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Abstract

In the encryption of credit-card data as well as other applications, we may want to encipher
in such a way that a certain property of the plaintext is preserved in the ciphertext. This paper
initiates a treatment of this type of format-preserving encryption. We introduce a primitive
that we call a general cipher that allows us to capture encryption preserving arbitrary formats.
We specify an as-strong-as-possible notion of security for it that says that none but the desired
property is leaked. We then provide an efficient construction of a general cipher that we call
FPF.
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1 Introduction

A cipher with domain D is a deterministic function E: K × D → D that associates to any key
K ∈ K a permutation EK : D → D. It is traditional to ask for ciphers whose ciphertexts hide all

properties of the input, as formalized by asking that ciphers be secure pseudorandom permutations
(PRP). However, important applications mandate that some properties of a plaintext are leaked
by a ciphertext. The best known example of this is when format needs to be preserved, meaning
a certain property of the plaintext must also be present in the ciphertext. This paper initiates a
treatment of this type of format-preserving encryption. We introduce a primitive that we call a
general cipher that allows us to capture encryption preserving arbitrary formats. We specify an
as-strong-as-possible notion of security for it that says that none but the desired property is leaked.
We then provide an efficient construction of a general cipher. Before giving more details, let us
step back and explain the need for this new primitive via example.

Format-preserving encryption. Information stored in database records is often expected to
have a certain format, meaning be of a certain type or be structured in a certain way. Software
that operates on the data will complain and not function properly if it encounters data not of
the expected format. An important example is credit card data. Here customer records include
such data as names, addresses, and the credit card number itself, each expected to meet certain
restrictions. For example, a name Name must consist of two strings of letters, each being an upper
case letter followed by lower case letters. An address Addr must be a sequence of alphanumeric
characters, spaces, or commas followed by a valid postal code. A credit card number CC must be
8–19 decimal digits followed by a valid Luhn digit [10]. (The Luhn digit is an error-correcting code
computed as a function L of the preceding digits of the credit card number.) Two example records
are shown below.

John Doe 1234 Market Street, San Francisco, CA 94105 5588219104134593

Sarah Jane 5678 7th Avenue, New York, NY 10027 370371000012341

Software managing (or using) the database will fail (perhaps subtly) if any of these restrictions are
not met. For example, the database software might check validity of Luhn digits before allowing
new records to be written to it.

Now enter the security concerns. Compromise of servers storing databases such as the above
results in credit card fraud that is costing the industry millions of dollars per year. Encryption
has become not just desirable but mandatory due to recent standards such as the payment card
industry’s data security standard [22]. But an arbitrary encryption method won’t do. There is a
new constraint, namely that the encryption be format-preserving encryption (FPE). This means
that if the plaintext has some prescribed format, so must the ciphertext. For our example above, we
need a cipher that maps an input (plaintext) of the form Name, Addr, CC to an output (ciphertext)
of the form Name∗, Addr∗, CC∗. Name∗, like Name, must consist of two strings of letters each
beginning with an upper case letter. Addr∗, like Addr, must consist of alphanumeric characters,
spaces, or commas followed by a valid postal code. CC∗, like CC, must consist of 8–19 decimal digits
followed by the output of the function L when applied to those digits. Furthermore, the ciphertext
must be of the same length as the plaintext. This rules out randomized encryption such as CBC
or CTR modes, where an IV must be included in the ciphertext.

Why format preservation? The complex systems that process financial transactions impose
a powerful legacy constraint. Using a classical encryption scheme would require changing these
systems, which is costly and error-prone. Instead, we want to be able to replace the plaintext
by the ciphertext in the database without having the system “break”. That is, the ciphertext
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must occupy the same space as the plaintext and have the format necessary to be accepted by the
software. Format-preserving encryption accomplishes this and thus provides security with minimal
cost overhead.

General ciphers. To solve the FPE problem we introduce a new primitive that we call a general
cipher. Unlike a conventional cipher, a general cipher has associated to it a family {Dom(ℓ)}ℓ∈I of
domains where I is some index set. For every key K, index ℓ, and tweak T the cipher specifies a
permutation ET,ℓ

K on Dom(ℓ). (We make general ciphers tweakable [12] because, as we will show, this
feature will provide enhanced security.) We then provide a construction (called FPF) of a general
cipher. We stress that the construction is able to produce a cipher over an arbitrary given domain
{Dom(ℓ)}ℓ∈I , which (as we will now explain) is what enables us to implement FPE preserving
arbitrary formats.

So how does a general cipher allow us to do FPE? Let us illustrate by restricting attention to
the format-preserving encryption of credit card numbers from our example above. Recall we want
the ciphertext CC∗, like the plaintext CC, to be a sequence of digits whose last digit is the value
of the function L applied to the other digits. We also want the length len(CC∗) of CC∗ to be the
same as the length len(CC) of CC. Say the length ranges from 8 to 20 digits. Let I = {8, 9, . . . , 20}
and let Dom(ℓ) be the set of all ℓ-digit numbers whose last digit is the value of L applied to the
other digits. Now a general cipher E over {Dom(ℓ}ℓ∈I does the job! Encrypt CC (under key K

and tweak T ) by letting ℓ = len(CC) and letting the ciphertext be CC∗ = ET,ℓ
K (CC), which has the

desired format.
What is less obvious is that this approach extends to cover more complex formats. In Section 3

we show how to specify a domain that captures the full example we discussed above. (Case of
letters and validness of postal codes are amongst the things to preserve.) From this it should be
clear that one can do format-preserving encryption in general.

FPF. What remains is to be able to construct a general cipher over an arbitrary, given domain.
Our FPF (Format-Preserving Feistel) construction does just this. Our starting point is the arbi-
trary domain cipher of Black and Rogaway [6] which combines a generalization of an unbalanced
Feistel network with a technique from [24] called cycle walking. FPF extends this to handle mul-
tiple domains with the same key and also to incorporate tweaks. FPF is flexible, efficient, and
customizable. The round function is a parameter and can be based on a block cipher such as AES
or DES, or on a cryptographic hash function such as SHA-256.

Security notions. The first issue in security is to pick and then formally define the security goals
of a general cipher. The novel element here is that some information about the plaintext (namely
the format) is leaked by the ciphertext. Our strongest notion of security adapts the traditional PRP
notion to general ciphers to capture no more than the format being leaked. But we also provide
a weaker message privacy notion MP adapted from [4, 9] and a still weaker notion MR of security
against message recovery. Why bother with MP and MR when they are implied by PRP? The
reason is that MP and MR are what applications really need (an attack against the PRP notion
may be absolutely no threat in practice!) and PRP can be a costly overkill. This could be because
MP and MR are more efficiently achievable. It could also be because of concrete security. (Whether
provable or as indicated by cryptanalysis.) Even for a particular construction, the concrete security
under MP and MR may be better than PRP. (In the latter case a lot of security is often lost due
to birthday attacks that don’t threaten MP or MR.) This is particularly important in our context
because domains may be small. (For example we may want to encrypt only 12 digits of a credit
card number.) We need all the security we can get. We will see all these issues show up for FPF.
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Security of FPF. We would ideally like to prove security of FPF under suitable assumptions
on the round function. But we run into a limitation, namely that the proven strength of Feistel
ciphers [13, 15, 16, 19, 20, 6], in terms of quality of bounds, falls short of what seems to be the
actual strength indicated by resistance to attacks. (At least, for Feistel with enough rounds.) This
is well understood in the community. We address this in a couple of ways.

First, proofs have always targeted PRP. Instead we target MP and MR and prove better bounds.
We prove that FPF, with only 5 rounds, hides all partial information about inputs. To the best
of our knowledge, our bound is the only known positive security result for unbalanced Feistel
networks with constant number of rounds and message size that are meaningful beyond q =

√
2κ

queries where κ is the logarithm of the size of the round function (with smallest range). (See
Section 5.3 for a detailed discussion of the prior known bounds from [17, 19, 20, 6, 15, 13].) Due
to the wide use of Feistel networks, we expect that this result is of independent interest.

Even with this, we feel that being guided purely by what can be proved would lead us to pes-
simistic security estimates. We believe the most realistic picture is attained by assessing resistance
to attacks. We consider known attacks and discuss their implications for our parameter choices.
(Principally the number of rounds.) We also provide a novel attack against (heavily) unbalanced
Feistel networks that achieves message recovery with success probability exponentially small in the
number of rounds. (The attack can only be damaging if the number of rounds is too small.)

In conclusion, and broadly speaking, the status of FPF is that with enough rounds it appears to
be secure. If the Feistel is balanced or almost balanced, we would suggest a minimum of 7 rounds,
and preferably more, say a dozen. As the imbalance increases, so should the number of rounds.

