to its first n output
bits. In the following we will assume that Fn is used for the inner nodes.

We will now further elaborate on collisions. For this, we introduce the concept of inner collision.

Definition 1. An inner collision in T [F ] is a pair of different tree instances S 6= S′ with equal
final node instances S∗ = S′∗.

With an inner collision, the output of T [F ] is equal for all output bits, not just the first n bits.
A collision of Fn can be used to generate an inner collision in T [F ]. However, an inner collision

does not necessarily imply an output collision of Fn. For instance, let us try to produce an inner
collision without a collision in Fn. Consider two inputs (M,A) and (M ′, A′) leading to tree templates
Z and Z ′. The values of (|M |, A) and (|M ′|, A′) are chosen in such a way that for all indices
α 6∈ {β, β||0} we have Zα = Z ′α. Nodes Z ′β and Zβ||0 are both leaf nodes, and Zβ has degree
1. Additionally, Zβ and Z ′β have the same length and in the positions where there are chaining
bits in Zβ, there are message bits in Z ′β. For a given M , we can now compute all node instances;
this includes the chaining bits in Sβ by instantiating Sβ||0 and evaluating Fn(Sβ||0). We can then
construct M ′ such that S′β = Sβ and S′α = Sα for all the indices α in Z ′. As S has one more node
than S′, the tree instances are not equal and hence we have an inner collision.

In this case, the inner collision is only possible because the node templates Zβ and Z ′β are
different. A simple way to avoid this situation is mandating that Z is template-decodable.

Definition 2. A tree template generator Z is template-decodable if for any tree instance S gen-
erated with Z the following holds. For any index α, the knowledge of the node instances (Sβ), for
β running through all prefixes of α (including S∗ and Sα itself), is sufficient to determine the node
template Zα.
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We can now prove the following lemma, leading to our first condition.

Lemma 1. When Z is template-decodable and T uses the first n bits of F as chaining values, an
inner collision in T [F ] implies an output collision in Fn.

Proof. Let S 6= S′ produce an inner collision with S∗ = S′∗. Let α be any index such that Sβ = S′β
for all β prefixes of α. From the decodability property, one can unambiguously determine the node
templates Zα = Z ′α. The number of sons is thus identical for both node templates.

Now let α be as above and j an integer such that Sα||j 6= S′α||j . From the node template
Zα, the positions of the bits of Fn(Sα||j) or Fn(S′α||j) in Sα are known. Hence, Sα = S′α implies
Fn(Sα||j) = Fn(S′α||j). ut

Condition 1 Z is template-decodable.

This condition, as well as the next three ones, are easy to verify and to implement. This is
discussed and illustrated on some examples in Section 8.

Naturally, we can have an output collision in T [F ] without an inner collision if there are message
bits that are not mapped to any template node. This leads to the condition for Z that for all inputs
(|M |, A), the resulting template tree Z = Z(|M |, A) has at least one message bit for every position
x in [0, |M | − 1]. We call this property M-completeness. (Basically, all the message bits enter the
function F .)

Condition 2 Z is M-complete.

Similarly, we can have an output collision in T [F ] without an inner collision if the template
does not allow to fully determine the tree parameters A. This leads to the condition for Z that for
all inputs (|M |, A), the resulting template tree Z = Z(|M |, A) allows fully determining A. We call
this property A-completeness.

Condition 3 Z is A-complete.

The final condition is related to a property that generalizes length extension to tree hashing
and requires the definition of subtrees.

Definition 3. We call a tree instance S′ a subtree of tree instance S if for all nodes S′β of S′ and
for some index α in S, it holds that S′β = Sα||β.

Finally, let us assume that the trees S and S′ correspond with inputs (M,A) and (M ′, A′),
respectively, and that S′ is a subtree of S. As Sα = S′∗, we have T [F ](M ′, A′) = F(S′∗) = F(Sα).
Hence, one can compute T [F ](M,A) without knowing the message bits of M mapped to the nodes
Zα||β.

