
On the Necessary and Sufficient Assumptions
for UC Computation

Ivan Damgård, Jesper Buus Nielsen, and Claudio Orlandi

BRICS, Department of Computer Science, Aarhus University
{ivan,jbn,claudio}@cs.au.dk

Abstract. We study the necessary and sufficient assumptions for universally composable
(UC) computation, both in terms of setup and computational assumptions. We look at
the common reference string model, the uniform random string model and the public-
key infrastructure (PKI) model, and provide new results for all of them. Perhaps most
interestingly we show that:
– For even the minimal meaningful PKI, where we only assume that the secret key is

a value which is hard to compute from the public key, one can UC securely compute
any poly-time functionality if there exists a passive secure oblivious-transfer protocol
for the stand-alone model. Since a PKI where the secret keys can be computed
from the public keys is useless, and some setup assumption is needed for UC secure
computation, this establishes the best we could hope for the PKI model: any non-
trivial PKI is sufficient for UC computation.

– We show that in the PKI model one-way functions are sufficient for UC commitment
and UC zero-knowledge. These are the first examples of UC secure protocols for non-
trivial tasks which do not assume the existence of public-key primitives. In particular,
the protocols show that non-trivial UC computation is possible in Minicrypt.

1 Introduction

We study the necessary and sufficient assumptions for universally composable (UC) computa-
tion [Can01], both in terms of which setup models are needed and how strong assumptions on
the setup are needed, and in terms of necessary and sufficient computational assumptions.

Part of the motivation is to study the minimal setup required for UC computation. It is
known that some kind of setup is required, which makes it a theoretically interesting question
exactly how strong an assumption must be made on the setup. We study both the common
reference string model (CRS) and the public key model (PKI), and some variations.

As for computational assumptions, we study the assumption that there exists a one-way
function (OWF), the assumption that there exists a passive secure oblivious transfer for the
stand alone model (SA-OT) and the assumption that UC commitment (UC-Com) is possible in
the setup model studied. The motivation for including OWF is that it is minimal for cryptog-
raphy. The motivation for including SA-OT is that it is complete for secure computation in the
stand-alone model, which makes it interesting to study its relation to UC computation which in
general uses more specialized assumptions. The reason for including UC-Com as an assumption
is that the study of Damgård and Groth [DG03] showed that UC-Com implies SA-OT in the
CRS model. This is a rather negative result as it hints that even simple tasks like commitment
are impossible to perform UC-securely if we turn out to live in Minicrypt [Imp95]. We find it
interesting to study if this is inherent or associated to the particular setup model.

As for ideal functionalities to be implemented we study commitment (UC-Com) and obliv-
ious transfer (UC-OT). In both cases we are interested in implementing the multi-session,
multiparty version which allows n parties to invoke any number of the functionalities. The mo-
tivation for including UC-OT is that it is complete for general UC computation: it is possible
to implement any well-formed ideal functionality given the UC-OT functionality, see [CLOS02].
The motivation for including UC-Com is that it is potentially weaker than UC-OT but still
implies a number of interesting tasks like coin-flip and zero-knowledge.

We look at five setup models:

– In the uniform common random string (U-CRS) model we assume that a single uniformly
random `-bit string crs is chosen by a trusted party and made public. Here ` might be
chosen by the protocol.

– In the chosen common reference string (C-CRS) model the trusted party samples crs using
a poly-time distributionD � �0,1�κ � �0,1�`, which allows crs to have a particular form. We
assume that the trusted party samples a single crs �D�r� for uniformly random r > �0,1�κ

and makes crs public. The function D might be given by the protocol π.
– The any common reference string (A-CRS) model is like the C-CRS model, except that we

let the adversary pick D, under the only restriction that D is one-way. The trusted party
samples crs �D�r� and makes �D, crs� public.

– In the chosen public-key (C-PK) model we assume that the protocol contains a poly-time
function fi for each party Pi. A trusted party will sample pki � fi�si� for each Pi and give
si to Pi and pki to all other parties. This models a public-key infrastructure with public
keys pki, secret keys si and where the parties are guaranteed to know their secret keys.

– The any public-key (A-PK) model is like the C-PK model, except that we allow the adver-
sary to specify each fi, under the only restriction that fi is a one-way function when Pi is
honest.

In the CRS models we in addition assume the presence of authenticated channels, as the
existence of a CRS clearly does not allow authentication: All parties know the CRS and nothing
else, so nothing distinguishes an honest party from the adversary. In the PK models we start
from the unauthenticated channels model, as the existence of a public-key infrastructure has
the potential to allow authentication.

In the A-CRS model the protocol π does not choose D, and the security of π should hold
for any one-way function D. Another way of phrasing the model is to say that the protocol π,
parametrized by D, should be secure in the C-CRS model for any one-way function D. In some
sense this models the minimal meaningful common random string: we do not make assumptions
on how random it is, but the parties can agree on the fact that there is something about the
string which neither of them knows.

The A-PK model in some sense is the minimal meaningful assumption on a PKI: Each party
has a publicly known public key pki and there is some secret about pki which only Pi knows.
A protocol for the A-PK can therefore be run given any meaningful PKI, with no assumption
whatsoever about the form of pki or the exact hardness of finding si.

With three computational assumptions A, two relations R (sufficient and necessary), two
functionalities F and five setup models M , we can ask 60 questions of the form “is A R for F
in the M model?” Some of these are of course trivial, like is OWF necessary for UC-OT in the
U-CRS model?, but many are non-trivial and theoretically interesting, like is SA-OT sufficient
for UC-OT in the A-CRS model? We answer 57 of these questions, see Table 1.

2

Assumption Functionality Model Answer Ref.
(a) OWF suf. UC-Com U/C/A-CRS, A-PK N Sec. 8
(b) OWF suf. UC-Com C-PK Y Thm. 5
(c) OWF suf. UC-OT U/C/A-CRS, C/A-PK N Sec. 8
(d) UC-Com suf. UC-Com U/C/A-CRS, C/A-PK Y Sec. 8
(e) UC-Com suf. UC-OT U/A-CRS, A-PK Y Sec. 8
(f) UC-Com suf. UC-OT C-CRS open Sec. 8.1
(g) UC-Com suf. UC-OT C-PK N Sec. 8
(h) SA-OT suf. UC-Com, UC-OT U/C/A-CRS, C/A-PK Y Thm. 4, 6
(i) OWF nec. UC-Com, UC-OT U/C/A-CRS, C/A-PK Y Sec. 8
(j) UC-Com nec. UC-Com, UC-OT U/C/A-CRS, C/A-PK Y Sec. 8
(k) SA-OT nec. UC-Com U/A-CRS, A-PK Y Thm. 7, 10
(l) SA-OT nec. UC-Com C-CRS open Sec. 8.1
(m) SA-OT nec. UC-Com C-PK N Sec. 8
(n) SA-OT nec. UC-OT U/A-CRS, C/A-PK Y Sec. 8
(o) SA-OT nec. UC-OT C-CRS open Sec. 8.1

Table 1. Questions and answers: If a cell contains more than one element it means that the answer,
Y(es) or N(o), in the row is true for all elements in the cell. As an example, row (h) says that the
answer to the question is SA-OT sufficient for UC-OT in the A-CRS model? is yes. The Ref. column
points to the section/theorem where the question is answered.

Reading the Table. When UC-Com appears as an assumption, the assumption is that UC
commitment can be implemented in the model in question.

For all our negative answers to sufficient questions and positive answers to necessary ques-
tions, we mean that there is no black-box construction. We cannot answer whether OWF
is sufficient for UC-Com with our current understanding of complexity theory: It might be
that one-way functions do not exists, in which case the assumption OWF is false, and then
OWF � UC-Com is true. The result in (g) therefore means that there is no black-box con-
struction which takes an implementation of UC commitment for the C-PK model and gives an
implementation of UC OT for the C-PK model. For some of our positive answers to sufficient
questions and negative answers to necessary questions, we appeal to non-black box construc-
tions. As an example, the result in (b) uses a description of the circuit for the OWF.

Highlights. We highlight some of the new findings which we find particularly interesting: The
proof of (b) is new and gives what to the best of our knowledge is the first construction of UC
commitment from one-way functions — all previous constructions used special assumptions
or assumed at least public-key encryption. A consequence of (b) is that zero-knowledge and
coin-flip can be UC securely implemented in Minicrypt. Until now it was not known if any
non-trivial UC computation was possible in Minicrypt.

The result in (g) is new and stands out from the result in (e), which follows from the work by
Damgård and Groth [DG03]. It shows that the choice of the setup model can make a difference
in what ideal functionalities can be implemented under a given computational assumption. This
seems to be the first such separation of the setup models. In Fig. 1 a comparison between the
different setup models can be found. Note that (g) states UC-Com is not sufficient for UC-OT

3

in the C-PK model, while (e) states the answer is yes in the A-PK model. This may seem
surprising because the C-PK model (unlike A-PK) allows the protocol to choose how public
keys are computed and so it seems that anything that is possible in the A-PK model should
also possible in C-PK. The catch is that the UC-Com assumption is not the same in the two
models, in particular, having a UC-commitment scheme that works in the A-PK model is a
much stronger tool than one that needs C-PK.