ADE. Arbitrary-Domain Encryption (ADE) is the problem of building a classical cipher E: K ×
D → D over a single but arbitrary, given domain D. A general cipher yields this as a special case
by letting the domain Dom consist of the single set D. FPF in this way yields a classical cipher
over an arbitrary domain. This turns out to have some advantages over known constructs. To say
more let us give some background.

There have been two approaches to the problem of designing ciphers over arbitrary (and small)
domains. The first is to design the cipher from scratch. This is represented by Hasty Pudding [24].
The drawback is that users (such as financial institutions, which are very conservative) prefer
something based on well-known and standardized algorithms. The second approach, due to Black
and Rogaway [6] and mentioned above, is to combine a Feistel construction with a technique
from [24] called cycle walking. The round function would be based on a standard algorithm such
as AES. A prominent instantiation of this method is Spies’ FFSEM which has been proposed to
NIST as a standard [25].

The problem considered by these methods is to build a cipher with domain Zn for some (ar-
bitrary) positive integer n. FFSEM lets l be the smallest integer such that 22l ≥ n and builds a
balanced Feistel cipher with domain {0, 1}2l. FFSEM applies the Feistel cipher to its input, and,
if the output is not in Zn, it iterates, applying the Feistel cipher to this output, continuing until it
obtains a point in the desired domain. This is the cycle walking, which is shown by [6] to always
terminate.

FPF does not use cycle-walking. The technique to avoid cycle-walking in fact goes back to
Black-Rogaway but was not used in the proposed standard FFSEM [25]. For the same security
(meaning, the same number of Feistel rounds) this means that FPF is significantly faster. For
example, suppose we are enciphering five digit numbers. FFSEM will let l be the smallest integer
such that 22l ≥ 105, obtaining l = 9, and then perform cycle-walking with a 2l-bit Feistel cipher.
The expected number of applications of the Feistel cipher is 22l/105 ≈ 2.6. This means that FFSEM
is 2.6 times more expensive than FPF on the average, and even more expensive than that in some
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cases. Indeed, the running time of FFSEM is a random variable depending on the input. Besides
the uncertainties that this brings is the danger of increased vulnerability to timing attacks. FPF,
in contrast, has a fixed running time.

2 General Ciphers

We first provide a formal definition and then explanations.

General ciphers. A general cipher is a a tuple GE = (E , KeySp, TwSp, I,Dom). The sets KeySp

and TwSp are the key space and tweak space, respectively. The domain Dom is a map that given
a value ℓ ∈ I ⊆ {0, 1}∗ returns a finite, non-empty set Dom(ℓ) where I is an index set. For each

K ∈ KeySp, T ∈ TwSp, and ℓ ∈ I we let the function ET,ℓ
K be defined by ET,ℓ

K (x) = E(K, T, ℓ, x) for

all x ∈ Dom(ℓ). We require that ET,ℓ
K is a permutation on Dom(ℓ). We say that GE has a numeric

domain if there is a function s: I → N, called the size function, such that Dom(ℓ) = Zs(ℓ) for all
ℓ ∈ I.

Discussion. The main novelty here is that the domain is a collection of sets rather than a single
one as in conventional definitions of a cipher. For any fixed key and tweak, a general cipher must
induce a permutation on the domain set associated to any given index. Why this model? Think
of the index as specifying some to-be-preserved property of the plaintext. That is, associate to
any input plaintext x a “property” P (x) that can take many possible values V1, V2, . . .. Then we
can let Dom(ℓ) be the set of all inputs x such that x has this property, i.e. P (x) = Vℓ. Inputs
having a certain property are then mapped to outputs with the same value of P so that the cipher
preserves property P . One example is that the inputs are drawn from Σ∗ for some alphabet Σ
and P (x) is the length of x. In this case the cipher is length-preserving. It is in this way that
we capture the length-preserving encryption of variable-length inputs. However, the framework
is clearly more general, allowing us to talk of the preservation of other properties as well. The
examples in Section 3 will illustrate further.

The role of tweaks. Before continuing, we first pause to explain the role of tweaks in providing
improved security. For format-preserving encryption, there will often be public data associated
with records (e.g. a record number or the last four digits of a credit card number, which is often
necessarily left public). This associated data can be input as a tweak to encryption and decryption.
This can significantly improve security, because brute-force message privacy or recovery attacks
will have to attack each tweak independently, slowing down attacks in practice significantly. This
is analogous to the concept of salting in UNIX password hashing.

Encode-then-encipher. It is convenient for constructions to work with numeric domains. Ar-
bitrary domains are handled via an encode-then-encipher paradigm. Namely, suppose we have a
general cipher GE = (E , KeySp, TwSp, I,Dom) with numeric domain Dom(ℓ) = Zℓ for ℓ ∈ I. We
want to build a general cipher GE = (Ē , KeySp, TwSp, I,Dom). We first specify an injective map
Enc such that Enc(ℓ, ·): Dom(ℓ) → Zs(ℓ), where s(ℓ) = |Dom(ℓ)|, for all ℓ ∈ I. For K ∈ KeySp,

T ∈ TwSp, ℓ ∈ I, and X ∈ Dom(ℓ) we then let

ĒT,ℓ
K (X) = Dec(ℓ, ET,ℓ

K (Enc(ℓ, X)))

where Dec(ℓ, ·) is the inverse of Enc(ℓ, ·) for ℓ ∈ I. In this way, our task is broken up into building
general ciphers over numeric domains and then capturing specific applications via appropriate
encoding functions. The examples of Section 3 will illustrate.

6



3 Format-Preserving Encryption using General Ciphers

In this section, we give several examples of format-preserving encryption using a general cipher.
These will show how general ciphers can capture requirements and format-preservation constraints
that cannot be captured in the framework of enciphering over a (single) finite set [6, 25]. We
present three examples. The first performs length-preserving encryption of (varying length) credit
card numbers. The second provides a general method for encrypting multi-alphabet strings. The
third shows how to use this multi-alphabet string cipher to perform format-preserving encryption
of user records as per the example discussed in the introduction. Our technique throughout will be
to utilize the encode-then-encipher paradigm discussed earlier. For this section we assume access
to a general cipher GE = (E , KeySp, TwSp, I,Dom) with TwSp ⊆ {0, 1}∗ and with index set and
domain sufficient for the examples. (In the next section, we show how to realize such a general
cipher.)

Example 1: credit card numbers. Here the inputs are strings over Σ = {0, 1, . . . , 9} where
length ℓ can very, say from 4 to 20. (One might want to encrypt varying amounts of the credit
card numbers and discretionary data, leaving the rest in place.) The output must be a string
over Σ∗ of the same length as the input. (Note we are ignoring the functioning of the Luhn digit
here. In Example 3 we will account for requiring valid Luhn digits.) Tweaks would be some of
the (un-encrypted) credit card number digits encoded into bit strings in a natural way. We can
capture the requirements of this setting by letting Domcc(ℓ) = Σℓ for all ℓ ∈ I = {4, . . . , 20}. We
seek a general cipher GEcc = (E , KeySp, TwSp, I,Domcc). (Notice that we use the ability to have a
domain with multiple sets in a crucial way to capture the length-preservation requirement. This
cannot be done in the previous frameworks [6, 25].)

We build GEcc using encode-then-encipher with the enciphering via general cipher GE . Let
s(ℓ) = 10ℓ for ℓ ∈ I. Thus our indexes are just the number of digits in the credit card number.
Now we need to specify the encoding function Enc and decoding function Dec. But these are
easy as Enc(ℓ, X), where X is a sequence of ℓ decimal digits, simply views X as the decimal
representation of an integer N and returns N . Conversely for Dec. Our final enciphering algorithm

is ET,ℓ
K (X) = Dec(ℓ, ET,ℓ

K (Enc(ℓ, X)). In Section B we provide a fully instantiated version of this
construction.

Example 2: multi-alphabet strings. We construct a general cipher for multi-alphabet strings.
In a moment we will show how this cipher can be used to handle multi-field records. A multi-
alphabet string is a sequence of digits pk · · · p1 where pi ∈ Σi for 1 ≤ i ≤ k and alphabets Σk, . . . ,Σ1.
The index set for our cipher is any sequence of (uniquely encoded descriptions of) alphabets,
e.g. ΣkΣk−1 · · ·Σ1 for any alphabets Σk for any k > 1. (For simplicity here we do not handle
single-character strings.) To any alphabet Σ we associate an injective map numΣ: Σ→ [0 .. |Σ|−1].
Its inverse we denote via charΣ.