This property is not present in a random oracle. It can be avoided in several ways, such as fixing
the topology of the trees. However, the simplest method is to have domain separation between final
and inner nodes: this makes S′∗ = Sα impossible as they are in different domains. This leads to the
following condition:

Condition 4 Z enforces domain separation between final and inner nodes.

A simple way to implement domain separation is to start (or end) each node with a frame bit
indicating whether it is a final or inner node. Note that if F is a random oracle, this is equivalent
to saying that the function applied to the final node is a different one than the function applied to
the inner nodes and hence is similar to an output transformation. In our indifferentiability proof
there is however no restriction to the output length of this function.
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Fig. 1. The differentiability setup

4 The indifferentiability framework

The indifferentiability framework was introduced by Maurer et al. in [10] and is an extension of
the classical notion of indistinguishability. It deals with the interaction between systems where the
objective is to show that two systems cannot be told apart by an adversary able to query both
systems but not knowing a priori which system is which. It was applied by Coron et al. to iterated
hash function constructions in [7]. The first system contains two subsystems: the hash function
construction and the compression function. The second system contains as one of its subsystems an
ideal function that has the same interface as the hash function construction in the first system. As
both systems must have equal interfaces towards the distinguisher, the second system must have
a subsystem offering the same interface as the compression function. This subsystem is called a
simulator.

For hash function constructions, a random oracle usually serves as an ideal function. We use the
definition of random oracle from [2]. A random oracle, denoted RO, takes as input binary strings
of any length and returns for each input a random infinite string, i.e., it is a map from Z∗2 to Z∞2 ,
chosen by selecting each bit of RO(s) uniformly and independently, for every s.

4.1 The distinguisher’s setting

We study the indifferentiability of a tree hashing mode T , calling an ideal inner hash function F ,
from an ideal outer hash function G. This leads to the setting illustrated in Figure 1. The system at
the left is T [F ] and F , and the adversary can make queries to both subsystems separately, where
the former in turn calls the latter to construct its responses. The distinguisher has the following
interfaces to this system:

– H taking as input (M,A, `) with M a binary string, i.e., M ∈ Z∗2, A the value of the mode
parameters and ` the requested output length, and returning a binary string y ∈ Z`2;

– I taking as input (s, `) with s a binary string s ∈ Z∗2 and ` the requested output length, and
returning a binary string t ∈ Z`2.

When queried at the interface H with a query (M,A, `), the left system returns y = T [F ](M,A)
truncated to ` bits. When queried at the interface I with a query (s, `), it returns t = F(s) truncated
to ` bits.

The system at the right consists of an ideal hash function G implementing the interface H and
of a simulator S implementing the interface I. When queried with a query (M,A, `), G returns
y = G(M,A) truncated to ` bits. From the requirement that ideally the outputs corresponding to
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two different inputs (M,A) and (M ′, A′) are independent, we construct this ideal hash function as
G = RO◦E , where E is a (deterministic) encoder and RO a random oracle. The encoder E converts
the input (M,A) to a binary string s in an injective way, which is then transmitted to the random
oracle.

The output of S should look consistent with what the distinguisher can obtain from the ideal
hash function G, like if S was F and G was T [F ]. To achieve that, the simulator can query G,
denoted by S[G]. Note that the simulator does not see the distinguisher’s queries to G. Summarizing,
S implements the interface I and when queried with (s, `), it responds with t = S[G](s, `).

Indifferentiability of T [F ] from the ideal function G is now satisfied if there exists a simulator
S such that no distinguisher can tell the two systems apart with non-negligible probability, based
on their responses to queries it may send.

In this setting, the distinguisher can send queries Q to both interfaces. Let X be either (T [F ],F)
or (G,S[G]). The sequence of queries Q to X consists of a sequence of queries to the interface H,
denoted QH and a sequence of queries to the interface I, denoted QI . QH is a sequence of triplets
QH,i = (Mi, Ai, `i), while QI is a sequence of couples QI,i = (si, `i).

