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Abstract

This paper contains an analysis of the stability properties of a three level quasi-geostrophic model
and a determination of the structure of the growing baroclinic waves. The model is the minimum model
which permits deviations from a linear vertical windprofile and a vertical variation of the static stability
parameter. In spite of the numerous investigations of baroclinic, quasi-geostrophic models, which can be
Sound in the meteorological literature over the last forty years, it appears that this minimum model has
not been analysed.

Contrary to the two-level model the three-level model contains Sor certain wind distributions the
instability for very long waves in addition to the normal instability for Rossby waves. The two-level
model predicts that unstable baroclinic waves will have a westward slope with height and thus transport
heat to the north. This is not necessarily true for all unstable waves in the three-level model.

A third strongly unstable region for very short waves appears if one of the layers become nearly
adiabatic. This mesoscale instability may be connected with the precursor, necessary for the formation
of polar lows.

The additional degrees of freedom in the three-level model permits an investigation of the stability
for simple variations of the static stability parameters as well as the stability of low level baroclinic zones.
Such results will be reported together with the structure of the growing baroclinic waves.

1. Introduction

The classical study of atmospheric baroclinic stability was made by Charney
(1947). He considered a basic state characterized by a linearly increasing westerly
current and a constant lapse-rate in the temperature field and found that amplifying
baroclinic waves should exist for sufficiently large vertical windshear. Similar results
were obtained by Eady (1949). Numerous studies have since then been made of the
two-level model. Well known investigations are those of Eliassen (1952) and Phillips
(1954).

The three-level model has been investigated by Cressman (1961) and Wiin-Nielsen
(1961) but these studies did not include a stability investigation. Studies which were
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quite different from Chamney’s analytical approach were conducted by Green (1960)
who solved the baroclinic stability problem using numerical methods. An instability
for very long waves were found in these numerical studies which of course permitted
more general basic states than those which could be treated in the purely mathematical
approach. Another numerical study of the baroclinic problem was made by Haltiner
(1963). An attempt to investigate more realistic vertical profiles of the horizontal wind
in the basic étate were made by Wiin-Nielsen (1967), but due to mathematical difficulties
it was necessary to use an adiabatic stratification in the basic state.

In the present study we shall employ the standard three-level, quasi-geostrophic
model, which permits simple deviations from the linear profile of the horizontal wind and
an elementary vertical variation of the stability parameter: As expected the frequency
equation is an algebraic equation of the third degree. The equation is solved using the
classical formulas, but it is advantageous to do all calculations numerically due to the
rather complicated nature of the coefficients. The solution of the eigenvalue problem
will be followed by a determination of the structure of the growing baroclinic wave.

The present study of the three-level model came as a byproduct of an investigation
of baroclinic instability as a precursor for the formation of the small, but intense polar
lows (Wiin-Nielsen, 1989). This problem is one of investigating whether or not a
baroclinic instability can occur on a rather small scale, say less than 1000km. As it
turns out, such an instability is found in the three-level model if the stratification of
the lower layer is nearly adiabatic, a situation which is characteristic of the airmass in
which polar lows are formed. In the polar low study the beta-effect may be neglected,
but if this effect is reintroduced one may consider the larger scales as well as is done
in this paper. The main reason to record this three-level stability study is that such a
model is the simplest model which can produce instability on the small as well as the
very large scale.

2. The model equations

The standard model used here applies the vorticity equation in its quasi-geotrophic
form at the pressure levels po/6, 3po/6 and 5po/6 where pg = 100kPa. Quantities at
these levels are denoted by subscripts 1, 3 and 5, respectively. This means that the
streamfunction and the relative vorticity are measured at these levels. According to
the structure of the quasi-geostrophic vorticity equation this implies that the vertical p-
velocity should be measured at levels 0, po /3, 2po/3 and py, indicated by the subscripts
0, 2, 4 and 6. The simplified boundary conditions will be wy = wg = 0. Internally,
its vertical column has two vertical velocities w, and wy. To eliminate the vertical
velocity from the equations one applies the thermodynamic equation in the adiabatic
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form at levels 2 and 4. It is then convenient to introduce two thermal streamfunctions

thr =1 ~ 3, @
¥ =3 — s
with corresponding relations for the vorticity, .
The stability parameters are denoted ¢, and o4 where in general
o= —a Oln@® 2.2)
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The factors containing the static stability are denoted:
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After elimination of w, and wy one obtains the equations:
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where § = df /dy is the Rossby parameter.