We now build a general cipher GEmas = (Ẽ , KeySp, TwSp, I,Dommas) that inherits the key
space and tweak space of the underlying general cipher GE , has index set I specifying the space of
arbitrary string formats (the sequence of alphabets digits are taken from), and Dommas that maps
an index to a set Zs(ℓ). We use the encode-then-encipher paradigm with encoding and decoding
functions as given in Figure 1. Given an index ℓ encoding alphabets Σk, . . . ,Σ1, the routines map
a k-digit multi-alphabet string (from said alphabets) to a numerical value between 0 and s(ℓ)− 1
where s(ℓ) =

∏k
i=1 |Σi|. The domain map Dommas(ℓ) outputs Zs(ℓ) Notice that many values of ℓ

will lead to the same Zn, but this will not be a problem either for security or functionality. Our
final enciphering algorithm is again ẼT,ℓ

K (X) = Dec(ℓ, ET,ℓ
K (Enc(ℓ, X)).

Example 3: multi-field records. Now we return to the complex example from the introduc-
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Enc(ℓ, P )

Parse ℓ as Σk, . . . , Σ1

Parse P as pk, . . . , p1 where pi ∈ Σi

x← numΣ1
(p1) +

Pk

i=2

“

numΣi
(p1) ·

Q

j<i
|Σj |

”

Return x

Dec(ℓ, y)

Parse ℓ as Σk, . . . , Σ1

For i = k to 2 do

d←
Q

j<i
|Σj | ; ci ← ⌊y /d⌋ ; y ← y − ci · d

Return charΣk
(ck)‖ · · · ‖charΣ2

(c2)‖charΣ1
(y)

Figure 1: Encoding and decoding algorithms for a multi-alphabet general cipher.

tion. We want a format-preserving encryption that maps input plaintext Name, Addr, CC to output
ciphertext Name∗, Addr∗, CC∗. Name and Name∗ must consist of two strings of letters, each being
an upper case letter followed by lower case letters. Addr and Addr∗ must be alphanumeric charac-
ters, spaces, or commas followed by a valid postal code. CC and CC∗ must be 8–19 decimal digits
followed by a valid Luhn digit [10].

We can handle these formats by interpreting a record as a multi-alphabet string and using
GEmas. All that is needed is how to derive an index for a given record. Let Σlc = {a, . . . , z},
Σuc = {A, . . . , Z}, Σlet = Σlc∪Σuc, Σnum = {0, . . . , 9}, and Σα = Σlet∪Σnum∪{, }∪{⊔}. Let Σzip

be the set of all valid (5-digit US) postal (ZIP) codes. Let Σi
cc be the set of all i-digit credit card

numbers with valid check digit. That is Σi
cc = {n‖L(n) | n ∈ Σi−1

num}. We write 〈Σ〉 to mean an
(unambiguous) encoding of Σ into a string. We assume an encoding for which the concatenation
of several such encodings can also be unambiguously decoded.

Our input is the triple of strings (Name, Addr, CC). Produce an index string ℓ as follows. Initially
set ℓ = ε. Scan Name from left to right. For the first character, append 〈Σuc〉 to ℓ. For each further
non-space character in the first string, append 〈Σlet〉. Append 〈{⊔}〉. Then append 〈Σuc〉 and
append 〈Σlet〉 for each subsequent character. Then scan Addr, appending 〈Σα〉 for each character
stopping before the final 5 digit postal code. Append here 〈Σzip〉. Finally, append 〈Σc

cc〉 where c is
the number of decimal digits in CC.

The result is a string encoding the appropriate alphabets of the characters used within the
input record. (We are treating the ZIP code and credit card number as individual characters from

particular alphabets.) We then encipher (for any desired tweak T ) via ẼT,ℓ
K (ℓ, (Name, Addr, CC)).

The ciphertext will have the desired format. Note that ciphertexts contain all the information
required to reproduce the appropriate ℓ for decryption.

4 Format-Preserving Feistel (FPF)

We present a construction of a general cipher GE = (E , KeySp, TwSp, I,Dom) for key space KeySp,
tweak space TwSp ⊆ {0, 1}∗, and numeric domain with size function s over index set I. (That is,
Dom(ℓ) = Zs(ℓ) for all ℓ ∈ I.) The construction is parameterized by the following.

• A function split that given ℓ ∈ I returns a pair a, b ∈ N such that ab = s(ℓ).

• A function r: I → N specifying the number of rounds.

• A round function, which is a PRF F : KeySp×D → N where D = TwSp× N
4.

Figure 2 shows the enciphering algorithm E as well as describing the associated deciphering algo-
rithm D.

Discussion. Following [6], the internal Feistel computations are done modulo integers a, b rather
than over strings. To obtain a general cipher, not only the tweak T but also the index ℓ of the
domain set are input to the round function. This effectively “separates” instances of the cipher for
different tweaks and indexes. To make the round functions independent while using a single key
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algorithm ET,ℓ
K (X):

a, b← split(ℓ)

L0 ← X mod a ; R0 ← ⌊X/a⌋

For i = 1, . . . , r(ℓ) do

Li ← Ri−1

Zi ← FK(T, ℓ, i, Ri−1)

If i mod 2 = 1 then Ri ← (Zi + Li−1) mod a

else Ri ← (Zi + Li−1) mod b

If r(ℓ) mod 2 = 1 then Return Y ← aLr(ℓ) + Rr(ℓ)

else Return Y ← aRr(ℓ) + Lr(ℓ)

algorithm DT,ℓ
K (Y ):

a, b← split(ℓ)

If r(ℓ) mod 2 = 1 then Rr(ℓ) ← Y mod a ; Lr(ℓ) ← ⌊Y/a⌋

Else Lr(ℓ) ← Y mod a ; Rr(ℓ) ← ⌊Y/a⌋

For i = r(ℓ), . . . , 1 do

Ri−1 ← Li

Zi ← FK(T, ℓ, i, Li)

If i mod 2 = 1 then Li−1 ← (Ri − Zi) mod a

else Li−1 ← (Ri − Zi) mod b

Return aR1 + L1

Figure 2: Encryption and decryption algorithms for the FPF general cipher where K ∈ KeySp,
T ∈ TwSp, ℓ ∈ I, and X, Y ∈ Dom(ℓ).

the round number is also input to the round function. Cycle walking is eliminated by requiring
that ab = n, where n = s(ℓ). (Black and Rogaway [6] need cycle walking because they only
require ab ≥ n.) The price we pay is that the Feistel can get unbalanced. As we discuss later in
more depth, this can significantly impact security. But the fact is that in applications of interest,
including encryption of (segments of) credit card numbers, we can always pick a ≈ b so the security
is not impacted. Even if this is not possible, we can compensate with more rounds. With 7 or more
rounds and relative balance it appears that security is achieved (there are no known and efficient
attacks); we suggest 12 as a more conservative number.

How do we specify split? This is straightforward for our envisioned applications. Consider
example 1 from the previous section. Here indices were the number of decimal digits of the input
credit card. We have split(ℓ) return a = 10ℓ0 and b = 10ℓ1 where ℓ0 = ⌊ℓ/2⌋ and ℓ1 = ⌈ℓ/2⌉. Notice
that |ℓ0 − ℓ1| ≤ 1 so that the Feistel will be almost balanced. For the second example from the
previous section, an index ℓ is a description of alphabets Σk, . . . ,Σ1 to which characters of the input
belong. Recall that here s(ℓ) =

∏k
i=1 |Σi|. Let split(ℓ) first compute s(ℓ), then find the first value

h ∈ [1 .. k] such that s(ℓ)/2 ≤∏h
i=1 |Σi|, and finally output a =

∏h
i=1 |Σi| and b =

∏k
i=h+1 |Σi|. For

many alphabet types, the resulting Feistel will be relatively balanced.

Round functions. FPF relies on a round function F with non-standard domain (TwSp×N
4) and

range (N). This function needs to be a secure PRF. Building suitable F is straightforward given
PRFs working over bit strings. We can therefore use well-known constructions of PRFs based on
conventional block ciphers (e.g. 3DES or AES) or based on cryptographic hash functions (e.g. SHA-
256). See Appendix A for example instantiations. We also discuss there the use of precomputation
for speed improvements (deriving from the fact that several of the inputs to F are the same across
all rounds).

The effect of imbalance. As promised above we look into this more closely. One might note
that there seems here to be a degenerate case where the construction will fail to be secure, namely
when n is prime, so that either a or b is 1. But we can assume without loss of generality that n is
composite as follows: build the cipher for n− 1, which is composite, and use a technique from [6]
to extend by one point. (The so-called one-off construction.)

The best attack we know against this kind of unbalanced Feistel network is presented in
Section 5.2. Looking ahead, in extreme cases (such as when n = 2p for a large prime p) our
(new) attack succeeds at recovering messages with probability about 2−r(ℓ)/2 using only a couple
of queries. One can defend against it by increasing the number of rounds for at risk values of n,
which is easily facilitated since the cipher can tailor the number of rounds to n. But as indicated
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above our experience is that these anomalous cases seldom arise in applications.