For a given set of queries Q and their responses X (Q), we define the T -consistency as the
property that the responses to the H interface are equal to those that one would obtain by applying
the tree hashing mode T to the responses to the I interface (when the queries QI suffice to perform
this calculation), i.e., that X (QH) = T [X (QI)](QH). Note that T -consistency is per definition
always satisfied by the system on the left but not necessarily by the system on the right.

4.2 The cost of queries

The indifferentiability bounds provided in [7] are expressed as a function of the total number of
queries q and their maximum input lengths. In [4] a bound is expressed as a function of a cost,
that is proportional to the total length of the queries and their responses. In this paper we use a
third approach: We quantify the contribution of the queries to H and to I using a common unit,
which is a query to the interface I. This is motivated by the fact that queries to H and queries to
I behave very differently when addressing (T [F ],F): a query to H may require many calls to F ,
while a query to I, when applied to F , requires only a single call.

The cost q of queries to a system X is the total number of calls to F it would yield if X =
(T [F ],F), either directly due to queries QI , or indirectly via queries QH to T [F ]. The cost of a
sequence of queries is fully determined by their number and their input.

– Each query QI,i to I contributes 1 to the cost.
– Each query QH,i = (Mi, Ai, `i) to H costs a number fT (|Mi|, Ai), depending on the tree hashing

mode T , the mode parameters Ai and the length of the input message |Mi|. The function
fT (|M |, A) counts the number of calls T [F ] needs to make to F from the template produced
for parameters A and message length |M |. Note that fT (|M |, A) is also the number of nodes
produced by Z(|M |, A).

In addition, the cost does not take into account duplicate queries. Two queries QI,i = (si, `i)
and QI,j = (sj , `j) with si = sj are counted as one, and can be replaced by a single query
(si,max(`i, `j)). Similarly, two queries QH,i = (Mi, Ai, `i) and QH,j = (Mj , Aj , `j) with Mi = Mj

and Ai = Aj are counted as one, and can be replaced by a single query (Mi, Ai,max(`i, `j)).

4.3 Definition

We can now adapt the definition as given in [7] to our setting.
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Definition 4 ([7]). A tree hashing mode T with oracle access to an ideal hash function F is said
to be (tD, tS , q, ε)-indifferentiable from an ideal hash function G if there exists a simulator S[G],
such that for any distinguisher D it holds that:

|Pr [D[T [F ],F ] = 1]− Pr [D[G,S[G]] = 1] | < ε.

The simulator has oracle access to G and runs in time at most tS. The distinguisher runs in time
at most tD and has a cost of at most q. Similarly, T [F ] is said to be indifferentiable from G if ε is
a negligible function of the security parameter n.

5 Indifferentiability proof

In this section, we always assume that the conditions presented in Section 3 are fulfilled by the
tree hashing mode T . We first describe the simulator and its general goal. We then prove the
indifferentiability results by means of a series of lemmas and a final theorem.

5.1 The simulator

The simulator S[G] has two tables. First, it keeps track of the queries in a list T of couples (s, c)
with s, c ∈ Z∗2. Second, it memorizes a set Pn ⊆ Zn2 of n-bit values that the simulator cannot use
as an output to QI queries for inner nodes. Both T and Pn are initialized to the empty set.

We say that a final node instance s is message-bound if the table T allows to reconstruct the
corresponding input (M,A).