U-CRS, A-CRS, A-PK C-PK C-CRS

� UC-COM� � UC-COM� � UC-COM
?

�

OWF � SA-OT OWF � SA-OT OWF �? SA-OT

� UC-OT � � UC-OT � � UC-OT
?

�

Fig. 1. The implications in the different setup model. The answers from the rows (h),(i) and (j) are
not shown, as they don’t help in distinguishing between different setup models.

The result in (h) is new and in particular shows that that SA-OT is sufficient for UC-OT in
the A-PK model and the A-CRS model. Since some setup assumption is needed for general UC
computation, this seems as a very positive addition to the UC theory: Some setup is needed,
but even the most trivial setup will allow to implement any well-formed [CLOS02] functionality.

The result in (h), as a special case, shows how to implement authenticated channels given a
minimal meaningful PKI. Implementing authentication in the C-PK model is of course trivial
— one includes a verification key in the public key and signs all messages. It is by far trivial
in the A-PK model as there is no assumption on fi except that it is one-way and because the
public key consists of just one evaluation of fi. Standard constructions of signature schemes
from one-way functions use verification keys with much more structure than this.

2 The PKI Model

In this section we give our model of minimal public-key setup, where each party knows a secret
which is not known by the other parties. We associate these secrets to public values which we
distribute via a key generator G. When sampled it outputs ��R1, s1�, . . . , �Rn, sn��, where each
Ri is a description of a PPT set and si is the secret of Pi, and si > Ri for i > �n� � �1, . . . , n�. We
call R � �R1,R2, . . . ,Rn�. For a “normal” PKI we would have that the description of R contains
the parties’ public keys pk1, . . . , pkn and that si > Ri if si is the secret key associated to pki; in
this case we will write �pki, si� > Ri. To model that a party’s secret si is hard to find for the
other parties we require that it is hard to find any s�i such that s�i > Ri. This should hold even
if one is given R 8 �sj�j>�n���i�.

To allow corrupted parties to use secrets different from those of the honest parties (maybe
fixed instead of random or even of another form), we let G depend on the set C of corrupted
parties, and we let the adversary A influence the key generation as follows: Both G and A are
ITMs. First G is given input n and C, where n defines the number of parties and C ` �n� defines
the set of corrupted parties. Then G and A interact and at some point G outputs �R,s1, . . . , sn�;
we write �R,s1, . . . , sn�� �G�n,C�,A�. For G to be meaningful we require that sj > Rj for all

4

parties Pj>�n�. We only require that the secrets of honest parties, Pi>�n��C , are hard to find, as
it is not necessarily meaningful to require that corrupted parties keep their secrets hidden.

We introduce some convenient notation for the case where all public keys are generated
using the same function f . For a function f � �0,1�κ � �0,1�` we define the key generator Gf

as follows: For each honest party Pi it samples si > �0,1�κ and computes pki � f�si�. Then it
outputs �pki�i>�n��C to the adviser. It interprets the next message from the adviser as a set
�si�i>C and computes pki � f�si� for i > C. It defines Rf by �pk, s� > Rf iff pk � f�s� and then
outputs ��pk1, s1,R

f�, . . . , �pkn, sn,R
f��.

– Let n be the number of parties and C the set of corrupted parties, and run G�n,C� with
the UC adversary A as adviser.

– When G�n,C� outputs �R, s1, . . . , sn�, then send �R,�si�i>C� to A and send �R, si� to each
Pi, letting A determine the delivery time.

Fig. 2. The PKI ideal functionality FGpki for a generator G.

Definition 1. We call G meaningful if ¦ A, A wins the following game with negligible
probability: Run A to get �n,C�, with n polynomially bounded and C ` �n�. Then sample
�R,s1, . . . , sn� � �G�n,C�,A�. At this point A wins if §j > �n� sj ~> Rj. If A did not win here,
run A on R to get i > �n��C, and run A on s�i � �sj�j>�n���i� to get an output �i, s�i�. If s

�

i > Ri,
then A wins.

Definition 2. Let G be a set of key generators, let π be a protocol and F an ideal function-
ality. We say that π is a UC secure implementation of F with a G PKI if π is a UC secure
implementation of F in the FGpki-hybrid model (Fig. 2) for all G > G. We say that π is a UC
secure implementation of F with any meaningful PKI (A-PK) if the above holds for G being
the set of all meaningful key generators.

3 Authentication in the A-PK Model given OWF

We show here how to implement authentication with any meaningful PKI. We first construct a
system for identification secure under concurrent composition, using Σ-protocols in a more or
less standard manner. Then we extend this identification system to a UC secure authentication
system in a novel manner.

3.1 Σ-Protocols

For details on the following brief introduction see [CDS94]. Let R b �0,1����0,1�� be a binary
relation. A Σ-protocol for R consists of �A,E,Z, J,W,S�, where A is a poly-time algorithm
which for all �x,w� > R and sufficiently long randomizers r outputs a commit message a �

A�x,w, r�; E � �0,1�` is a set of challenges; Z is a poly-time algorithm which given �x,w� > R
and e > E and randomizer r outputs a reply z � Z�x,w, e, r�; J is a poly-time algorithm, called
the judgment, which given any �x, a, e, z� outputs J�x, a, e, z� > �accept,reject�; and W is a
poly-time algorithm called the witness extractor and S is a PPT algorithm called the simulator.
Furthermore:

5

completeness: For all �x,w� > R, all randomizers r and a � A�x,w, r� and z � Z�x,w, e, r� it
holds that V �x, a, e, z� � accept.

special soundness: For all �x, a, e, z� and �x, a, e�, z�� with e x e�, V �x, a, e, z� � accept and
V �x, a, e�, z�� � accept it holds that �x,W �x, a, e, z, e�, z��� > R.

honest verifier zero-knowledge: For all �x,w� > R and all e > E the simulator outputs
�a, z�� S�x, e� such that J�x, a, e, z� � accept and such that the distribution of �x, a, e, z�
is computationally indistinguishable from �x,A�x,w, r�, e,Z�x,w, e, r�� for a uniformly ran-
dom r. This holds even when the distinguisher is given w.

One round of the standard zero-knowledge protocol for Hamiltonian Cycle using a perfectly
binding commitment scheme is a Σ-protocol for Hamiltonian Cycle with E � �0,1�. Since Σ-
protocols are closed under parallel composition, this gives a Σ-protocol for any NP relation R
based on one-way function, with E � �0,1�` for any polynomial `.

3.2 The OR-Construction

Let R0 and R1 be binary relations and define R � R0 - R1 by ��x0, x1�,w� > R iff �x0,w� >

R0 or �x1,w� > R1. Let Σ0 � �A0,E,Z0, J0,W0, S0� be a Σ-protocol for R0 and let Σ1 �

�A1,E,Z1, J1,W1, S1� be aΣ-protocol for R1 with the same challenge space asΣ0. We construct
a Σ-protocol, Σ � Σ0 -Σ1, for R as follows:

– The commit message a � A�x,w0, r� is computed as follows given w0: Let �x0, x1� � x,
compute a0 � A0�x0,w0, r0� for uniformly random r0, sample a uniformly random e1 > E
and sample �a1, z1� � S1�x1, e1�. Let a � �a0, a1�. The randomizer is r � �r0, e1, ρ�, where
ρ is the randomness used to sample S1. Similarly with w1, with all indices swapped.

– The verifier sends the prover a challenge e from the challenge space E.
– The reply z � Z�x,w0, e, r� is computed as follows: Let e0 � e`e1. Let z0 � Z0�x0,w0, e0, r0�,

�a1, z1� � S1�x1, e1;ρ� and z � �e0, z0, e1, z1�.
– The judgement J�x, a, e, z� is performed as follows: Output accept iff J0�x0, a0, e0, z0� �

accept and J1�x1, a1, e1, z1� � accept and e � e0 ` e1.
– The witness extractor w � W �x, a, e, z, e�, z�� works as follows: Let z � �e0, z0, e1, z1� and
z� � �e�0, z

�

0, e
�

1, z
�

1�. From e x e� and e � e�0`e
�

1 and e � e�0`e
�

1 it follows that e0 x e�0 or e1 x e�1.
Say it is e1 x e�1. From construction of the judgement J it follows that J1�x1, a1, e1, z1� �
accept and J1�x1, a1, e

�

1, z
�

1� � accept. So, let w �W1�x1, a1, e1, z1, e
�

1, z
�

1� and �x1,w� > R1

and thus ��x0, x1�,w� > R.
– The simulator �a, z�� S�x, e� works as follows: Sample e0 > E uniformly at random and let
e1 � e` e0. (Equivalently, sample e1 > E uniformly at random and let e0 � e` e1.) Sample
�a0, z0�� S0�x0, e0� and �a1, z1�� S1�x1, e1�, and let a � �a0, a1� and z � �e0, z0, e1, z1�.