5 Security: Definitions and Analysis

In this section we formalize several security notions for general ciphers: the traditional notion of
security as a pseudorandom permutation (PRP), suitably adapted to our setting, message privacy
security (MP) (adapted from definitions from [4]), and security against message recovery (MR)
attacks. The latter two notions quantify the ability of an adversary to learn partial information
about (or even recover fully) plaintexts as a function of the adversary’s a priori uncertainty about
them. We show that PRP security implies MP security and that MP security implies MR security.

Why do we consider anything beyond PRP? We do so because the MP and MR notions seem
sufficient for secure use of format-preserving encryption. These notions both model the following
attack scenario. An intruder gains access to systems hosting data sets that were encrypted with
the help of some (possibly remote) hardware security module (HSM). The intruder, in control of
the entire system excepting the HSM, will have whatever proper credentials are required to submit
encryption (but not necessarily decryption) requests to the HSM. MP measures the ability of this
intruder to learn partial information about plaintexts. MR measures the ability of the intruder to
recover plaintexts.

While we believe FPF is strong in the sense of PRP, the fact is that no one has yet been able
to prove security of Feistel-based ciphers with bounds meaningful for the application of format-
preserving encryption. (See the detailed discussion in Section 5.3.) We provide significantly more
assurance about the security of FPF by proving MP and MR security with better bounds than any
PRP analysis seems to have offered.

On leaking format. By design format-preserving encryption leaks to adversaries the format
of underlying plaintexts. One must be careful to ensure that this information being leaked is not
damaging in and of itself. In our application examples, the format is public (e.g. an adversary
knows the database’s structure and formatting requirements). Even here though some formats
being preserved could be damaging if the set of possible messages of that format is small. For
example, what if there is only one person with a two-letter name in the database? Since length is
leaked, an adversary would know what entry in the database corresponds to this person. Note that
our definitions do take account of this risk, since the adversary will be able to attack index sets of
its choice. Security will only hold if challenge messages from this set are unpredictable.

Games. Our security definitions and proofs use code-based games [2], and so we recall some
background from [2]. A game has an Initialize procedure, procedures to respond to adversary
oracle queries, and (sometimes) a Finalize procedure. A game G is executed with an adversaryA as
follows. First, Initialize executes, and its outputs are the inputs to A. Then A executes, its oracle
queries being answered by the corresponding procedures of G. If there is no Finalize procedure,
then when A terminates, its output is also called the output of the game. If there is a Finalize
procedure, then when A terminates, its output becomes the input to the Finalize procedure. In
this case the output of Finalize is called the output of the game. In either case, we let let GA ⇒ y
denote the event that this game output takes value y. The boolean flag bad is assumed initialized
to false. Games G, H are identical-until-bad if their code differs only in statements that follow the
setting of bad to true. We say that “GA sets bad” to denote the event that game G, when executed
with adversary A, sets bad to true. It is shown in [2] that if G, H are identical-until-bad and A is an
adversary, then Pr

[

GA sets bad
]

= Pr
[

HA sets bad
]

. The fundamental lemma of game-playing [2]

says that if G, H are identical-until-bad then Pr
[

GA ⇒ y
]

− Pr
[

HA ⇒ y
]

≤ Pr
[

GA sets bad
]

.
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5.1 Security Notions for General Ciphers

Let GE = (E , KeySp, TwSp, I,Dom) be a general cipher.

PRP security. A PRP adversary A has access to an oracle that accepts inputs T ∈ TwSp, index
ℓ ∈ I, and message X ∈ Dom(ℓ). It returns a value Y ∈ Dom(ℓ). In one world Y is computed

by applying EK(T, ℓ, X) = ET,ℓ
K (X) for a random K. In another world Y is computed by applying

π(T, ℓ, X), where the map π(T, ℓ, ·) is a random permutation on Dom(ℓ) for all T ∈ TwSp and ℓ ∈ I.
Formally we define the advantage of A against E by

Advprp
E (A) = Pr

[

RealAE ⇒ 1
]

− Pr
[

RandA
E ⇒ 1

]

.

where the games RealE and RandE are defined in Figure 3. The definition explicitly models the
requirement that different length inputs should appear to be enciphered by independent random
permutations.

MP security. A MP-adversary A = (Am,Ag) is a pair of algorithms. The message sampler Am

takes no input and outputs a tweak T ∗ ∈ TwSp, index ℓ∗ ∈ I, and a pair of challenge messages
X∗

0 , X∗
1 ∈ (Dom(ℓ))2. The guessing adversary Ag takes input a challenge ciphertext and has access

to an encryption oracle. We define security of a scheme GE against MP-adversaries via the game
MPA

GE shown in Figure 3. We define the MP-advantage of an MP-adversary A against E by

Advmp
GE (A) = 2 ·Pr

[

MPA
GE ⇒ true

]

.

An MP adversary A = (Am,Ag) has min-entropy µ if

Pr
[

Xb = X ′ : (T, ℓ, X0, X1)
$← Am

]

≤ 2−µ

holds for all b ∈ {0, 1} and X ′ ∈ Dom(ℓ). An MP adversary A = (Am,Ag) is legitimate if:
(X0, X1) ∈ (Dom(ℓ))2 for any ℓ, X0, X1 output by Am, all queries T, ℓ, X by Ag to Enc are such
that T ∈ TwSp, ℓ ∈ I, and X ∈ Dom(ℓ) and Ag never repeats a query to Enc.

Note that this definition (and the next) only considers block sources (see [4, 9] for a discussion).
We can also give a multiple challenge message notion of MP for more general (non-block) sources,
following [4]. (We can also adapt the next definition analogously.) The proofs for FPF security in
the MP (and MR) sense carry over to this more general setting.

MR security. Let E be a general cipher with key space KeySp, tweak space TwSp, and domain
Dom with associated index set I. An MR-adversary I = (Im, Ig) is a pair of algorithms. The
message sampler Im takes no input and outputs a tweak T ∗ ∈ TwSp, index ℓ∗ ∈ I, and a message
X∗ ∈ Dom(ℓ). The message recoverer Ig takes input a challenge ciphertext and has access to an
encryption oracle. We define security of general cipher GE against MR-adversaries via the game
MRI

GE shown in Figure 3. We define the MR-advantage of an MR-adversary I against E by

Advmr
GE(A) = Pr

[

MRI
GE sets win

]

.

An MR adversary I = (Im, Ig) has min-entropy µ if

Pr
[

X = X ′ : (T, ℓ, X)
$← Im

]

≤ 2−µ

holds for all X ′ ∈ Dom(ℓ). An MR adversary I = (Im, Ig) is legitimate if: X ∈ Dom(ℓ) for any ℓ, X
output by Am, all queries T, ℓ, X by Ig to Enc are such that T ∈ TwSp, ℓ ∈ I, and X ∈ Dom(ℓ)
and Ig never repeats a query to Enc.

Implications. A random permutation is optimally MP secure. Here optimal means that an
adversary with min-entropy µ requires on the order of q = 2µ queries to the Enc oracle to infer
partial information about the challenge message (i.e. a brute force search is the only strategy).
Thus, any general cipher that is secure as a PRP also hides all partial information about (high
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procedure Initialize Game RealGE

K
$

← KeySp

procedure Enc(T, ℓ, X)

Return ET,ℓ
K (X)

procedure Initialize Game RandGE

π, R everywhere ⊥

procedure Enc(T, ℓ, X)

If π[T, ℓ, X] 6= ⊥ Return π[T, ℓ, X]

π[T, ℓ, X]
$

← Dom(ℓ)/R[T, ℓ]

R[T, ℓ] ∪← π[T, ℓ, X]

Return π[T, ℓ, X]

procedure Initialize

K
$

← KeySp ; b
$

← {0, 1}

(T ∗, ℓ∗, X∗
0 , X∗

1 )
$

← Am

C∗ ← ET∗,ℓ∗

K (X∗
b )

Return (T ∗, ℓ∗, C∗)

procedure Enc(T, ℓ, X) Game MPA
GE

Return ET,ℓ
K (X)

procedure Finalize(b′)

Return (b′ = b)

procedure Initialize

K
$

← KeySp ; (T ∗, ℓ∗, X∗)
$

← Im

Return (T ∗, ℓ∗, ET∗,ℓ∗

K (X∗))

procedure Enc(T, ℓ, X) Game MRI
GE

If (T, ℓ, X) = (T ∗, ℓ∗, X∗) then win← true

Return ET,ℓ
K (X)

Figure 3: (Top) The games Real and Rand for defining PRP security of a general cipher GE .
(Middle) The MP security game for MP-adversary A = (Am,Ag) and general cipher GE . defining
message privacy for a general cipher. (Bottom) The MR security game for MR-adversary I =
(Im, Ig) and general cipher GE .

min-entropy) plaintexts. Any general cipher secure in the MP sense is just as secure against message
recovery. The following proposition, whose proof is straightforward and omitted, captures these
relationships formally.