The basic state will be given by the zonal velocities U;, Up and Up implying
that Uy = U; + Up and Us = U; — Up. In addition, one must specify o, and o4. This
could of course be done by two numbers taken from climatology, but we shall prefer
to say that the layers from levels 5 to 3, and from 3 to 1 are characterized by constant
lapse rates, denoted by 5 and nr. According to Jacobs and Wiin-Nielsen (1966) we
find the stability factor o for a constant lapse rate atmosphere from the formula
o
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Adapting (2.5) to the two layers described above we find
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in which R = 287Jkg™'K™!, Ty = 283K, g = 9.8ms™2 and 54 = ¢/Cp, C, =
1004Jkg™ K™, If np = nr = 6.5- 10"*Km™~? we find o = 1.73 and o, = 6.08 (in
SI-units).

On the steady state defined above we superimpose perturbations of the form

(3, %1, ¥8) = ($3, P, B ) explik(z — ct)) (2.8)

The expressions for the perturbations (2.8) are substituted in the equations (2.4) which
are linearized at the same time. The procedure leads to three linear homogeneous
equations which will have a non-trivial solution if the determinant of the coefficient
matrix has the value zero. The equations may be written in the form

AUr-\2Up—Cr—y Ay Ay s
(1-2)0)Ur+AUp Ur—(142)})y—Cr Ay $r| =0
(1-202)Ug+X3Ur My —Up—(142)})z—CrJ | ¥ -
in which we have introduced the notations: >
N=g/k  MN=d/ks  y=c-Us, Cr=p/F (2.10)

The determinant in (2.9) may be evaluated in the usual way resulting in the following
equation
asy® +asy? + a1y +ao =0 (2.11)

where

az =1+2X3 + 227 +3)\2)7
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a1 =M1+ ADUE + 221+ AD)UZ — (1 4222 + 22D UpUr+

(34223 +2)0)CE+(2+2X2 4202+ 020 Cr(Up —Ur)+Cr(\2Up - M2UT)
ao =UgUr(M3Ur — MUg) + C% + (1 + A2)CEUs — (1 4+ \})CEUr

— (1 4+ X + A))CrUBUT + Cr(M3UZ + \2U2)
(2.12)
Equation (2.11) is solved using the classical formulas for the roots of which one
is real and the other two may be real or form a pair of complex, conjugate numbers.
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When the values of y = ¢ — U3 are known we can go back to the system (2.9),
use any two of the equations and calculate the relative amplitudes and phases for the
unstable (or the stable) wave. In the following section we shall discuss the results.

3. Results and discussion

The procedures established in section 2 suffice to determine the stability as a
function of the wavelength, the two windshears and the two values of the static stability.

In the first example we select Up = Ur = U, and g = 97 = 6.5- 10~3Km ™}
while g is set to 10~2Km~1. Equation (2.11) was solved in each point of a grid in the
(L,U,) plane. The wavelength was varied in steps of 5-10° m and the windshear in steps
of 5ms~1. This case differs from a two-level model only in the vertical variation of the
static stability parameter. For each value of U, it tumns out that instability occurs in two
intervals of the wavelength. Based on these calculations Fig. 1 was prepared showing
the two regions of instability, marked I. The boundaries of the regions of instability are

| 1
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Fig. 1. The regions of instability, marked I, in a diagram with wavelength as abscissa and windshear
as ordinate. In this case Up = Up. The dashed lines indicate maximum instability, and the numbers
give the e-folding time in days. .
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drawn on the basis of the numerical calculations in the grid points and are therefore
accurate only to the size between the grid points. It is nevertheless certain that the two
regions of instability exist as separate regions. The numerical results permit also an
approximate determination of the two curves of maximum instability given as dashed
lines in Fig. 1. Along these lines the e-folding time, measured in days, are given.

The region of instability for the shorter waves is very similar to the corresponding
region of instability found in a two-level model including e-folding times of the order
of 1 day for realistic values of U,. The second region of instability for the longer waves
is not found in a two-level model. It has a much smaller degree of instability since
even the smallest e-folding times are larger than 5 days.

To explore the difference between the two regions of instability the amplitude
ratios a; = A;1/4; and a5 = As/A; were calculated. They are obtained from the
linear homogeneous system (2.9) where y = ¢— Us has been obtained from the solution
of (2.11). Using two of the three equations we may calculate 1,/3T/1$§, and ¥ /1,53, and
from these complex values we may then determine not only the relative amplitude,
but also the relative phase angles for the amplifying waves. Fig. 2 shows the relative
amplitudes and Fig. 3 the relative phase angles §; = ©; — @3 and §5 = @5 — O3 where
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Fig. 2.  The relative amplitudes at levels 1 and 5 as a function of wavelength for short waves.
Up=Up=15 mS—l, 7B =nT =6.5" 10~3Km™!
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Fig. 3. The relative phases at levels 1 and 5 as a function of wavelength. Parameters as in Fig. 2.

the phase angle is determined as the position of the ridge in the wave. From Fig. 3 we
observe that these amplifying waves slope westward with height with a larger slope in
the lower than in the upper part of the atmosphere. Fig. 2 shows that for the specific
values selected here as > ay, for the shorter waves while the opposite is true for the
longer waves in this region. Both the smaller slope 6;, and the small value of a; for
the shorter waves are due to the larger value of the stability parameter in the upper part
of the model. It is known that the static stability parameter dominates for short waves
resulting in stability for the shortest waves (in this case L < 2.5 - 10 m).