It is straight-forward to verifiy that Σ0 -Σ1 is a Σ-protocol for R0 -R1.
Then the OR-construction is witness indistinguishable in the following sense: Consider a

PPT adversary A. Give it �x, �w0,w1�� and give it access to a proof oracle Ob, which on input
prv picks a fresh identifier I, samples a�I� � A�x,wb, r�, stores the prover intermediary state
P �I�

� �I, b, r� and returns a�I� to A. On an input �chl, I, e�I�� when some P �I�
� �I, b, r� is

stored, it deletes P �I�, computes z�I� � Z�x,wb, e
�I�, r� and returns z�I� to A. At the end A

outputs a guess c at b. Then SPr�AO0�x, �w0,w1�� � 0��Pr�AO1�x, �w0,w1�� � 0�S is negligible.
To see that it is witness-hiding, consider the game with oracles O0 and O1 and con-

sider the hybrid oracle O 1
2

which computes the proofs as follows: The commit message

6

a � A�x,w0; r� is computed as follows: Let �x0, x1� � x, compute a0 � A0�x0,w0; r0� for uni-
formly random r0 and a1 � A1�x1,w1; r1� for uniformly random r1. Let a � �a0, a1�. The
reply z � Z�x,w0, e, r� is computed as follows: Sample e1 > E uniformly at random and let
e0 � e ` e1. Let z0 � Z0�x0,w0, e0, r0�, z1 � Z1�x1,w1, e1, r1� and z � �e0, z0, e1, z1�. It is easy
to see that the probability that AO0�x, �w0,w1�� outputs 0 is negligible close to the probabil-
ity that A

O 1
2 �x, �w0,w1�� outputs 0, as the difference is whether a conversation is simulated

(in O0) or computed correctly (in O 1
2
). In the same way it follows that the probability that

AO1�x, �w0,w1�� outputs 0 is negligible close to the probability that A
O 1

2 �x, �w0,w1�� outputs
0.

3.3 Hard Double-Witness Generator

We call G a hard double-witness generator for R � R0 -R1 if it is PPT and a random sample
�x,w0,w1� � G has the property that �x,w0� > R and �x,w1� > R and that it is hard to
compute w0 from �x,w1� and hard to compute w1 from �x,w0�, i.e., a PPT algorithm given
a random �x,wb� outputs �x,w1�b� with negligible probability. If G is a hard double-witness
generator for R � R0 -R1, then Σ � Σ0 -Σ1 is witness hiding for G, i.e., an adversary cannot
compute a witness after seeing any number of proofs. Since Σ-protocol are proofs of knowledge,
the adversary cannot give a proof without knowing the witness. Putting these two observations
together we get that the adversary cannot give a proof for a statement x even after seeing
any number of proofs for x, in the following sense: We say that A wins the reprove game in
Fig. 3 if at the end of the game there is a stored value �a, e, z� (from reply verifier), where
J�x, a, e, z� � accept and where A did not challenge a prover (in reply verifier) between
receiving e and returning z. I.e., A did not challenge a prover while it had to compute its own
challenge.

initialize Let I � 0. Sample �x,w0,w1�� G and give x to A.
start prover Whenever A inputs �prv, b�, let I � I � 1, sample a�I� � A�x,wb, r�, store the

prover intermediary state P �I�
� �I, b, r� and return a�I� to A.

challenge prover Whenever A inputs �chl, I, e�I�� and some P �I�
� �I, b, r� is stored, delete

P �I�, compute z�I� � Z�x,wb, e
�I�, r� and return z�I� to A.

start verifier On input �verify, a� from A, sample a uniformly random e >R E, store �a, e�
and return e to A.

reply verifier On input �reply, a, e, z� from A, where �a, e� is stored, delete �a, e� and store
�a, e, z�.

Fig. 3. The reprove game for A, Σ and G

Theorem 1. Let Σ0 be a Σ-protocol for R0, Σ1 be a Σ-protocol for R1 and G be a hard double-
witness generator for R � R0 -R1. Then for all A PPT verifiers, A wins the reprove game with
Σ � Σ0 -Σ1 and G with negligible probability.

The intuition behind the proof is that an adversary A which wins can be used to extract a
witness by rewinding the winning conversation and sending a new challenge, to get two valid
conversations. Since A did not challenge a prover between getting e and sending its reply, the

7

rewinding does not give problems. Which of the two witnesses w0 and w1 is extracted by A
does not change significantly if we give all the proofs to A using a random fixed witness wb
instead of letting A choose b from proof to proof: If it did, it would clearly allow us to break
witness indistinguishability. So, with a non-negligible probability A computes the witness not
used to give the proofs. This allows to break G. The full proof follows:

Proof of Thm. 1: The theorem follows directly from the following five lemmas.
Let Game 0 denote the reprove game in Fig. 3 and let Success0�A� denote the probability

that A wins it. Let Game 1 be the reprove game in Fig. 3, but where we only allow adversaries
A� which use each of the commands start verifier and reply verifier at most once. Let
Success1�A

�� denote the probability that such A� wins this alternative reprove game.

Lemma 1. For all PPT adversaries A for Game 0 there exists a PPT adversary A� for Game
1 such that SSuccess1�A

�� � Success0�A�~p�κ�S is negligible, for a polynomial p�κ�.

Proof: Let p�κ� be a polynomial upper bound on the number of verifiers started by A. The
adversary A� samples a uniformly random v > �p�κ��. It then runs as A, except that when A
outputs �verify, a�, then A� sample a uniformly random e >R E, stores �a, e� and returns e to
A. When A outputs �reply, a, e, z� and some �a, e� is stored, delete �a, e� and store �a, e, z�.
All verifiers are handled like this one, except that when A outputs �verify, a� for the v’th
time, then A� outputs �verify, a� too, and when A outputs �reply, a, e, z�, then A outputs
�reply, z�. It is clear that A� wins if A would have won because the v’th conversation �a, e, z�
fulfilled the winning condition, which proves the lemma. j

initialize Let I � 0 and phase � proof. Sample �x,w0,w1�� G and give x to A.
start prover Whenever A inputs �prv, b� and phase � proof, let I � I � 1, sample a�I� �

A�x,wb, r�, store the prover intermediary state P �I�
� �I, b, r� and return a�I� to A.

challenge prover Whenever A inputs �chl, I, e�I�� and phase � proof and some P �I�
� �I, b, r�

is stored, delete P �I�, compute z � Z�x,wb, e
�I�, r� and return z�I� to A.

start verifier On input �verify, a� from A when phase � proof, set phase � verify and return
a uniformly random e >R E to A.

reply verifier On input �reply, z� from A when phase � verify, the game proceeds as follows:
If V �x, a, e, z� � accept for the a and e from start verifier, then A wins the game, otherwise
it loses. If A terminates before the reply verifier phase it also loses.

Fig. 4. Game 2

Consider Game 2, defined as Game 1, except that A is not allowed to start or challenge
a prover after receiving the e in the start verifier command—see Fig. 4 for details. Let
Success2�A� denote the probability that A wins Game 2.

Lemma 2. For all PPT adversaries A for Game 1 there exists a PPT adversary A� for Game
2 such that SSuccess2�A

�� � Success1�A�S is negligible.

Proof: Let A be an adversary winning Game 1 with probability Success1�A�. Since A (by
definition of Game 1) only calls start verifier and reply verifier once, and since A (by

8

definition of the reprove game) does not win if it challenges a prover between receiving its
own challenge e in start verifier and returning its reply z in reply verifier, we can assume
that A does not challenge any provers between using the start verifier and reply verifier
commands. After it uses the reply verifier command, it is already determined if it wins or
not, so we can in fact assume that A does not challenge any provers after using the start
verifier commands. Now let adversary A� run A, except that when phase � verify and A
outputs �prv, b�, then A� samples �a�, z�� � S�x, e� for e � 0` and returns a� to A—here S
is the simulator of the Σ-protocol. Since A never asks to challenge this prover, it is not a
problem that A� only can reply to e � 0`. If using simulated a values would noticeably change
the probability with which A wins, then it can distinguish simulated a values from real ones,
which would contradict honest verifier zero-knowledge. j

Consider now Game 3, defined as Game 2, except that A wins iff it outputs w such that
�x,w� > R.

Lemma 3. For all PPT adversaries A for Game 2 there exists a PPT adversary A� for Game 3
such that Success3�A

�� C Success2�A�2
� ε�κ� for negligible ε.