Algorithm 1 T -decoding
1: input: S∗ and table T
2: output: message M and tree parameters A, or status code
3: for α in any fixed order such that a node Sα is always before its sons do
4: if Sα has formatting compliant with T and Zβ for all β prefix of α then
5: Decode Sα into Zα
6: else
7: return “invalid coding”
8: end if
9: Use the message bits in Sα to build M

10: for each block cj of n chaining bits from the son number j do
11: if (s, t) ∈ T and the first n bits of t are equal to cj then
12: Set Sα||j ← s
13: else
14: return “dead end at cj”
15: end if
16: end for
17: end for
18: Build A given the complete tree
19: return (M , A)

Algorithm 1 implements the reconstruction on the complete tree instance from the final node
instance and using the known pairs (s, c) in T . When s is message-bound, it returns the correspond-
ing M and A; in this case, Conditions 1, 2 and 3 imply that this algorithm always succeeds (see
also Lemma 3). If not, it returns a chaining value whose preimage could not be found in the table
T . With a (partial) tree instance that could not have been produced by the tree hashing mode, an
error is returned.
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Algorithm 2 implements the simulator. It stores in T the queries and their responses as (s, c)
couples, and use the c part (possibly truncated) to build the response for a subsequent query with
the same s. As a general rule, if two queries (s, `1) and (s, `2) are sent with `2 > `1, the second
query only extends the c part to `2 bits.

Depending on the type of queries, the simulator takes the following actions:

– For inner node instances, the simulator avoids collisions in the first n output bits using the
set Pn. This set is built from this type of queries, and also using the final nodes that are not
message-bound (see below).

– For final node instances:
• When s is message-bound, it calls G for guaranteeing T -consistency.
• When s is not message-bound, it returns random bits. Furthermore, the simulator makes

certain that such an s not message-bound does not become message-bound later on; it would
otherwise break T -consistency. This is achieved by adding to Pn a chaining value not known
during the T -decoding of s; such a chaining value will therefore never be returned again for
an inner node instance and s can never become message-bound (see also Lemma 4).

Algorithm 2 The simulator S[G]
1: input: (s, `) (interface I)
2: output: string in Z`2
3: Let t such that (s, t) ∈ T , or t = ∗, the empty string, if no such (s, t) exists in T
4: if |t| < ` then
5: if s is a final node instance then
6: T -decode s using T
7: if decoding returned (M,A) then
8: Set t to the first ` bits of G(M,A)
9: else if decoding returned “dead end at e” then

10: Set Pn ← Pn ∪ {e}
11: end if
12: else {s is an inner node instance}
13: if |t| < n then
14: Choose t randomly and uniformly from Zn2 \ Pn
15: Set Pn ← Pn ∪ {t}
16: end if
17: end if
18: Append max(`− |t|, 0) uniformly and independently drawn random bits to t
19: Add (s, t) to the table T , replacing any previous entry whose first component is s
20: end if
21: return t truncated to its first ` bits

5.2 The proof

Lemma 2. If Pn 6= Zn2 , the simulator avoids collisions in the first n output bits when queried with
inner node instances.

Proof. As it can be seen in lines 13–16 of Algorithm 2, the simulator stores the first n bits of the
output in Pn and avoids returning any value in Pn for any other inner node instance. ut

Lemma 3. If Pn 6= Zn2 , the reconstruction of (M,A) from a message-bound final node is possible
and there is only one possible (M,A).
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Proof. First, note that when queried with the same inner node instance but different lengths,
(s, `1) and (s, `2), the simulator returns consistent values in the first min(`1, `2) bits. In line 13 of
Algorithm 2, the condition |t| < n is actually equivalent to t = ∗, as line 14 always generates n
bits, so these n bits are never regenerated for the same s. And line 19 keeps in memory the longest
response given so far; consequently, any pair (s, c) in T can only grow by appending bits to the c
component.

The T -decoding algorithm depends only on answers to inner node instances, whose consistence
is shown above. Furthermore, together with Lemma 2, the pair (s, t) at line 11 of Algorithm 1 is
either not found or can be retrieved without ambiguity. ut

Lemma 4. Given queries QI to the simulator S[G] described in Algorithm 2 and QH to G, it
returns T -consistent responses, unless Pn = Zn2 .