Proposition 5.1 [PRP security ⇒MP security ⇒MR security] Let GE be a general cipher.

Let A = (Am,Ag) be an MP adversary with min-entropy µ that makes at most q queries. Then

there exists a PRP-adversary B such that

Advmp
GE (A) ≤ Advprp

GE (B) +
q

2µ
.

B runs in time that of A and makes at most q queries. Let I = (Im, Ig) be an MR adversary with

min-entropy µ that makes at most q queries. Then there exists an MP adversary A = (Am,Ag)
such that

Advmr
GE(I) ≤ Advmp

GE (A) .

A runs in time that of I, has min-entropy µ, and makes at most q queries. �

5.2 Best Known Attacks against FPF

We first analyze the security of FPF in terms of previously proposed attacks and novel attacks.

Patarin’s attack. Here we discuss Patarin’s attack [17] on Feistel networks, which is the only
previous attack we know of that applies to Feistel networks with rounds greater than 6. (We
recommend an absolute minimum number of rounds for FPF be 7.) This attack attempts to
distinguish between a Feistel network and a random permutation by making many queries. The
attacker then computes all possible round functions, and checks if the queries and their responses
are consistent with any one of the functions, outputting 1 if so. This attack requires an intractable

12



amount of computation, even for small sets. Consider attacking FPF using r rounds on domain
Zn for n = ab. Then the number of possible instances of FPF is C = (ab)⌊r/2⌋ · (ba)r−⌊r/2⌋. For
simplicity (it won’t affect the implications significantly) let’s assume a = b, in which case C = ara.
The probability that a random function from Zn to Zn (we ignore permutivity constraints for
simplicity) matches at least one of these functions for any set of q distinct domain points is at
most C/nq. To achieve advantage one, then, the adversary needs to choose q so that C/nq = 1.
Rearranging we have that ara = nq = a2q and this implies that q = ra/2. Say a = b = 10, which
corresponds to using FPF to encrypt 2-digit numbers, and r = 7. Then q = 70/2 = 35, which is
pretty small. Fortunately, the running time in this case is about qC = 35 · 1070 ≈ 2237, making the
attack practically intractable.

A new distinguishing attack. Highly unbalanced Feistel networks are susceptible to highly
efficient attacks that succeed with exponentially vanishing probability as the number of rounds
increases. Still, for small, fixed round number, the attacks could be dangerous. We present a
PRP adversary A against FPF for some ℓ such that split(ℓ) outputs a, b. Assume without loss of
generality that a ≤ b. Let T ∈ TwSp. Denote r(ℓ) by r and assume r is even (the attack easily
extends to the case that r is odd). Then adversary A works as described below.

adversary AO(·,·,·):

L0
$← Za ; L′

0 ← L0 ; R0
$← Zb ; R′

0
$← Zb\{R0}

Y ← O(T, ℓ, (L0 + a ·R0)) ; Y ′ ← O(T, ℓ, (L′
0 + a ·R′

0))
D ← Y mod b ; D′ ← Y ′ mod b
If D −R0 ≡ D′ −R′

0 (mod b) then Ret 1 Else Ret 0

First we analyze Pr[ARand ⇒ 1]. Adversary A outputs 1 exactly when D−R0 + R′
0 ≡ D′ (mod b).

Thus Pr[ARand ⇒ 1] = 1
a · 1

b−1 + a−1
a · 1

b . Now we analyze Pr[AReal ⇒ 1]. Let d = r/2. This is the
number of times a value Ri is assigned in E for i > 0 and even. (Refer to Figure 2.) Let Z1, . . . , Zr

be the outputs of the round function F for rounds 1 to r (respectively) when evaluating ET,ℓ
K (L0, R0)

in response to A’s first query. Similarly let Z ′
1, . . . , Z

′
r be the outputs of the round function F for

rounds 1 to r (respectively) when evaluating ET,ℓ
K (L′

0, R
′
0) in response to A’s second query. Consider

the situation in which Zi = Z ′
i for all i > 0 and i even. This occurs with probability at least a−d.

(This is true because the inputs to each of the relevant d round function applications will collide
with probability 1/a.) Then in this case it holds with probability one that D − R0 ≡ D′ − R′

0

(mod b) since

D ≡ Rr ≡ R0 +
∑

i≤r , i even

Zi (mod b) and D′ ≡ R′
r ≡ R′

0 +
∑

i≤r , i even

Z ′
i (mod b) .

Therefore we have Pr[AReal ⇒ 1] ≥ a−d. Combining this with the upper bound on Pr[ARand ⇒ 1]
given above we get

Advprp
FPF(A) ≥ 1

ad
− 1

a(b− 1)
− a− 1

ab
.

For certain values of a, b, r this is large. Say r = 7 and N = 2p for some relatively large prime p.
Then a = 2, b = p and A’s advantage is 1/3− 1/(2p− 2)− 1/2p.

Message recovery attack. We can adapt the above attack to mount message recovery attacks.
The distinguishing attack establishes a relationship D−R0 ≡ D′−R′

0 (mod b) for distinct messages
with high probability. If R0 is unknown, one can recover it if D, D′, and R′

0 are known. This requires
a single known-plaintext and its associated ciphertext, which will have the desired collisions with the
unknown plaintext with probability a−d. From the known plaintext, ciphertext pair one can recover
the unknown plaintext portion R0. Then L0 can be guessed (with probability of success 1/a). The
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attack succeeds in recovering the full plaintext with probability at least a−d−1.

5.3 Provable Security Bounds for FPF

PRP security. There is a long line of work investigating the PRP security of Feistel networks. The
original bounds are due to Luby and Rackoff [13] and bounds for the Feistel network underlying FPF
are given by Black and Rogaway [6]. These establish security up to q ≈

√

minℓ{a, b} where
the minimization is taken over the a, b output by split(ℓ) for all ℓ ∈ I. A line of papers by
Patarin [17, 19, 20] gives analysis of balanced Feistel networks with a small constant number of
rounds, but that are asymptotic in the block size. It is not apparent whether these bounds apply
when considering concrete security for fixed, small blocks, which is our concern here. Maurer and
Pietrzak [15] prove that as the number of rounds of a balanced Feistel network increases, one can
asymptotically approach the optimal information theoretic bound. Naor and Reingold investigate
Feistel networks and (unbalanced) variants of them [16], showing that some forms of imbalance
(though not the one considered here) can, in fact, improve security bounds for sufficiently many
rounds.

MP and MR security. We investigate the MP and MR security of FPF, giving concrete security
bounds up to q ≈ minℓ{a, b} for (unbalanced) Feistel networks with fixed message size and fixed
number of rounds. Of course we could use Theorem 5.1 in conjunction with an adaptation (to the
general cipher setting) of [6, Thm. 2], but as mentioned above this would only give security up to
q ≈

√

minℓ{a, b}. Instead we provide a direct proof of the MR security of 5-round FPF, which
gives better bounds. This is possible because, in particular, birthday-phenomena abusing attacks
won’t usually reveal information about a specific message. We state and prove the result in terms
of MR security. This is for simplicity only and the result and proof lift straightforwardly to the
MP setting.

Theorem 5.2 Let F : KeySp×(TwSp×N
4)→ N. Let E be the FPF cipher for index set I, domain

Dom, r(·) = 5, round function F , and split. Let amin, bmin be the smallest values output by split

for any ℓ ∈ I. Let I = (Im, Ig) be an MR-adversary with min-entropy µ. Then there exists an

adversary B such that

Advmr
E (I) ≤ Advprf

F (B) +
q

2µ
+

q

amin
+

q

bmin
.

Adversary B runs in the time of I and makes at most q queries. �

A proof is given in Appendix C. Note that even though the bounds we prove are better than any
known previously, they are still not sufficient for concluding security for small a, b. Indeed, finding
even better proven security bounds represents an interesting open problem. As mentioned above,
no known attacks perform better than brute force for sufficiently many rounds.
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A Building Efficient Round Functions

In this section we explore methods for instantiating efficient tweakable round functions based on a
block cipher E: KeySp×{0, 1}n → {0, 1}n. A simple and secure approach is to first build a variable-
input-length PRF F from E using any of the many well known constructions (e.g. CMAC [5],
PMAC [8], OMAC [11], UMAC [7], etc.). Then map tweak T and message M to a bit string via
some injective encoding and apply F . Since each T, M pair gives a unique input to F we achieve
the desired behavior, for any secure underlying PRF: independently chosen points for each pair
(T, M). We can achieve good efficiency by exploiting due the structure of the tweaks and messages
used by FPF. We offer two constructions that do so.