Proof: Since A is for Game 2, it does not start or challenge any provers after using the start
verifier command. This means, the end of the game is of the form: A sends �verify, a� to
the game, gets back e and then returns �reply, z�. This allows A� to run and rewind A and
extract a witness when it wins: It rewinds A to the point where it got e and reruns with a
new uniformly random e�. If A wins again and e� x e, then A� uses w � W �x, a, e, z, e�, z�� as
the witness for x. An application of Jensen’s inequality shows that if A wins with probability
p, then A� wins with probability C p2

� 2�`, where �2�` comes from the fact that e� � e with
probability 2�`. j

Consider Game 4, defined as Game 3, except that A before it starts any verifiers must
specify a bit b� > �0,1�. Then it is only allowed to use b � 1 � b� when it starts a prover, and it
only wins if it outputs wb� .

Lemma 4. For all PPT adversaries A for Game 3 there exists a PPT adversary A� for Game 4
such that Success4�A

�� C 1
2
Success3�A� � ε�κ� for negligible ε.

Proof: Use a uniformly random b� and then run A, but replace each b in �prv, b� by b � 1� b�.
If we did not replace the b, then A� would win with probability 1

2
Success3�A�. The only

difference introduced by b � 1 � b� is in which witness is used. If the winning probability of A�

would change noticeably away from 1
2
Success3�A�, then a simple reduction allows to use A�

to break the WI of the Σ-protocol. j

Lemma 5. It holds for all PPT verifiers A that Success4�A� is negligible.

Proof: Given any A for Game 4, consider the following attack contradicting that G is a hard
double-witness generator: Run A to get b� and output 1 � b� to get �x,w1�b�� sampled by G.
Then use x and w1�b� to run A in Game 4. If A wins Game 4, then let w�

b be the witness

9

produced by A, and output w�

b to win the game against G. j

j

3.4 Authentication

We now turn our focus to authentication. Given that we are in the A-PK model, the sender S
knows a secret sS for his public key pkS s.t. �pkS , sS� > RS for some poly-time relation RS . In
the same way, the receiver R knows sR s.t. �pkR, sR� > RR. Construct a Σ�protocol Σ � Σ0-Σ1

for the relation R � RR -RS , i.e. the verifier V accepts if the prover P knows a secret key for
pkS or for pkR. Now the parties can identify to each other using this Σ�protocol.

The way we build an authenticated channel from this identification protocol is as follows:
S wants to send R a message m > �0,1�`, where ` is a fixed message length. We essentially let
the receiver simulate a clock by identifying towards the sender ` times. In each “time period”
the sender will then either identify itself or not. This defines the ` bits of the message. At the
end the sender does a number of identifications to bring up the total number of identifications
given by the sender to `. The receiver will accept only if it sees a total of ` identifications. This
is done to make it impossible for an adversary to drop identifications from the sender to the
receiver. At the end, we add two last rounds where S identify to R and then R identifies to S.
This is to inform the other party that the message was accepted.

For m > �0,1�` define σ�m� > �R,S�2`�2 to be Sm1YRYSm2YRY�YSm`YRYS`�P
`
i�1miYSYR. Note

that m1 x m2 � σ�m1� x σ�m2�, that σ�m� contains exactly ` � 1 symbols of each type, and
that the last symbols are always SYR. These are sufficient properties for the protocol to be
secure. The protocol is given in Fig. 5.

setup: Sender S knows sS , pkR, RS and RR and receiver R knows pkS , sR, RS and RR such
that �pkS , sS� > RS and �pkR, sR� > RR.

sender: The first time S gets an input m > �0,1�` it computes σ � σ�m�, sends m to R and
runs the following:
1. Let I � 1.
2. If σI � S, then instantiate a prover P � P ��pkS , pkR�, sS� and let it interact with R.
3. If σI � R, then instantiate a verifier V � V �pkS , pkR� and let it interact with R. If V

rejects, then terminate the protocol with output reject.
4. When the above instance closes (either P or V), then let I � I � 1. If I B 2` � 2, then go

to Step 2. If I A 2` � 2, then output accept.
receiver: The first time R receives m > �0,1�` from S it computes σ � σ�m� and runs the

following:
1. Let I � 1.
2. If σI � R, then instantiate a prover P � P ��pkS , pkR�, sR� and let it interact with S.
3. If σI � S, then instantiate a verifier V � V �pkS , pkR� and let it interact with S. If V

rejects, then terminate the protocol with output reject.
4. When the above instance closes (either P or V), then let I � I � 1. If I B 2` � 2, then go

to Step 2. If I A 2` � 2, then output �accept,m�.

Fig. 5. The authentication protocol πau��pkS , pkR�, sS , sR�.

10

Theorem 2. If the public keys are set up as in Fig. 2, then the following holds except with
negligible probability: If S outputs accept at the end of πau then R outputs �accept,m�, where
m was the message input by S.

The intuition is as follows: For I � 1, . . . ,2` � 2 we match the i’th instance run by S to the
i’th instance run by R. If S and R open a prover respectively a verifier, or a verifier respectively
a prover, then they might both continue to I � 1 without rejecting. If S and R both open a
verifier, then one of them will be terminated without a prover were running. Therefore this
verifier will reject (by Thm. 1), which makes the party running that verifier reject. If S and R
both instantiate a prover, then one of these provers will close without a verifier having been
running at the other party.

Wlog, say that a prover was running at S while no verifier was running at R (one can repeat
the argument switching the role of R and S). This prover will not make any verifier accept at
R, therefore S will run more provers than the number of accepting verifiers that R runs. Since
S starts ` � 1 provers, by construction of σ, it follows that R sees at most ` accepting verifiers.
Therefore R will not output accept. It follows that if S and R have different σ, then one of
them does not output accept. In other words, if both parties output accept, then they saw the
same message m, as σ is a unique encoding of m.

Second, assume that R did not accept. This implies that R rejected when I @ 2` � 2 or at
least R never reached I � 2` � 2, as σ2`�2 � R implies that R cannot reject while I � 2` � 2.
Therefore R ran at most ` provers and thus S saw at most ` verifiers accept. Therefore S did
not accept either. In other words, if S accepts, then R accepts.

Putting these two observations together, we conclude that if S accepts, then both parties
accept, and then S and R saw the same messagem, as desired. This symmetric guarantee makes
the protocol suitable also to authenticate messages from R to S, and we will use this property
in Thm. 3. The full proof follows.

Proof of Thm. 2: For i � 1, . . . , ` � 2, let P �i�
S (P �i�

R) denote the i’th prover instantiated at S
(R), and let V �i�

S (V �i�
R) denote the i’th verifier instantiated at S (R).

We match verifiers at S to provers at R as follows: Define a map πS � �`�1�� �`�1�8��,��.
For i > �` � 1�, define πS�i� as follows: If there is no i’th verifier at S, then let πS�i� � �.
Otherwise, if there exists a prover P �j�

R such that P �j�
R received its challenge e� between V

�i�
S

received its commit message a and received its reply message z, then let πS�i� � j for the
highest such index j. Otherwise, let πS�i� � �. We define a map πR � �` � 1� � �` � 1� 8 ��,��
completely symmetrically.

Lemma 6. If S and R both accept, they hold the same message if the following two conditions
hold:

matching For all i > �` � 1� it holds that πS�i� � i and πR�i� � i.
no crossing If πR�j� � j and πS�i� � i and P

�i�
R ran before V �j�

R , then V �i�
S ran before P �j�

S .

Proof: Put the 2` � 2 instances run by S in the Euclidean plane at coordinates �x, y� � �I,1�
for I � 1, . . . ,2` � 2. Put the 2` � 2 instances run by R at coordinates �x, y� � �I,2� for
I � 1, . . . ,2` � 2 as in Fig. 3.4. Put a line between V

�i�
S and P

�j�
R if j � πS�i�, and put a line

between V
�i�
R and P

�j�
S if j � πR�i�. If the matching property holds, then all 2` � 2 points

11

with y � 1 have a line to one of the points with y � 2, and vice versa. If in addition the
no crossing property holds, then none of lines going from a point with y � 1 to a point
with y � 2 will cross. This implies that all 2` � 2 lines are vertical, which implies that S
and R had the same σ sequences: when one ran a prover the other ran a verifier, and vice versa. j

y
x

1 2 3 2` � 2

2 V
�1�
R P

�1�
R P

�2�
R P

�`�1�
R

� � � � �

1 P
�1�
S V

�1�
S V

�2�
S V

�`�1�
S

Fig. 6. Picturing the conditions for Lemma 6 for a message m � 10. . . .

We prove the two conditions below, in Lemma 10 and Lemma 11, going via some smaller
lemmas for clarity.

Lemma 7. It cannot happen that πS�i1� � j � πS�i2� for i1 x i2, and it cannot happen that
πR�i1� � j � πR�i2� for i1 x i2.