Proof. The proof is by induction. We assume that the simulator has received a sequence of queries
and that up to now it has returned T -consistent responses. Initially this is the case when the
simulator has not received any queries at all. We will now prove that if Pn 6= Zn2 , the simulator will
return a response such that the whole set of queries and responses remain T -consistent.

Thanks to the domain separation between final and inner nodes, the simulator can distinguish
between these two kinds of queries and we can consider these two cases separately. To rephrase
the definition, T -inconsistency would imply that there is a query to the simulator for a final node
instance S∗ that is message-bound to (M,A) and such that its response S[G](S∗) is different from
G(M,A).

When querying a final node S∗ and it is message-bound, Lemma 3 shows that (M,A) is un-
ambiguously retrieved and S queries G(M,A) to make its response T -consistent per construction
(line 8 of Algorithm 2). When querying a final node and it is not message-bound, there is no
information in the QI queries and their responses to show the inconsistency.

When querying an inner node, T -inconsistency cannot be shown using the response to this very
query, as it cannot be compared to a query to the H interface. However, the simulator could result
in T -inconsistency if this new response would make the response t to (s, `), a previously queried
final node, T -inconsistent. Now there are two possibilities:

– s was message-bound to some input (M,A) when the query was sent. In this case, T -inconsistency
could only come from an inner collision that would allow to T -decode the final node s to another
input (M ′, A′) 6= (M,A). But Lemma 1 shows that this would imply a collision in the first n
output bits for inner nodes, and this is not possible thanks to Lemma 2.

– s was not message-bound when the query was sent. In this case, T -inconsistency could only come
from the final node s becoming message-bound due to the new query. However, for every such
final node s, a chaining value c was added to Pn, preventing s from becoming message-bound
in later queries.

It follows that the simulator guarantees T -consistency for all queries Q unless Pn = Zn2 . ut

Lemma 5. Any sequence of queries QH can be converted to a sequence of queries QI , where QI
gives at least the same amount of information to the adversary and has no higher cost than that of
QH.

Proof. For each query QH,i = (Mi, Ai, `i), we can produce the template from Ai and |Mi|. This
template determines exactly how the query QH,i can be converted into a set QI of fT (Ai, |Mi|)
queries to interface I. From the definition of the cost, it follows that the cost of QI cannot be
higher than that of QH; the cost can be lower if there are redundant queries in QI . ut
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Lemma 6. The advantage of an adversary in distinguishing between F and S[G] with the responses
to a sequence of q < 2n queries QI is upper bounded by:

εn(q) = 1−
q−1∏
i=0

(
1− i

2n

)
.

Proof. The advantage is defined as Adv(A) = |Pr[A[F ] = 1] − Pr[A[S[G]] = 1]|. We provide an
upper bound of the advantage by computing the variational distance between the two statistical
distributions. Actually, we are interested only in the first n output bits of the responses; the other
bits are uniformly and independently generated by S and F in all cases.

Since F is a random oracle, the responses to q different queries are independent and uniformally
distributed over Z2

n. By inspecting Algorithm 2, the simulator always returns uniform values for
final node instances. For inner node instances, the simulator chooses it from the set Zn2 \ Pn. Each
query can add at most one element to Pn. The response to the i-th query is chosen from at least
2n− i+ 1 values. After q queries, there are at least (2n)(q) (where a(n) denotes a!/(a−n)!) possible

responses, each with equal probability 1/(2n)(q). This gives Adv(A) ≤ 1− (2n)(q)
2nq = εn(q). ut

We have now all the ingredients to prove our main theorem.

Theorem 1. A tree hashing mode T [F ] that uses Fn for the chaining values and satisfies Con-
ditions 1, 2, 3 and 4, is (tD, tS , q, ε)-indifferentiable from an ideal hash function, for any tD,
tS = O(q3), q < 2n and any ε with ε > εn(q).