In the following StNl takes input an l-bit string y and returns the integer N (0 ≤ N < 2l) whose
binary representation is y. For example, StN6(000011) = 3.

Prefix-free CBC-MAC. Recall that CBC-MAC is secure for variable-input-length inputs if a
prefix-free encoding of messages is used. We will encode the tweaks in a manner that ensures
prefix-freeness. Let E: KeySp × {0, 1}n → {0, 1}n be a block cipher. Fix some index set I. Let
pad(T, ℓ) output the string

〈ℓ〉⌈log |I|⌉ ‖ 〈|T |〉⌈log |TwSp|⌉ ‖ T ‖ 0p

where p is the minimum number of bits needed to ensure that ⌈log |I|⌉ + ⌈log |TwSp|⌉ + p is a
multiple of n. The round function F : KeySp× TwSp× N

4 → N is then defined by

FK(T, ℓ, i, X) = StNn(CBC-MACK (pad(T, ℓ) ‖ 〈i〉8 ‖ 〈X〉n−8)))

for any K ∈ KeySp, T ∈ TwSp, and X ∈ {0, 1}n−8.
The encoding ensures that one can do efficient precomputation, since T, ℓ do not change between

rounds. One therefore precomputes τ ← CBC-MACK(pad(T, label, a, b)) first. During round i,
applying the PRF to number X can then be accomplished via a single call to E:

Z ← StNn(EK(τ ⊕ (〈i〉8 ‖ 〈X〉n−8))) .

That prefix-free CBC-MAC is a secure PRF was proven in [1]. They show that, for maximum
message length ℓ and q queries prefix-free CBC-MAC enjoys security bound approximately ℓq2/2n.

Rekeying by tweaks. We modify the above construction slightly to give an alternative con-
struction that utilizes rekeying. Let E: {0, 1}k × {0, 1}n → {0, 1}n be a block cipher with k ≥ n.
Then define G: KeySp× TwSp× N

4 → N by

GK(T, ℓ, i, X) = ECBC-MACK(pad(T,ℓ))|k(〈i〉8 ‖ 〈X〉n−8) .

That is, CBC-MAC is applied to the padded tweak data to derive a key τ , suitably truncated, for a
final application of E on the round number and message. Again precomputation is straightforward,
meaning each round requires just a single block cipher application. Here, though, two keys are used
with E.

Effect of modular arithmetic. Our PRFs are built from traditional ones that output bit
strings, and are proven to be indistinguishable from random functions outputting bit strings. But
our PRFs output numbers that are taken modulo a or b within FPF. Here we discuss how security
is affected by this extra mod operation.

We begin by asking the following. Consider, on the one hand, the uniform distribution on ZM .
Consider, on the other hand, the distribution on ZM that is obtained by picking a random point
x in ZN and returning x mod M . What is the statistical difference between these distributions?
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To answer this, let IntDiv denote the integer division algorithm, which on inputs N, M returns a
quotient q and remainder r satisfying N = Mq + r and 0 ≤ r < M . Then, we claim the following.

Lemma A.1 Let N ≥M ≥ 1 be integers, and let (q, r)← IntDiv(N, M). For z ∈ ZM let

PN,M (z) = Pr
[

x mod M = z : x
$← ZN

]

.

Then for any z ∈ ZM ,

PN,M (z) =











q + 1

N
if 0 ≤ z < r

q

N
if r ≤ z < M .

Proof of Lemma A.1: Let the random variable X be uniformly distributed over ZN . Then

PN,M (z) = Pr [X mod M = z ]

= Pr [X < Mq ] · Pr [ X mod M = z | X < Mq ]

+Pr [Mq ≤ X < N ] · Pr [ X mod M = z | Mq ≤ X < N ]

=
Mq

N
· 1

M
+

N −Mq

N
·











1

N −Mq
if 0 ≤ z < N −Mq

0 if N −Mq ≤ z < M .

=
q

N
+

r

N
·











1

r
if 0 ≤ z < r

0 if r ≤ z < M .

Simplifying yields the claimed equation.

As a result, the statistical distance between the uniform distribution on ZM and the distribution
obtained by picking a random point x in ZN and returning x mod M is

1

2

r−1
∑

z=0

∣

∣

∣

∣

q + 1

N
− 1

M

∣

∣

∣

∣

+
1

2

M−1
∑

z=r

∣

∣

∣

∣

q

N
− 1

M

∣

∣

∣

∣

=
r(M − r)

NM
≤ 1

4

M

N
.

Typical maximum for the number of digits in the plaintext is 20. In this case, we have M = 1010, so
the above statistical distance is at most 1010/264 ≈ 2−31. This is reasonably small, indicating that
the mod operation does not dramatically affect the distribution. While one might be concerned
that it is perhaps not small enough, the salient fact is that we do not know of any way in which
this deviation affects security anyway.

B Example Instantiation: VAES

Let Σ = {0, . . . , 9}. In this section we describe a complete instantiation of FPF for domain
Dom(ℓ) = Z10ℓ for any ℓ ∈ I = {ℓ | 2 ≤ ℓ ≤ 66}. We call this instance of FPF the VAES al-
gorithm due to its use of AES as the underlying PRF. First, we need to define some notation and
auxiliary functions.

Notation and auxiliary functions. NtSl takes input an integer N in the range 0 ≤ N < 2l

and returns its encoding as a binary string of exactly l bits. For example, NtS6(3) = 000011.
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StNl takes input an l-bit string y and returns the integer N (0 ≤ N < 2l) whose binary
representation is y. For example, StN6(000011) = 3.

NtDl takes input an integer N in the range 0 ≤ N < 10l and returns its representation as an l-
digit number. For example, NtD5(326) = 00326. Thus, the operation consists merely of prepending
enough zeros to bring the number of digits to exactly l.

DtN takes input an l-digit number y and returns the corresponding integer N (0 ≤ N < 10l).
For example, DtN(00326) = 326. Thus, the operation consists merely of removing leading zeros.
|X|10 denotes the number of digits in a digit-represented number. For example, |00326|10 = 5.

Note that leading zeros are counted.
N div D returns the quotient obtained when integer N is divided by integer D. For example

17 div 2 = 8 and 14 div 2 = 7.
N mod D returns the remainder obtained when integer N is divided by integer D. This is an

integer in the range 0, . . . , D − 1. Note we can apply this operation even when N is negative. For
example (30− 70) mod 100 = 60.

The algorithm. VAES is a concrete instantiation of the FPF algorithm. The general cipher
defined by the enciphering function E and deciphering function D shown in Figure 4. The key
space of VAES is that of AES, {0, 1}128. The tweak space of VAES is {0, 1}≤112. The numeric
domain Dom is defined as Dom(ℓ) = Z10ℓ for all i ∈ I = {2, . . . , 66}. Hence the size function is
s(ℓ) = 10ℓ. The message space includes any decimal digit string of at least 2 digits and up to
66 digits, and encoding and decoding is done via DtN and NtD. VAES utilizes the following split
function, number of rounds, and round function PRF.

• (Split function) For any digit length ℓ ∈ {2 .. 66}, all inputs of that length can be represented
by numbers from the set Z10ℓ . Since 10ℓ has natural and easily-computable factors, defining
a split function is straightforward. Namely, the VAES split function split(ℓ) returns, for any
ℓ ∈ {2 .. 66}, the pair (a, b) = (10d(0), 10d(1)) where d(0) = ℓ div 2 and d(1) = ℓ− d(0).

• (Number of rounds) VAES fixes the number of rounds to some constant, i.e. r(ℓ) = r for some
fixed value r. We recommend no less than 7 rounds, and one can specify up to 28 rounds.

• (Round PRF) The VAES round function is computed in two separate stages. An initial pre-
computation generates a key K ′ = EK(NtS8(|T |)‖NtS8(ℓ)‖NtS112(T )). The input to AES here
is encodings of the tweak length, the digit length, and the tweak. Then during each round, the
function FK′(i, x) for any i ∈ [0 .. 28 − 1] and x ∈ {0, 1}120 is computed by

v ← NtS8(i)‖x ; y ← AES(K1, v) ; z ← StN128(y) ; Ret z

As can be seen, the returned value is a number in Z2128 . Note that r round VAES requires only
r + 1 calls to AES.

Design discussion. Here we explain various choices made in the design and discuss their rationale.
We assess the security of the construction against known attacks, and also compare it to other
alternative designs.

The VAES algorithm implements a Feistel network. The i-th round (1 ≤ i ≤ r) splits its input
into a left half of d(0) bits and a right half of d(1) bits if i is odd, and vice versa if i is even. The
size of the splits is thus the same in every round if ℓ is even but varies if ℓ is odd, which is unusual.
However, varying split sizes does not seem to degrade security.