Proof: We prove the first claim. The second follows by symmetry. Assume that
πS�i1� � j � πS�i2�. Since V

�i1�
S and V

�i2�
S were running at the same party, they did

not run at the same time. Say V �i2�
S ran after V �i1�

S . By definition of πS , P
�j�
R was challenges

after V �i2�
S received its commit message. Since V �i2�

S ran after VS�i1�, it follows that P
�j�
R was

challenged after V �i1�
S was given its reply z. So, πS�i1� x j, a contradiction. j

Lemma 8. If S accepts, then πS�i� x � for i � 1, . . . , `�1, and if R accepts, then πR�i� x � for
i � 1, . . . , ` � 1.

Proof: If S does not see ` accepting verifiers, then it does not output accept, and if R does
not see ` accepting verifiers, then it does not output accept. j

Lemma 9. If S accepts, then πS�i� x � for i � 1, . . . , `�1 except with negligible probability, and
if R accepts, then πR�i� x � for i � 1, . . . , ` � 1 except with negligible probability.

Proof: If πS�i� � �, then between V �i�
S received its commit message a and it received the reply

z, there was no prover which was challenged at R. Since S runs only one instance at a time it
follows that no prover was challenged between V

�i�
S received its commit message a and V

�i�
S

received the reply z. So, if πS�i� � � and V
�i�
S accepts, then the adversary broke Thm. 1. It

follows that when πS�i� � �, then V
�i�
S accepts with negligible probability. The proof for R is

symmetric. j

12

Lemma 10 (Matching). If S accepts, then πS�i� � i for i � 1, . . . , `�1, and if R accepts, then
πR�i� � i for i � 1, . . . , ` � 1. In both cases this holds except with negligible probability.

Proof: We do the proof for S. The proof for R follows by symmetry. If S accept, then by
Lemma 8 and Lemma 9 πS�i� > �` � 1� for i � 1, . . . , ` � 1. By construction, πS�i1� C πS�i2� if
i1 A i2. By Lemma 7 πS�i1� x πS�i2� if i1 A i2. So, πS�i1� A πS�i2� if i1 A i2. From πS�i� > �`�1�
and πS�i1� A πS�i2� if i1 A i2 it follows that πS�i� � i. j

Lemma 11 (No crossing). If πR�j� � j and πS�i� � i and P �i�
R ran before V �j�

R , then V
�i�
S

ran before P �j�
S .

Proof: Let e�i�R be the challenge received by P
�i�
R and a

�j�
R the commit message received by

V
�j�
R . Given that V �j�

R ran after P �j�
R , a�j�R was received after e�i�R was received. Given πS�i� � i,

we know that V �i�
S received its commit message a�i�S before P �i�

R received its challenge e�i�R .
Now let e�j�S be the challenge received by P �j�

S . As πR�j� � j, e�j�S was received after a�j�R was
received by V

�j�
R . Then it follows that a�i�S was received by V

�i�
S before e�j�S was received by

P
�j�
S , and given that that S runs P �j�

S and V
�i�
S sequentially, it follows that V �i�

S ran before
P

�j�
S . j

Combining Lemma 10, Lemma 11 and Lemma 6 we know that the R does not accept a
wrong message if both S and R accept. It is therefore sufficient to argue that if S accepts, then
R accept, except with negligible probability.

Lemma 12. If S accepts, then except with negligible probability R accepts.

Proof: If S accepts, then πS�i� � i for i � 1, . . . , ` � 1, (except with negligible probability) This
means that R ran ` � 1 provers. Since σ2`�2 � R and σ contains exactly ` � 1 positions with
σI � R, it follows that R reached I � 2` � 2 and that at this iteration it ran a prover, called
P

�`�2�
R . By definition of πS�i� it follows that P �`�2�

R was challenged before V
�`�2�
S received

its reply message. Given that S accepts, V �`�2�
S did receive a reply message, and therefore

P
�`�2�
R did receive its challenge, making P �`�2�

R accept and therefore making R output accept. j

j

3.5 Multiparty Authentication

Our ideal functionality for authenticated transmission is given in Fig. 7. We have it do a key
setup as FGpki and output the generated keys before the authenticated transfer phase begins.
This is for compositional reasons—it allows outer protocols to use the same secrets, which we
exploit in later sections. Here we focus on the phase after the keys are generated: The function-
ality allows to deliver only messages which were actually sent, which models authentication.

13

init: First it lets initi � 1 for all Pi, and then it runs FGpki with adversary A, to generate
�R1, pk1, s1�, . . . , �Rn, pkn, sn�.

init done: If the adversary inputs �done, i� at a point where initi � 1 and after FGpki terminated,
then output �pki, si� to Pi, where pki � ��R1, pk1�, . . . , �Rn, pkn��, and set initi � 0.

authenticated transfer, send: On input �j,m� from Pi where initi � 0, store �i, j,m� and
output �i, j,m� to the adversary.

authenticated transfer, receive: On input �i, j,m� from the adversary, if �i, j,m� was previ-
ously stored, wait until initj � 0 and then output �i,m� to Pj .

Fig. 7. The ideal functionality FGmau for multiparty authenticated communication.

It can deliver a message several times and reorder them. This can be handled outside Fmau
using e.g. sequence numbers. Any message sent is leaked to the adversary to model that the
transmission is only authenticated, not private.

Our implementation of FGmau runs in the FGpki hybrid model, see Fig. 8.

setup: When party Pi receives �pki, si� from F
G
pki, it parses pki as ��R1, pk1�, . . . , �Rn, pkn��

and sets init � 1.
key generation: On its first activation Pi generates a random verification key vki for a digital

signature scheme, along with the corresponding signing key ski and stores �keys, vki, ski�.
Then Pi sends vki to all other parties.

key authentication: After key generation each ordered pair of parties �Pi, Pj� with i @ j
runs the following in parallel:
– The parties Pi and Pj run the protocol πi,j � πau��pki, pkj�, si, sj� from Fig. 5.
– Party Pi uses the input m � �vki, vk

�

j�, where vk�j is the value it received from Pj in key
generation. Party Pj uses the input m � �vk�i, vkj�, where vk�i is the value it received
from Pi in key generation.

– If Pi accepts in πi,j , then it stores �vk, j, vk�j�. If Pj accepts in πi,j then it stores
�vk, i, vk�i�.

PKI propagation: When Pi stored �keys, vki, ski� and �vk, j, vk�j� for all Pj with j x i, then
Pi outputs �pki, si� and sets init � 0.

authenticated transfer, send: When Pi gets input �j,m�, where init � 0, Pi computes S �

sigski�iYjYm� and sends �i, j,m,S� to Pj .
authenticated transfer, receive: On a message �i, j,m,S� the party Pj waits until init � 0.

Then it looks up �vk, i, vki� and outputs �i,m� if vervki�iYjYm,S� � accept.

Fig. 8. The protocol πGmau for multiparty authenticated communication.

Theorem 3. If G is a meaningful key generator, then πGmau UC securely implements FGmau
against a static, active adversary.

The proof is essentially a reduction to Thm. 2. If πGmau is not secure it is possible to make an
honest Pj output �i,m� for an honest Pi without giving input �j,m� to Pi. We can reduce that
to an attack on the protocol in Fig. 5. First of all, we can assume that all other parties than
Pi and Pj are corrupted, as this can only help the adversary. Then, whenever Pi or Pj have to
interact with any Pk ~> �Pi, Pj�, they run the protocol honestly, but use the secret sk of Pk as
witness. By witness indistinguishability (WI) this changes the probability that Pj outputs �i,m�

14

without Pi having received input �j,m� at most negligibly. But now all interaction involving
other parties than Pi and Pj can be run by the adversary in its head, as it knows sk for all
corrupted parties — whatever messages Pi would send to Pk can be computed using sk. But this
modified adversary is carrying out an attack on Fig. 8 with n � 2. This is essentially an attack
on Fig. 5. The only difference is that in Fig. 8, during PKI propagation, the environment
gets si and sj from Pi, Pj . This happens after the protocol πi,j was run, and therefore it is not
needed to run the adversary against Fig. 5. The full proof follows.

Proof of Thm. 3: The simulator S simply runs the protocol honestly with A: First it runs
FGpki with A and distributes the keys as specified. It records the secrets sj of all parties. Then,
when it receives �i, j,m� from FGmau, it runs Pi from πGmau with input �j,m�. If an honest Pj in
the simulated run of πGmau outputs �i,m�� (because it received �i,m�� with vervk�i�iYjYm

�, S� �

accept), then S inputs �i, j,m�� to FGmau. This gives a perfect simulation unless S at some point
inputs �i, j,m�� to FGmau without party i on FGmau having received input �j,m��.

Since inputting �j,m�� to party i on FGmau is the only way for S to receive �i, j,m�� from FGmau,
which is in turn the only way S will send S � sigski�iYjYm

��, it follows that the simulation is
perfect unless it happens that an honest Pj receives �i, j,m�, S� with vervk�i�iYjYm

�, S� � accept
without S having sent S � sigski�iYjYm

��, we can focus on proving that this happens with
negligible probability.