Proof. We consider a more powerful adversary than required; the bound we prove is also valid for
the actual adversary who cannot do better. For a given cost, the adversary can issue the queries
QI and QH in any order she wishes. After she is done, we give her for free additional queries Q′I
derived from the queries QH as in Lemma 5 and their responses. Since the queries Q′I are issued
at the end of the process, they have no impact on the state of the simulator S when issuing the
original queries QI .

From Lemma 5, the queries QI ∪ Q′I do not have a cost higher than that of QI ∪ QH. Since
q < 2n, we are sure that Pn 6= Zn2 in the simulator even after issuing the free extra queries Q′I . As
a consequence, Lemma 4 guarantees T -consistency of all the queries QI ∪ QH ∪ Q′I . This means
that the responses to the queries QI ∪Q′I give the same information as those to QI ∪QH ∪Q′I . We
can therefore concentrate on the distinguishing probability using only the queries QI = QI ∪ Q′I
and their response X (QI).

For any fixed query QI , we look at the problem of distinguishing the random variable F(QI)
from the random variable S[G](QI). From Lemma 6, the advantage is upper bounded by εn(q).

We have tS = O(q3) as for each of the q queries, the simulator may have to T -decode q node
instances, each requiring to look up in a table of at most q entries. ut

If q is significantly smaller than 2n, we can use the approximation 1 − x ≈ e−x for x � 1 to
simplify the expression for εn(q):

εn(q) ≈ 1− e−
q(q−1)

2n+1 <
q(q − 1)

2n+1
.

6 Choice of F and its implications

The proof given in Section 5 assumes that F is a random oracle. In any concrete design F must
naturally be a concrete hash function. The main purpose of this paper is to provide a means to
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introduce tree hashing modes based on a sequential hash function F . There are several constructions
for building a sequential hash function using a random compression function [7] or a random
permutation [4] that come with an indifferentiability proof. The differentiating advantage for these
bounds are typically of the formN2/2c+1, whereN relates to the number of queries to the underlying
function f and c is a security parameter (usually related to the internal state size).

If we use a tree hashing mode (outer mode) calling a sequential hash mode (inner mode) calling
an underlying function f , the total differentiating advantage is just the sum of the outer advantage
q2/2n+1 and the inner advantage N2/2c+1. To measure the cost of an adversary, we choose as
unit the evaluation of the f function (typically a compression function or a permutation) since in
practice it bears the bulk of the computational workload. In this context, the best an adversary
can do is to choose messages in the outer mode that result in short node instances (e.g., r blocks).
We assume that a call to the sequential hash function results in only a small constant number r of
calls to f , leading to q = rN .

For an underlying function of given dimensions, one can now determine the optimal values of the
chaining value size n and of the security parameter c for providing a given security level. We do the
exercise for a sponge function [3,4]. Assume we have a permutation f and we want to limit the total
differentiating advantage to N2/2c

′+1. We further assume that r = 1, i.e., the tree hashing mode
allows the adversary to query small node sizes at the cost of only one evaluation of the permutation
f . The optimal choice of parameters in this case is to use the sponge construction with capacity
equal to c = c′ + 1 and a tree hashing mode with chaining values of length n = c′ + 1.

With a tree hashing mode, a sequential hash function mode with an indefinite output length,
such as the sponge construction, may come in handy. For a hash function with digest size m,
(second) preimage resistance of 2m requires that c ≥ 2m. On the other hand, an optimal choice of
parameters as above requires that n = c ≥ 2m output bits are used as chaining values, more than
the available digest size m.

Another approach is to use the tree hashing mode calling a FIL hash function, where the
FIL hash function is assumed to behave as a FIL random oracle. The typical block cipher based
compression function constructions, such as the Davies-Meyer mode, are trivially differentiable from
a random oracle and are therefore not covered by our proof. On the other hand, it has been shown
in [12,15] that a random permutation can be converted to a FIL random oracle simply by fixing
part of its input and truncating its output.

7 Property preserving aspects

Independently of the indifferentiability result, some properties hold when the four conditions of
Section 3 are satisfied.