In order to be able to encipher digit sequences rather than bit sequences, the round function
outputs digits. The traditional XORs have been replaced by additions and subtractions modulo
appropriate powers of 10. The round function converts bits to digits by interpreting the AES

output as an integer and then taking the remainder upon division by the appropriate power of 10.
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algorithm ET,ℓ
K (P [0] . . . P [ℓ− 1]):

d(0)← ℓ div 2 ; d(1)← ℓ− d(0)
w ← NtS8(|T |)‖NtS8(ℓ)‖NtS112(T )
K′ ← AES(K, w)
L0 ← DtN(P [0] . . . P [d(0)− 1])
R0 ← DtN(P [d(0)] . . . P [d− 1])
For i = 1, . . . , r do

Li ← Ri−1

s← 1− (i mod 2)
x← NtS120(Ri−1)
Ri ← (FK′(i, x) + Li−1) mod 10d(s)

s← r mod 2
C[0] . . . C[d(s)− 1]← NtDd(s)(Lr)
C[d(s)] . . . C[d− 1]← NtDd(1−s)(Rr)
Ret C[0] . . . C[d− 1]

algorithm DT,ℓ
K (C[0] . . . C[d− 1]):

d(0)← ℓ div 2 ; d(1)← ℓ− d(0)
w ← NtS8(|T |)‖NtS8(ℓ)‖NtS112(T )
K′ ← AES(K, w)
s← r mod 2
Lr ← DtN(C[0] . . . C[d(s)− 1])
Rr ← DtN(C[d(s)] . . . C[d− 1])
For i = r, . . . , 1 do

Ri−1 ← Li

s← 1− (i mod 2)
x← NtS120(Ri−1)
Li−1 ← (Ri − FK′(i, x)) mod 10d(s)

P [0] . . . P [d(0)− 1]← NtDd(0)(L0)
P [d(0)] . . . P [d− 1]← NtDd(1)(R0)
Ret P [0] . . . P [d− 1]

Figure 4: The VAES algorithm. The enciphering function is E and the deciphering function is D.
The number of rounds is r.

To discuss this further, let N = 2128 and let M = 10m where m is either d(0) or d(1). Ideally, we
would like the round function to implement a random function with range ZM . In Appendix ??
we assess the statistical difference between implementing such a round function and use of a round
function that has range ZN . We show there that this difference is at most about M/N , and since
M can be at most 1014 we get that the statistical difference is at most about 1014/2128 = 2−81,
which is clearly negligible.

Comparison to other approaches. We focus on comparison with Spies’ FFSEM [25], which is
(to our knowledge) the only concrete instantiation of an arbitrary finite set cipher. We emphasize,
however, that FFSEM is not a general cipher as it can only handle messages from a single domain
set. We therefore provide a comparison for encryption of a single set.

The major difference between VAES and FFSEM is that the former is significantly more efficient.
Other differences are that the former, unlike the latter, is tweaked. The major design difference is
that VAES works directly with digits, while FFSEM works over bits and then uses cycle walking
to zero in on the correct domain. Let us now provide some details about the efficiency claim.

As an example, suppose we want to encrypt five digit plaintexts. FFSEM lets m be smallest
integer such that 22m ≥ 105, which results in m = 9. It then builds a balanced Feistel network
over 2m bits. It then uses cycle walking to convert the final 2m bit result to a 5 digit result. Cycle
walking works by reapplying the cipher. The expected number of applications of the cipher is
22m/105 ≈ 2.6. For the sake of a fair comparison, let us assume the two constructions use the same
number of rounds, and also consider the non-tweaked version of VAES. Then, with seven rounds,
VAES uses 7 computations of the underlying block cipher, while FFSEM always uses at least 7 and
on the average uses 19. VAES is thus significantly more efficient.

C Proof of Theorem 5.2

We replace the round functions with true random functions in the standard way to pass to the
information theoretic setting. Then we note that any queries to Enc that do not have T = T ∗

and ℓ = ℓ∗ will not help the adversary, and so without loss of generality we assume all queries are
such. This means we can (for the purposes of the rest of this analysis) ignore tweaks and assume
all queries are for the same domain set. We therefore can focus on an MR adversary I attacking
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procedure Initialize Game G0

(ρ1, ρ3, ρ5)
$

← (Func(Zb, Za))3

(ρ2, ρ4)
$

← (Func(Za, Zb))
2

X∗
0X∗

1
$

← Im

Z∗
1 ← ρ1(X

∗
1 ) ; X∗

2 ← Z∗
1 + X∗

0 mod a

Z∗
2 ← ρ2(X

∗
2 ) ; X∗

3 ← Z∗
2 + X∗

1 mod b

Z∗
3 ← ρ3(X

∗
3 ) ; X∗

4 ← Z∗
3 + X∗

2 mod a

Z∗
4 ← ρ4(X

∗
4 ) ; X∗

5 ← Z∗
4 + X∗

3 mod b

Z∗
5 ← ρ5(X

∗
5 ) ; X∗

6 ← Z∗
5 + X∗

4 mod a

Return X∗
5X∗

6

procedure Enc(X0, X1)

i← i + 1 ; Xi
0 ← X0 ; Xi

1 ← X1

If Xi
0X

i
1 = X∗

0X∗
1 then win← true

Zi
1 ← ρ1(X

i
1) ; Xi

2 ← Zi
1 + Xi

0 mod a

Zi
2 ← ρ2(X

i
2) ; Xi

3 ← Zi
2 + Xi

1 mod b

Zi
3 ← ρ3(X

i
3) ; Xi

4 ← Zi
3 + Xi

2 mod a

Zi
4 ← ρ4(X

i
4) ; Xi

5 ← Zi
4 + Xi

3 mod b

Zi
5 ← ρ5(X

i
5) ; Xi

6 ← Zi
5 + Xi

4 mod a

Return Xi
5X

i
6

procedure Initialize Game G1 G2

(ρ1, ρ3, ρ5)
$

← (Func(Zb, Za))3

(ρ2, ρ4)
$

← (Func(Za, Zb))
2

X∗
0 X∗

1
$

← Im

Z∗
1 ← ρ1(X

∗
1 ) ; X∗

2 ← Z∗
1 + X∗

0 mod a

Z∗
2

$

← Zb ; X∗
3 ← Z∗

2 + X∗
1 mod b

Z∗
3

$

← Za ; X∗
4 ← Z∗

3 + X∗
2 mod a

Z∗
4 ← ρ4(X

∗
4 ) ; X∗

5 ← Z∗
4 + X∗

3 mod b

Z∗
5 ← ρ5(X

∗
5 ) ; X∗

6 ← Z∗
5 + X∗

4 mod a

Return X∗
5 X∗

6

procedure Enc(X0, X1)

i← i + 1 ; Xi
0 ← X0 ; Xi

1 ← X1

If Xi
0X

i
1 = X∗

0X∗
1 then win← true

Zi
1 ← ρ1(X

i
1) ; Xi

2 ← Zi
1 + Xi

0 mod a

Zi
2 ← ρ2(X

i
2)

If Xi
2 = X∗

2 then bad1← true ; Zi
2 ← Z∗

2

Xi
3 ← Zi

2 + Xi
1 mod b

Zi
3 ← ρ3(X

i
3)

If Xi
3 = X∗

3 then bad2← true ; Zi
3 ← Z∗

3

Xi
4 ← Zi

3 + Xi
2 mod a

Zi
4 ← ρ4(X

i
4) ; Xi

5 ← Zi
4 + Xi

3 mod b

Zi
5 ← ρ5(X

i
5) ; Xi

6 ← Zi
5 + Xi

4 mod a

Return Xi
5X

i
6

Figure 5: Games used in proof of Theorem 5.2.

the FPF Feistel network using some fixed a and b, no tweaks, and five independent random round
functions ρ1, ρ2, ρ3, ρ4, ρ5. For notational simplicity we have Im output a pair (X0, X1) ∈ (Za, Zb)
and ciphertexts returned to the adversary are also pairs in Zb, Za. We utilize games to do the
analysis bounding I’s advantage; see Figure 5 and Figure 6. Game G0 implements the MR security
game so restricted. So far we have justified that

Advmr
FPF(I) ≤ Advprf

F (B) + Pr
[

G0A sets win
]

. (1)

We will now justify that

Pr
[

G0I sets win
]

= Pr
[

G1I sets win
]

(2)

≤ Pr
[

G1I sets bad1
]

+ Pr
[

G1I sets bad2
]

(3)

= Pr
[

G2I sets bad1
]

+ Pr
[

G2I sets bad2
]