Let A (and Z) be any PPT adversary (and environment) which makes an honest Pj re-
ceive �i, j,m�, S� with vervk�i�iYjYm

�, S� � accept for an honest Pi without S having sent
S � sigski�iYjYm

��. Say this happens with probability p. We show that p is negligible.
Suppose A breaks the protocol by guessing i and j uniformly at random before running the

attack. Then we can turn A into an adversary A� which first fixes i and j and then makes Pj
output �i,m� without giving the input �j,m� to Pi. It will succeed with probability at least
p� � p~n2.

We then change the protocol as follows: For each Pk with k x i and k x j we make
the following change: In key authentication we let Pi and Pk run the protocol πi,k �

πau��pki, pkk�, si, sk� (or πk,i if k @ i) with the cheat that in all proofs from Pi to Pk we
let Pi use the witness sk, and we let Pj and Pk run the protocol πj,k � πau��pkj , pkk�, sj , sk� (or
πk,j if k @ j) with the cheat that in all proofs from Pj to Pk we let Pj use the witness sk. By
WI, this would not change the probability that A� breaks the protocol, except negligibly, even
if A� knew all witnesses. In particular, this first hybrid is indistinguishable from the original
protocol also for corrupted Pk, as long as Pi and Pj are honest.

Consider then the following attack on πau. First we set up pkS and pkR: Specifically we let G�

(the key generator for πau) depend on G (the key generator for πGmau) with �pkS , sS� � �pki, si�,
�pkR, sR� � �pkj , sj�. This is clearly a hard generator when G is a hard generator. We run the
attack against the protocol in πau using this G�. We let A interact with G� as it would interact
with G. We get back pki and pkj and �pkk, sk�k~>�i,j� — we can simply discard these last keys.
Then we run the protocol πau with A, except that we input we input mS � �vki, vk

�

j� to S and
mR � �vk�i, vkj� to R in the game against πau. And in the game against πau we send the message
to S that A sends to Pi and we send the message to R that A sends to Pj , and the messages sent
by S we show to A as if coming from Pi and the messages sent by R we show to A as if coming
from Pj . It follows by security of πau that if R accepts then mS �mR. I.e., if Pj accepts, then
we can assume that �vki, vk

�

j� � �vk�i, vkj�, except with negligible probability. Since Pj accepts
a message from Pi only if it accepts and stores vk�i, we can conclude that Pj accepts and that

15

therefore vk�i � vki, except with negligible probability. Yet we know that A with probability p
makes Pj output �accept,m�� without giving input �j,m� to Pi. This means that A sends S a
message �i, j,m�, S� such that vervki�iYjYm

�, S� � accept without Pi ever signing iYjYm� under
ski. This can trivially be turned into an attack on the unforgeability of of the signature scheme
under chosen message attack, with success probability negligibly close to p~n2. This shows that
p~n2 is negligible, and hence p is negligible.

Given that πau is completely symmetric i.e. R accepts iff S accepts, and in this case they
both output �accept,m�, one can repeat the previous argument by exchanging Pi with Pj to
see that the probability that Pi outputs �j,m� when Pj didn’t get �i,m� as input is negligible. j

4 UC OT in the A-PK Model given SA-OT

Suppose we are given an UC commitment functionality, Fmcom as defined in [CF01]: then
we can implement UC zero-knowledge, Fmzk, for all NP relations, which in turn allows us to
implement a static, active UC secure OT from the passive secure OT. We can therefore focus
on implementing Fmcom using SA-OT.

The following describes a commitment to m from party S to party R. In the full protocol
different instances use session identifiers to separate executions. Here commit��� is a perfectly
binding commitment.

1. All communication is authenticated using FGmau. Use sequence numbers to guarantee that no
identical messages are ever sent, and thus never accept the same message twice from any
party.

2. R samples uniformly random u and sends U � commit�u� to S.
3. S samples uniformly random v, sets m0 � 1SmS, sets m1 � m and sends V � commit�v�,

M0 � commit�m0� and M1 � commit�m1� to R.
4. Then S and R run the SA-OT, where S takes inputs m0 and m1 and uses randomness v

while R gives input c � 0 and uses randomness u. After sending each message in the SA-OT
R shows that it knows an opening of U to u such that the message it sent is consistent with
having run the SA-OT with randomness u, selection bit c � 0 and the messages received from
R so far. After sending each message in the SA-OT S shows that it knows an opening of
V , M0 and M1 to v, m0 respectively m1 such that the messages it sent are consistent with
the execution of the SA-OT with randomness v, inputs m0, m1 and the messages received
from S. The proofs are given via a Σ-protocol for NP and use the OR-construction to prove
either knowledge of the openings mentioned above or the secret of the other party.

5. To open S sends m to R and shows that m is the message insideM1 or that S knows sR such
that �pkR, sR� > RR. The proof is given using two Σ-protocols and the OR-construction.

Fig. 9. The protocol πmcom for UC commitments using SA-OT.

Theorem 4. The protocol πmcom is a UC secure implementation of Fmcom in the FGmau hybrid
model secure against a static, active adversary.

The simulator extracts a commitment from a corrupted sender S� to an honest receiver
R by using selection bit c � 1 to learn m from the SA-OT. If the sender manages to send

16

m�
x m in the opening phase for some commitment, we can extract the proofs in the SA-OT

for this commitment and learn a secret s�R for R’s public key pkR. Since R never uses sR in
the protocol, this contradicts the hardness of computing a witness for pkR. To be able to use
selection bit c � 1, the simulator gives the proof in the run of the SA-OT using the secret s�S of
the sender. This goes unnoticed by the computational hiding of the commitment scheme, the
computational hiding of the SA-OT and the WI of the OR-construction. To trapdoor open a
commitment to some m� the simulator simply sends m� and simulates the proof that this is the
correct message, by using the secret of the receiver as witness. This goes unnoticed as for c � 1.
The full proof follows.

Proof of Thm. 4: The simulator S will extract commitments by inputting c � 1 to learn m
and input m to Fmcom on behalf of the corrupted sender. It gives the proofs by using the secret
of the corrupted sender as witness. The simulator S trapdoor opens the commitment to some
m� simply by sending m�. Then it gives the proof using the secret of the corrupted receiver as
witness. For a proof from an honest party to an honest party it uses no witness: It generates
a simulated conversation �a, e, z� and then lets the party playing verifier send the challenge e.
This is done to ensure that S never uses si for an honest Pi.

To show that this simulation works it is sufficient to show that it generates a view indistin-
guishable from that of the real protocol.

The indistinguishability follows from WI of the OR-construction and the security of the OT:
Starting from the real protocol we can first consider the hybrid where c � 0 is still used but the
proofs given by the receiver are produced using the secret of the corrupted sender as witness.
By WI of the proofs this will not change the output of the environment, except negligibly, or
the environment could distinguish between proofs generated with different witnesses. Then
we go to a hybrid where the honest receiver uses c � 1. By security of the OT, this will not
change the output of the environment, except negligibly. This hybrid is now the simulation,
except that honest parties output the message m� to which a commitment is opened, whereas
in the simulation Fmcom outputs the message m which S receives from the OT. It is therefore
sufficient to argue that these two messages are the same except with negligible probability.
If not, we can run this hybrid and find a commitment where m�

x m. Note that in running
it, we do not need to use the si of an honest party. We then use rewinding on all the proofs
given by the sender and extract a witness. Except with negligible probability the extracted
witnesses consist of openings of V , M0 and M1 to v, m0 and m1 such that V � commit�v�,
M0 � commit�m0� and M1 � commit�m1� and m0 �m

� and the view of the receiver in the OT
protocol is consistent with the randomness v and inputs m0 and m1; if this is not the extracted
witness, then the extracted witness contains s�i such that �pki, s

�

i� > R. Since si is never used to
produce the view of this hybrid distribution, i.e. the hybrid has been executed, rewound and
rerun without using s�i, it follows that the witness contains s�i with negligible probability, as G
is a hard key generator. Therefore the OT protocol is consistent with an execution with input
m0 � m

�. By correctness of the OT it therefore follows that m � m�, as m is the output of the
OT and the selection bit was c � 0. j

Corollary 1. If there exists a passive secure OT protocol, then any well-formed functionality
F can be UC implemented in the A-PK model, against a static, active adversary.

17

Proof: By Thm. 4 we can implement Fmcom in the FGmau-hybrid model, which implies that we
can implement any well-formed F in the FGmau-hybrid model, if there exists a passive secure
SA-OT protocol. By Thm. 3 we can implement FGmau in the unauthenticated FGpki-hybrid
model for any meaningful G. It then follows from the UC composition theorem that we can
implement any well-formed F in the unauthenticated FGpki-hybrid model for any meaningful
G, if there exists a passive secure SA-OT protocol. j

5 UC Commitment in the C-PK Model given OWFs

Theorem 5. If one-way functions exist, then there exists a UC commitment scheme for the
C-PK model secure against a static, active adversary.