Next, we turn our interest to the weak instability for the longest waves. Fig. 4
which shows the relative amplitudes indicates not only that a; > a5 for all wavelengths,
but more importantly that both a; and a5 are larger than 1. This means that the
smallest amplitude is in the middle of the atmosphere with larger amplitudes above and
below. The slowly growing long waves belong therefore to a class involving the higher
baroclinic modes which are possible in a three-level, but not in a two-level model. The
instability for these long waves was apparently first found by Green (1960) who made
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Fig. 4. The relative amplitudes at levels 1 and 5 as a function of wavelength for long waves. Parameters
as in Fig. 2.

a numerical determination of the eigenvalues in a multi-level, quasi-geostrophic model,
developed originally by Eady (1949) for the continuous case. In the present case of the
three-level model the weak long wave instability is connected with the vertical variation
of the static stability parameter. This can easily be seen by replacing both o5 and oy
by the same value, say —;— - (02 + 04). A recalculation of the stability diagram as shown
in Fig. 1 indicates that the long wave instability disappears, and the result is that of a
pure two-level model.

Next we turn to the vertical slope of the very long unstable waves. Fig. 5 shows
in a form analogous to Fig. 3 the phase differences &, and §s. Also in this case we find
a westward sloping wave since 85 > 0 and §; < 0, but the difference 65 — §; is in this
case so large that it represents slightly more than half a wavelength. Approximately, a
low at the low level 5 will have a high at the upper level 1.

The following calculations were made with Up = 15ms™! and 5 = 57 =
6.5-1073Km~!. Uy was varied from —30ms~?! to 30ms~"! in intervals 5ms—'. The
computations were made in a grid in the (L, Ur)-plane and on the basis of the results
Fig. 6 was drawn. The regions marked S are regions of stability. They consist of three
parts: the short waves for all values of Ur, an intermediate group which is stable for
Ur > —5ms™?, and a group of long waves which are stable when Ur < —10ms™?
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Fig. 5. The relative phases at levels 1 and 5 as a function of wavelength for long waves. Parameters
as in Fig, 2,
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Fig. 6. The regions of stability, marked S, in a diagram with wavelength as abscissa and the windshear
in the upper layer U as ordinate. The dashed lines are lines of maximum instability, and numbers
indicate e-folding times in days. The dotted line gives the curve for minimum instability. Parameters
Up=15ms™}, g3 = 97 =6.5- 10" 3Km~2,
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and L is sufficiently large. In the regions of instability the dashed lines indicate as in
Fig. 1 the curves of minimum e-folding times given in the figure in days. For the short
waves we find a decrease in the e-folding time as Up increases, while the minimum
for the long waves is found at Up = 5ms™! and L = 10.5- 10°m. The dotted line
connecting the two regions of stability is the line of minimum instability.

The structure of the waves varies strongly with the windshear Up. This can be
seen from Fig. 7 in which we have plotted the phase differences for Ug = 15ms™?
and L = 4-10%m as a function of Up. As long as Uy is large and negative it creates
an eastward sloping wave in the upper part of the model while the slope is westward in
the lower half of the atmosphere where the wind increases with height. This situation
changes when Ur becomes small and negative and for Ur > 0 we find the normal
westward sloping wave. The amplitude ratios are also shown in Fig. 7. In other words,
a growing wave will slope upwind, what ever the direction of the basic flow may be.

Fig. 8 corresponds to Fig. 7, but this time the wavelength is 14 - 10°m, cor-
responding to wave number 2. Unstable waves exist as we have seen only when
Ur > —5ms~!. They slope westward by a little more than half the wavelength and
generally speaking a; > as > 1.

Among the parameters which may be varied in the steady state we shall now look
at the two static stabilities. From many other studies we know that the static stability is
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Fig. 7. The relative phases (61 and §,) and the relative amplitudes (a; and a;) as a function of Up.
Parameters: Ug = 15ms™ 1, pg = 97 =65-10*Km™!, L =4 - 10%m.