First, producing a collision in the first m output bits of T [F ](M,A) implies either an m-bit
collision in F(S∗) or an inner collision. In the latter case, Lemma 1 implies that one produces a
collision in Fn. Therefore, the collision resistance of the outer hash function preserves that of the
inner one.

Then, a similar idea applies to the (second) preimage attack. Given an m-bit output value
s, an adversary who can find an input (M,A) such that the first m bits of T [F ](M,A) are s can
reconstruct the tree node instances and compute the final node S∗. He is thus able to find a (second)
preimage on the inner hash function F .
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8 Applicability

We first show that, given a tree hashing scheme, it is easy to verify that it satisfies the four conditions
of Section 3.

There are a few cases where Condition 1 can be directly checked. For instance, the structure of
the tree can be fixed, or it is determined by the parameters A encoded as frame bits in the final
node. In these cases, the knowledge of S∗ is enough to decode the whole tree and the condition is
immediately verified.

It is also possible that the structure of the tree is determined by S∗ up to the degree of the
nodes. In Section 8.2, we will see an example where the degree of the final node grows with the
message size. In another example, the number of message bits in a leaf is variable. In both cases,
Condition 1 comes down to checking that the size of the node instances allows to fully determine
the tree structure.

In general, one has to start verifying Condition 1 by checking that the final node can be decoded,
for all (M,A). Then, one follows the definition, by checking that the knowledge of a node instance
and its parents allows to decode its sons. Finally, the leaves must be identified as such and the
decoding must terminate.

Verifying Condition 2 is a matter of checking that all message bits are processed in some node,
for all (|M |, A). Condition 3 usually means that A can be recovered from the tree topology or from
its encoding in frame bits, and checking Condition 4 follows directly from the tree hashing scheme
definition.

8.1 Sequential hashing

Sequential hash functions can be seen as a special case of tree hashing modes, where the tree reduces
to a single linear sequence. Therefore, the conditions for tree hashing modes introduced in Section 3
can be applied to sequential hash functions. Consider the following sequential hash mode that calls
an n +m-bit to n-bit hash function, which can be seen as strengthened Merkle-Damg̊ard hashing
with final node domain separation added to it.

– Append to the message M its length coded on 64 bits.
– Pad it with a bit 1 and at most m− 2 bits 0 to form a sequence of y m− 1-bit blocks M ′i .
– Append a single 0 to each of the blocks except the last one, for which 1 is appended.
– Let Hi+1 = F(Hi,M

′
i) with H0 = 0n, and the hash result is defined as Hy.

This hashing mode obviously satisfies M-completeness, A-completeness (as there are not tree pa-
rameters) and final node domain separation. Template-decodability finally can be easily shown. All
inner nodes have a similar template, except of the first node, which has frame bits in its first n
bits instead of chaining bits. The length coded at the end of the message determines the height of
the tree and thereby allows to identify the first node. It follows that differentiating this mode has
advantage at most q(q − 1)/2n+1, where q is the number of queries to the compression function.

As a variant, consider this mode where M ′0 has length n + m rather than m and where H1 =
F(M0). In the first node, the n frame bits are replaced by n message bits. This satisfies again all
four criteria and hence satisfies the same indifferentiability bound and results in n more bits hashed
with the same effort.

In another variant, we omit the length coding at the end of the message and extend the domain
of the compression function with the empty string ∗. We define IV = F(∗) and let H0 = IV. All
the inner nodes have n chaining bits and m message bits, except the (single) leaf, which has an
empty template, and F(∗) is given as chaining value to its parent, together with the first message
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block. Since the leaf is clearly identifiable by its length, the template is decodable. Also, it is easy
to show that this mode satisfies the other three conditions.

Note that in this last variant, the IV is not part of the mode definition but is put as a public
parameter together with the compression function. In other words, the distinguisher does not know
the value of the IV in advance but has to query it to the I interface. In this extended model of the
underlying compression function, the length coding can simply be omitted.