Proof: The public key is an unconditionally binding commitment pki � commit�Ki; ri� to a
uniformly random value Ki >R �0,1�κ. Let F�0,1�κ � �0,1�2κ

� �0,1�2κ be a pseudo-random
permutation (PRP). Both can be instantiated using one-way functions.

To commit to m > �0,1�κ with session identifier sid > �0,1�κ towards Pj , Pi sends M �

FKi�sidYm�. To open the commitment to Pj , the sender sends m and gives a proof that it
knows K and r such that pkj � commit�K; r� or (pki � commit�K; r� and M � FK�sidYm�).
The proof is given using two Σ-protocols combined with the OR-construction.

To extract, the simulator computes m � F �1
Ki

�M�, where Ki is found as part of the secret
si � �Ki, ri� of the sender Pi. By pki binding the sender toKi unconditionally and the soundness
of the proof and the fact that the sender cannot open the commitment pkj , this will yield the
only m that the sender can open the commitment to later.

To equivocate the simulator sends a uniformly random M . When given m it sends m and
gives the proof using the secret sj of the receiver as witness. By computational hiding of
the commitment scheme, pseudo-randomness of F and WI of the proof, this will go unnoticed. j

6 UC OT in the A-CRS Model given SA-OT

Here we implement UC OT from SA-OT in any CRS model. We prove it for the A-CRS model,
and hence for the U-CRS and C-CRS models too. We already know how to do UC OT in
the A-PK model model given SA-OT, so it is sufficient to implement FGpki in the FDcrs for any
meaningful G and all one-way D.

Theorem 6. If D is OWF, then GD is meaningful, and if the used OT protocol is a SA-OT,
then πDpki in Fig. 10 is a UC secure implementation of FG

D

pki in the FDcrs-hybrid model against a
static, active adversary.

The proof is very similar to the proof of Thm. 4. The simulator extracts the secret of
corrupted parties using selection bit c � 1. It simulates proofs using the secret s of crs. We run
the proofs in round-robin to ensure that the simulator will not give a simulated proof (using s)
while a corrupted party has to give a proof. If it did so, we could not show that a corrupted

18

The protocol runs in the FDcrs-hybrid model.

– All parties Pi receive �D, crs� from F
D
crs.

– Each Pi samples pki � D�si� for a uniformly random si and sends pki to all parties. All
parties resend the received value pki to all parties.

– Then in round-robin, for i � 1, . . . , n, each Pi proves knowledge of si to all other parties.
It does this in round robin, for j � 1, . . . , n. With each Pj it runs the proof as in Fig. 9:
It inputs m0 � 0Ssi S and m1 � si to the SA-OT and Pj inputs c � 0. During the run of the
SA-OT, Pi proves that either 1) its messages are consistent with a run of the SA-OT protocol
and pki � D�m1� or 2) its messages are consistent with a run of the SA-OT protocol and
crs � D�m1�. Party Pj proves that either 1) its messages are consistent with a run of the
SA-OT protocol with c � 0 or 2) it knows s such that crs � D�s�. The proofs are given via
a Σ-protocol for NP and the OR-construction. When Pi and Pj are done, they both send
done to the other parties. Parties only begin their proof when they received done from all
previous pairs.

– If and when a party Pk received crs from F
D
crs, a value pki from each Pi and a resent value

pk�i from all other parties Pj with pk�i � pki, and saw an accepting proof from each Pi, it
outputs ��pk1,R

D�, . . . , �pkn,R
D��, sk.

Fig. 10. The protocol πDpki that implements a PKI in the A-CRS model.

party cannot give an acceptable proof unless it used m1 such that pki �D�m1� in the SA-OT.
When the proofs are run in round-robin, we can. The full proof follows.

Proof of Thm. 6: The simulator S simulates FDcrs by sampling crs �D�s� and giving crs to A.
From FG

D

pki it receives pki for i > H, where H � �n� �C and C are the indices of the corrupted
parties. Then for i � 1, . . . , n and j � 1, . . . , n, j x i it simulates the proofs. If Pi and Pj are both
corrupted there is nothing to simulate. If Pi and Pj are both honest S uses m0 �m1 � 0κ (where
D � �0,1�κ � �0,1�`) and c � 0. It simulates all proofs by sampling a simulated conversation
�a, e, z� using the honest verifier simulator and letting Pi send a, Pj send e and Pi send z. When
Pi is corrupted and Pj is honest, then the simulator inputs c � 1 to the SA-OT and learns m1.
If the proof succeeds and pki � D�m1�, then S inputs m1 to FG

D

pki on behalf of Pi, making pki
the output of Pi. If the proof succeeds and pki x D�m1�, then S terminates. If the proof fails,
then the protocol πDpki will not give any outputs, so S simply does not deliver the outputs of
FG

D

pki either. To allow to run with input c � 1 it gives the proofs using s as witness, which is
possible as crs � D�s�. If Pi is honest and Pj is corrupted, then S received pki from FG

D

pki . In
the SA-OT it takes m0 � 0κ and m1 � s and gives the proof using s as witness.

That the simulation is indistinguishable from the real protocol follows from the computa-
tional hiding of the commitment scheme used in proving the execution of the SA-OT consistent,
the special honest verifier zero-knowledge of the Σ-protocol (for the honest/honest case), the
computational hiding of the OT and WI of the OR-construction. What remains is to show
that there is a negligible probability that a corrupted Pi gives acceptable proofs to S and yet
pki xD�m1�.

Consider a pair Pi, Pj where Pi is corrupt, Pj honest and where the proofs of Pi are
acceptable and pki x D�m1�. Here Pi is controlled by the environment and the adversary. We
can take the entire execution of the simulation, including the environment, the adversary and
S and rewind all proofs given by Pi to S, and extract a witness for the proof. The witness

19

will include m1 such that pki � D�m1� or crs � D�m1�. Since pki x D�m1� it follows that
crs �D�m1�.

Since S is itself using s such that crs �D�s� in its proofs, it is not necessarily a contradiction
that the one-wayness of D that we can extract m1 such that crs � D�m1� from Pi. We can,
however, define an hybrid where S does not use s: For each pkk for an honest Pk, we inspect FG

D

pki
to find sk such that pkk � D�sk�.1 Then we run all honest parties correctly, using the witness
sk in the proofs. By WI of the OR-construction, this will only negligibly change the probability
that the extraction of A gives m1 such that crs � D�m1�. Now that s is not used anymore in
the execution, we set crs to be any given value. But then the expected poly-time process of
running the execution and then extracting Pi can take crs as input and with non-negligible
probability output m1 such that crs �D�m1�, which contradicts that D is a OWF.

In proving that when S changes witness, then the witness extracted from the proof of Pi
does not change, follows the proof of Thm. 1. For the proof to go through it is important that
while Pi is giving its proof, the simulator will not have to simulate any proof of honest parties:
by construction of the protocol only Pi and Pj are giving proofs at this phase, and either Pi
acts as prover or Pj acts as prover, and never at the same time. j

7 UC-Com in the A-PK model implies SA-OT

Theorem 7. SA-OT is necessary for UC-Com in the A-PK model.

Proof: We show how a UC secure commitment scheme for the A-PK model can be turned into
a SA-OT. To simplify the proof, consider the AND primitive, where A inputs a > �0,1� and B
inputs a bit b > �0,1� and where A has no output and B gets output c � ab. It is well-known
that if there exists passive, stand-alone secure AND (SA-AND), then there also exist SA-OT.
Then it is sufficient to show how to implement SA-AND from UC-Com in the A-PK model.

The existence of UC-Com clearly implies OWFs, so we can assume that we have a PRG
g � �0,1�κ � �0,1�κ�1. Consider the key generator Gf , where f � �0,1� � �0,1�κ � �0,1�κ�1

�

�0,1�κ�1
��0,1�κ�1 and f�b, rb, pk1�b� � �pk0, pk1� for pkb � g�rb�. This is clearly a meaningful

generator, as a PRG g � �0,1�κ � �0,1�κ�1 is one-way.
From the assumption that there exist UC-Com in the A-PK model, we have a protocol π

which UC implements Fmcom in the FGpki-hybrid model with sender S and receiver R. The sender
gets key material �pkS , sS� and pkR and the receiver gets key material pkS and �pkR, sR�. Here
pki � f�si� for i � S,R.

Consider the following adversary A against π for the case when the sender is corrupted:
It samples uniformly random c > �0,1�, rcS > �0,1�κ and r1�cS > �0,1�κ and lets pkcS � g�rcS�

and pk1�c
S � g�r1�cS �. Then it inputs s�S � �1 � c, r1�cS , pkcS� to FG

f

pki . Then it commits to some
m > �0,1� by honestly running the commitment phase of the protocol π with key material
�pkS , sS� and pkR, where sS � �c, rcS , pk

1�c
S �. It’s clear here that sS x s�S , and f�sS� � f�s

�

S�.
Later it decommits by honestly running the opening phase of the protocol π.