A stability investigation of a three level quasi-geostrophic model 31

3
a
74 fi
L 8, rad sl
I
8s 5+
2 -
44
4= as
3 L.
0
2+
—'l -
& 1+
-2l \\.
: ! | ] ] . ! ! } 1 ! ! ; |
-3 -20 -10 0 10 20 30 -30 20 -10 06 10 20 30
Uz, ms™ Ur.ms-t

Fig. 8. As Fig. 7, but for L = 14 - 10%m,

responsible for the baroclinic stability usually found for short waves as we have seen
also in this study. In other words, the static stability determines the short wave cut-off.
As a matter of fact, in the two-level model the short wave stability is determined by
the condition

Ly = (3.1)
Ve
where )
2 _ 2 & (P=50ch) (3.2)
ap“

It is thus seen that L will be small if ¢ is large, and this will be the case if o is small.
Adapting (2.5) to the two-level model we may write
By

R*Ty 2-—)
o= 20 (na —n)2 g (3.3)
9Py

For n = 6.5-107*Km ™! we find that o = 2.92 and thus L, = 3.8 - 10°m. On the other
hand, if = 9.9-107*Km™" we have o = 0.0778 and L, = 6.2 10°m = 620 km. For
such a short wave cut-off in the two-level model we would require an almost adiabatic
layer which goes through the whole depth of the atmosphere, but this is not the case
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for the three level model. In this investigation we shall use the standard placement of
the levels, but they may of course be moved as was done by Wiin-Nielsen (1989) to
investigate the importance of baroclinic instability for the formation of polar lows.

In this paper we shall look only at the stability of a steady state in which a stable
layer (nr = 6.5-103Km™") is on top of a lower layer with a stratification approaching
the adiabatic lapse rate. The comresponding e-folding times are shown in Fig. 9. It
is seen that the closer the lapse-rate is to the adiabatic lapse rate the smaller is the
wavelength of minimum e-folding time. For values very close to 54 we find maximum
growth rates at a wavelength of only a few hundred kilometers. At the same time we
find e-folding times which are a small fraction of a day. For details of these cases the
reader is referred to Wiin-Nielsen (1989).

The instability, discussed above, is apparently not the same instability as the one
found by Moore and Peltrier (1989) in their extensive investigation of stability using
the primitive equations. The latter short wave instability appears in models with high
vertical resolution or continous vertical stratification.
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Fig. 9. The e-folding time as a function of wavelength for the following values of ng: 9 - 10~3,
9.5:107%,9.75-1072,9.9- 1073 and 9.99 - 10~3Km ™. Other parameters: 7 = 6.5 - 10~3Km ™2,
Ug =Up=15ms L. .
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4. Concluding remarks

The present investigation has shown that the three-level, quasi-nondivergent mo-
del can have three distinct regions of instability. In addition to the normal region of
unstable medium-long waves which occur typically for a normal stratification and a

wind increasing with height, and which is present also in a two-level model, there is a
weak instability for long waves for some windshears and a strong instability for short

waves if one of the two lapse rates approaches the adiabatic lapse rate.
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Fig. 10. The e-folding time as a function of wavelength for four cases: Ur = -20 ms™* (thin solid
line) and Uz = -13 ms ™! (dotted line), Uz = 0 ms™" (heavy solid line) and Up = 15 ms—" (dashed

line). Other parameters: Up = 10 ms ™%, np = 9.9-10"°Km ™! and 51 = 6.5 - 10~3Km~!..
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The two instabilities for medium-long and long waves can be clearly separated
in some cases as in Fig. 1, but for some other windshears (see Fig. 7) the two regions
are separated only by a region of weaker instability.

The instability for short waves, occurring, say for np approaching n4, goes some-
times over in the instability for medium-long waves in a continuous fashion. It may also
happen, as we shall demonstrate, that these regions are clearly separated. An example is
given in Fig. 10 showing the e-folding time as a function of wavelength for a case where
Ug =10ms™!, Up = —20ms ™%, np = 9.9-10~3Km™!, and nr = 6.5 - 10~*Km 1.
There is clearly a region of stability between the short wave instability with T, i
at L = 500km and the medium-long wave instability where T, is a minimum for
L = 4.6 - 10%. If Urp is increased from —20ms™!, we find that the two regions join
into one at Ur = —13ms™! (see the dotted curve). Such joined regions can be seen
also at Up = 0 (second full curve), while the curve for Uz = 20ms™! at most shows
a slight change of slope.

Fig. 10 shows clearly that the small scale instability is determined by how close
nB is to nq, and that this instability is almost independent of Up and Ur. On the other
hand, the medium scale instability as shown by Fig. 6 is present for many combinations
of Ur and Up. Finally, as shown in section 3 the large scale instability exists only when
the model contains a vertical variation of the stability parameter o = o(p). However,
the instability may be surpressed by large, negative values of Ug as also shown in
Fig. 6.

Concerning the vertical slope we find that under normal conditions (i.e. standard
lapse rates and the zonal wind increasing with height) the wave slopes to the west.
However, the introduction of a negative windshear in a layer will have a tendency to
change the slope of the wave in the direction of an eastward slope or a decrease of the
westerly slope.

The amplification rate for the long wave instability is so small that this instability
is of small importance for practical purposes. The other two instabilities have amplifi-
cation rates which make them very important in small and medium scale dynamics of
the atmosphere.
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