To avoid extending the domain of the compression function, it is also possible to cover this case
by adapting the simulator. It suffices to initialize the set Pn to {IV}. The proof remains valid except
that the bound becomes q(q + 1)/2n+1 instead of q(q − 1)/2n+1. In this case, the IV is encoded as
frame bits instead of chaining bits.

A similar adaptation to our simulator suffices to extend our proof to also cover the enveloped
Merkle-Damg̊ard (EMD) transform [1]. The EMD transform is obviously A-complete (as there
are no parameters) and M-complete. Additionally, it is template-decodable as the coding of the
message length in the final node allows distinguishing the first call to f from the other ones.
Domain separation between final and inner nodes is achieved on the condition that the chaining
value never collides with IV2. This can simply be achieved in the simulator by initializing the set
Pn to {IV2} resulting in the bound q(q+ 1)/2n+1. If we further modify the simulator by initializing
the Pn to {IV1, IV2}, template-decodability can be based on the presence of IV1 and no longer
requires the length-coding in the input to the final node. This goes only at the expense of a slight
deterioration of the bound to (q + 1)(q + 2)/2n+1.

Note that in all these cases our proof requires F to be a (FIL) random oracle and it does
not cover the case of F being an ideal cipher in Davies-Meyer mode. In [12,15] an indifferentiable
construction is provided to construct a FIL random oracle from a random permutation.

8.2 Two simple examples

We now present two simple examples of tree hashing modes. These two modes are also discussed
in [5], where they are instantiated with the Keccak sponge function.

In both modes, the tree parameters A = (H,D,B) are composed of the height H of the tree,
the degree D of the nodes and the leaf block size B. All nodes end with a frame bit indicating
whether it is a final or an inner node. Also, the tree parameters A are encoded in the final node
(e.g., as frame bits before the last one).

In the first mode, the degree of the final node grows as a function of the message length, while
the leaves have a fixed number of message bits. The final node is connected to

⌈
|M |

BDH−1

⌉
balanced

trees, each of height H − 1 and degree D. The leaf nodes Zα consist of B message bits covering
the B positions (or less if not enough bits in the message) starting from B

∑H−1
i=0 αiD

H−1−i. The
(non-leaf) inner nodes have D chaining blocks of length n.

In the second mode, the tree has a fixed size but the leaves input a variable number of message
bits. The tree is a balanced tree of height H and all (non-leaf) nodes have degree D. The leaf nodes
Zα, α = α0||α1|| . . . ||αH−1, consist of sequences of B-bit message blocks where the j-th block covers
the B positions (or less if not enough bits in the message) starting from B(jDH+

∑H−1
i=0 αiD

H−1−i).
The (non-leaf) nodes have D chaining blocks of length n. This mode is easy to use when the number
of parallel processes is know in advance. The compression functions on each of the DH leaves can
be fetched with B-bit blocks in parallel.

Both modes are clearly M-complete and A-complete (as A is encoded in the final node). More-
over, they implement final node separation. Additionally, they are template-decodable as the tree
structure can be fully determined from A encoded in the final node and from the length of the node
instances.
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8.3 Taking the union of tree hashing modes

We can take the union Tunion of n tree hashing modes Ti in the following way. Aunion is given by
a choice parameter indicating the mode i composed with the tree parameters Ai for the particular
mode. In the union mode it is sufficient to additionally code in the final node for each of the modes
the choice parameter i such that it can be uniquely decoded in order to preserve soundness.

For instance, taking the union of the two modes presented in Section 8.2 simply takes the
addition of a binary choice parameter and coding it as a frame bit in the final node right before
the final bit.

Conversely, restricting the range of tree parameters of a given tree hashing mode does not
impact its soundness. When fixing the value of the tree parameters of a sound tree hashing mode
to a single value, it becomes indifferentiable from a random oracle (i.e., there is no need for the
encoder E anymore).
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