1 It should be noted that S, of course, cannot inspect FG
D

pki in a UC simulation. We are, however, not
in a UC simulation in the above argument. We are showing how the entire execution, including the
adversary and the environment can be rewound to compute a secret s for a given crs.

20

Lemma 13. When running with A, the honest receiver R will accept the commitment and will
later accept the opening to m, except with negligible probability.

The proof follows from the fact that R cannot distinguish A from the honest sender S.

Proof of Lemma 13: Let A� be the adversary which runs exactly as A, except that it inputs
sS � �c, rcS , pk

1�c
S � to FG

f

pki . Since f�s
�

S� � f�sS�, the view of the honest receiver R does not
change, so it is enough to prove the claim for the case where R runs with A�. For this purpose,
let A�� be the adversary which runs exactly as A�, except that it samples pk1�c

S > �0,1�κ�1

uniformly at random. Since A�� corresponds to the honest sender, it follows that R accepts the
commitment when running with A��, and that R later accepts the opening to m. Consequently,
the honest R will also accept the commitment when running with A�, and will later accepts
the opening to m, or R could be used to distinguish pk1�c

S � g�r1�cS � with r1�cS >R �0,1�κ from
a uniformly random pk1�c

S >R �0,1�κ�1. j

By π being UC secure, and the above lemma, it follows that there exists a UC simulator S
which can extract m from the conversation with A already in the commitment phase. Since S
is simulating FG

f

pki to A, it follows that S learns s�S and chooses the value of pkR.

1. First B samples c > �0,1� uniformly at random. Then, if b � 1, it uses S to sample pkR,
samples r1�cS > �0,1�κ uniformly at random and lets pk1�c

S � g�r1�cS �. If b � 0, then B samples
pkR � f�sR� for uniformly random sR and samples uniformly random pk1�c

S >R �0,1�κ�1. In
both cases it sends �c, pk1�c

S � and pkR to A.
At the same time A samples uniformly random rcS >R �0,1�κ, lets pkcS � g�rcS� and sends pkcS
to B.

2. Both parties let pkS � �pkS0 , pk
S
1 �. A sets sS � �c, rcS , pk

1�c
S �. If b � 1 then B lets s�S �

�1 � c, r1�cS , pkcS�. Note that in this case f�sS� � pkS � f�s�S�.
3. A inputs a by committing to m � a by honestly running the commitment phase of π, playing

the role of the sender S with key material �pkS , sS� and pkR.
If b � 1, then B runs S to extract a from the conversation with A, and outputs a. If b � 0,
then B honestly runs the commitment phase of π, playing the role of the receiver R with
key material �pkR, sR� and pkS , and outputs 0.

Fig. 11. SA-AND protocol

Consider then the SA-AND in Fig. 11. If b � 1, then all values are distributed as in the simu-
lation of π with A and S, so B computes a, except with negligible probability. This established
the correctness, hence it only remains to prove the following lemma.

Lemma 14. 1) When A and B are honest, then the view of A when b � 0 and b � 1 are
computationally indistinguishable. 2) When A and B are honest and b � 0, then the views of B
when a � 0 and a � 1 are computationally indistinguishable.

Part 1) follows readily from the fact that by UC security R and S cannot be distinguished
by A. Part 2) follows readily from the fact that a commitment hides the message when both
parties are honest. j

21

Proof of Lemma 14: Note first that we can make B sample pk1�c
S as pk1�c

S � g�r1�cS � also
when b � 0. By g being a PRG, this will not change whether the views of A when b � 0 and
b � 1 are computationally indistinguishable. Note then that even if we give r1�cS to A (both
when b � 0 and b � 1) we can show that the views when b � 0 and b � 1 are computationally
indistinguishable: then it clearly holds also when A is not given r1�cS . But when A is given r1�cS

we can let A sample c and r1�cS and send pk1�c
S to B, instead of the other way around. This is

not going to change the view of A, only the direction of a message. But now, when b � 0, then
A runs A and B runs S. Furthermore, when b � 1, then A still runs A, but B runs the honest
R. By UC security, A cannot distinguish whether it interacts with S or R.

Note that when b � 0, we can change the protocol such that A samples pk1�c
S >R �0,1�κ�1

uniformly at random and sends it to B. This is not going to change the view of B, only the
direction of a message. Hence it is sufficient to prove the claim for this protocol. We can then
change the protocol such that A instead samples r1�cS >R �0,1�κ uniformly at random and
sends pk1�c

S � g�r1�cS �. By g being a PRG, this does not change whether the views of B when
a � 0 and a � 1 are computationally indistinguishable. But now A is running the honest sender
S from π and B is running the honest receiver R from π. So by π being computationally hiding
it follows that the views of B are computationally indistinguishable when b � 0 and b � 1. j

8 Filling The Rows

Combining our findings with some previous results it is possible to fill the remaining rows in
Table 1. We will make use of the following:

Theorem 8. [IR89] There is no black-box reduction from OWF to SA-OT.

Theorem 9. [IR89] There is no black-box reduction from OWF to public-key encryption
(PKE).

Theorem 10. [DG03] SA-OT is necessary for UC-Com in the U/A-CRS model.

Theorem 11. [DG03] PKE is necessary for UC-Com in the C-CRS.

The answer to (a) follows directly from Thm. 11 and Thm. 9 for the CRS models; in the
same way it follows from (k) and Thm. 8 for the A-PK model; (c) follows from Thm. 9 and
the fact that UC-OT in any model implies PKE; (d) is a tautology; the answer to (e) is built
from the fact that UC-Com in those models implies SA-OT (see (k)), and that we can compile
this into a UC-OT using the UC-Com, as it implies UC-ZK; the answer to (g) goes as follows:
(n) tells us that UC-OT in the C-PK model implies SA-OT while (b) tells us that OWF are
sufficient for UC-OT in the C-PK model. Therefore UC-Com is not sufficient for UC-OT, or
we will get a contradiction with Thm. 8; (i) is trivial as OWF are minimal for cryptography,
and (j) is trivial as UC-OT is complete for UC computation; (m) follows from (b) and Thm. 8;
finally (n) follows from the following observation: semi-honest parties can efficiently simulate
the U-CRS (or the A-CRS) setup model by letting one party pick a random string without
learning the trapdoor and make the crs public. Then the parties will run the UC-OT protocol
using this string as the CRS, therefore achieving a SA-OT. As for the C-PK (or the A-PK)
models, they can be efficiently simulated by letting every party generate his own public/secret
key pair and sending the public key to all other parties. Now the parties can run the UC-OT
using those public keys, and they’ll achieve a SA-OT.

22

8.1 The C-CRS setup assumption

In this section we discuss the C-CRS model, and the open questions (f), (l) and (o) left in the
table. Consider (o): is SA-OT necessary for UC-OT in the C-CRS model? The way we positively
answered the question for the other setup models is by letting one party honestly pick a random
CRS and publish it, therefore simulating the setup model. We don’t know how to do it in the
C-CRS model: in fact, we don’t know whether it is possible, for any chosen OWF f , to sample
an image y � f�x� without learning the preimage x. For instance, if x > Zq and f�x� � �gx, hx�
for g, h elements in group of large prime order q, then it is believed that one cannot sample
from the image of f without learning x, to the extent that people construct protocols based
on this belief (the so-called knowledge of exponent assumption [Dam91]). This suggests very
strongly that the open question cannot be solved using the techniques we have used here.

It could of course be possible to approach (o) in some other way. It seems counter-intuitive
to think that it would be possible to implement UC-OT in a world where SA-OT does not
exist: how much power does a symmetric setup as the C-CRS give to the parties? However, if
it turns out that the answer to (o) is affirmative, then we could use (h) to turn any UC-OT in
the C-CRS model into a UC-OT in the U/A-CRS model, and this would also be a surprising
result. Similar considerations can be made for (f) and (l).

References

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136–145, 2001.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Yvo Desmedt, editor, Advances in Cryptology
- Crypto ’94, pages 174–187, Berlin, 1994. Springer-Verlag. Lecture Notes in Computer
Science Volume 839.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor,
CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 19–40. Springer, 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In STOC, pages 494–503, 2002.

[Dam91] Ivan Damgård. Towards practical public key systems secure against chosen ciphertext at-
tacks. In Joan Feigenbaum, editor, CRYPTO, volume 576 of Lecture Notes in Computer
Science, pages 445–456. Springer, 1991.

[DG03] Ivan Damgård and Jens Groth. Non-interactive and reusable non-malleable commitment
schemes. In STOC, pages 426–437. ACM, 2003.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Structure in Complexity
Theory Conference, pages 134–147, 1995.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In STOC, pages 44–61. ACM, 1989.

23