(4)

= Pr
[

G3I sets bad1
]

+ Pr
[

G3I sets bad2
]

(5)

= Pr
[

G4I sets bad1
]

+ Pr
[

G4I sets bad2
]

(6)

≤ Pr
[

G5I sets bad1
]

+ Pr
[

G5I sets bad2
]

(7)

= Pr
[

G6I sets bad1
]

+ Pr
[

G6I sets bad2
]

. (8)

Game G1 (boxed statements included) modifies the way in which G0 utilizes ρ2 and ρ3. In par-
ticular, the values mapped to by X∗

2 and X∗
3 are never used; Z∗

2 and Z∗
3 are chosen independently

from ρ1 and ρ2. The added conditionals in Enc ensure consistency with the behavior of G0. The
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procedure Initialize Game G3

(ρ1, ρ3, ρ5)
$

← (Func(Zb, Za))3

(ρ2, ρ4)
$

← (Func(Za, Zb))
2

X∗
0X∗

1
$

← Im

Z∗
1 ← ρ1(X

∗
1 ) ; X∗

2 ← Z∗
1 + X∗

0 mod a

X∗
3

$

← Zb ; Z∗
2 ← X∗

3 −X∗
1 mod b

X∗
4

$

← Za ; Z∗
3 ← X∗

4 −X∗
2 mod a

Z∗
4 ← ρ4(X

∗
4 ) ; X∗

5 ← Z∗
4 + X∗

3 mod b

Z∗
5 ← ρ4(X

∗
5 ) ; X∗

6 ← Z∗
5 + X∗

4 mod a

Return X∗
5X∗

6

procedure Enc(X0, X1)

i← i + 1 ; Xi
0 ← X0 ; Xi

1 ← X1

Zi
1 ← ρ1(X

i
1) ; Xi

2 ← Zi
1 + Xi

0 mod a

Zi
2 ← ρ2(X

i
2) ; Xi

3 ← Zi
2 + Xi

1 mod b

Zi
3 ← ρ3(X

i
3) ; Xi

4 ← Zi
3 + Xi

2 mod a

Zi
4 ← ρ4(X

i
4) ; Xi

5 ← Zi
4 + Xi

3 mod b

Zi
5 ← ρ5(X

i
5) ; Xi

6 ← Zi
5 + Xi

4 mod a

Return Xi
5X

i
6

procedure Finalize

bad1← (∃j . Xj
2 = X∗

2 )

bad2← (∃j . Xj
3 = X∗

3 )

procedure Initialize Game G4

(ρ1, ρ3, ρ5)
$

← (Func(Zb, Za))3

(ρ2, ρ4)
$

← (Func(Za, Zb))
2

X∗
3

$

← Zb

X∗
4

$

← Za

Z∗
4 ← ρ4(X

∗
4 ) ; X∗

5 ← Z∗
4 + X∗

3 mod b

Z∗
5 ← ρ5(X

∗
5 ) ; X∗

6 ← Z∗
5 + X∗

4 mod a

Return (X∗
3 X∗

4 , X∗
5X∗

6 )

procedure Enc(X0, X1)

i← i + 1 ; Xi
0 ← X0 ; Xi

1 ← X1

Zi
1 ← ρ1(X

i
1) ; Xi

2 ← Zi
1 + Xi

0 mod a

Zi
2 ← ρ2(X

i
2) ; Xi

3 ← Zi
2 + Xi

1 mod b

Zi
3 ← ρ3(X

i
3) ; Xi

4 ← Zi
3 + Xi

2 mod a

Zi
4 ← ρ4(X

i
4) ; Xi

5 ← Zi
4 + Xi

3 mod b

Zi
5 ← ρ5(X

i
5) ; Xi

6 ← Zi
5 + Xi

4 mod a

Return Xi
5X

i
6

procedure Finalize

X∗
0X∗

1
$

← Im

Z∗
1 ← ρ1(X

∗
1 ) ; X∗

2 ← Z∗
1 + X∗

0 mod a

bad1← (∃j . Xj
2 = X∗

2 )

bad2← (∃j . Xj
3 = X∗

3 )

procedure Initialize Game G5

(ρ1, ρ3)
$

← (Func(Zb, Za))2

ρ2
$

← Func(Za, Zb)

X∗
3

$

← Zb

X∗
4

$

← Za

Z∗
4 ← X̂∗

5 −X∗
3 mod b

Z∗
5 ← X̂∗

6 −X∗
4 mod a

Return (X∗
3 X∗

4 , X̂∗
5 X̂∗

6 )

procedure Enc(X0, X1, X5, X6)

i← i + 1 ; (Xi
0, X

i
1, X

i
5, X

i
6)← (X0, X1, X5, X6)

Zi
1 ← ρ1(X

i
1) ; Xi

2 ← Zi
1 + Xi

0 mod a

Zi
2 ← ρ2(X

i
2) ; Xi

3 ← Zi
2 + Xi

1 mod b

Zi
3 ← ρ3(X

i
3) ; Xi

4 ← Zi
3 + Xi

2 mod a

Zi
4 ← Xi

5 −Xi
3 mod b

Zi
5 ← Xi

6 −Xi
4 mod a

procedure Finalize

X∗
0 X∗

1
$

← Im

Z∗
1 ← ρ1(X

∗
1 ) ; X∗

2 ← Z∗
1 + X∗

0 mod a

bad1← (∃j . Xj
2 = X∗

2 )

bad2← (∃j . Xj
3 = X∗

3 )

procedure Initialize Game G6

X∗
3

$

← Zb

X∗
4

$

← Za

Z∗
4 ← X̂∗

5 −X∗
3 mod b

Z∗
5 ← X̂∗

6 −X∗
4 mod a

Return (X∗
3X∗

4 , X̂∗
5 X̂∗

6 )

procedure Finalize(τ)

(ρ1, ρ3)
$

← (Func(Zb, Za))2

ρ2
$

← Func(Za, Zb)

(X1
0 , X1

1 , X1
5 , X1

6 ), . . . , (Xq
0 , Xq

1 , Xq
5 , Xq

6 )← τ

For i = 1 to q do

Zi
1 ← ρ1(X

i
1) ; Xi

2 ← Zi
1 + Xi

0 mod a

Zi
2 ← ρ2(X

i
2) ; Xi

3 ← Zi
2 + Xi

1 mod b

Zi
3 ← ρ3(X

i
3) ; Xi

4 ← Zi
3 + Xi

2 mod a

Zi
4 ← Xi

5 −Xi
3 mod b

Zi
5 ← Xi

6 −Xi
4 mod a

X∗
0X∗

1
$

← Im

Z∗
1 ← ρ1(X

∗
1 ) ; X∗

2 ← Z∗
1 + X∗

0 mod a

bad1← (∃j . Xj
2 = X∗

2 )

bad2← (∃j . Xj
3 = X∗

3 )

Figure 6: Games used in the proof of Theorem 5.2. In games G5 and G6, the values X̂∗
5 and X̂∗

6

are hard-coded.

21



distribution of all random variables in G1 is therefore equivalent to G0. (The flags bad1 and bad2

might be set but have no bearing on the game.) This justifies (2). Whenever win is set in G1
necessarily bad1 and bad2 are set. This justifies (3). Game G2 drops the boxed statements of game
G1. The games are identical-until-bad1 and identical-until-bad2 and so the fundamental lemma of
game-playing justifies (4). Game G3 moves the setting of bad1 and bad2 to Finalize and modifies
the order in which X∗

3 , Z∗
2 and X∗

4 , Z∗
3 are chosen. The distribution of the involved variables

remains unchanged, justifying (5). In game G3 nothing but the setting of bad1 or bad2 relies on
the message selected by Im, and so its selection and the computation of Z∗

1 and Y ∗
2 are deferred

to Finalize in G4. Also, G4 returns not only X∗
5X∗

6 but also X∗
3X∗

4 . This can only increase the
adversary’s success probability. We have justified (6). We partially derandomize the game in G5,
allowing the adversary to (effectively) choose range points of the cipher. First, game G5 has hard-
coded into it a best value of X̂∗

5 X̂∗
6 for the challenge ciphertext. (Note this is fixed independently

of choice of X∗
3X∗

4 .) Second, game G5 allows the adversary to specify both the inputs and outputs
of encryption queries. Encryption no longer returns values. Technically, these changes allow the
adversary to partially control the selection of the outputs of ρ4 and ρ5. Since these changes can
only help the adversary, (7) holds. Finally, in game G6 we remove the encryption oracle completely,
having the adversary simply output a transcript of all its queries and their responses. Equation (8)
follows since in game G5 the adversary learned nothing from its queries anyway. Note also that in
G6 selection of ρ1, ρ2, ρ3 only need occur in Finalize.

We now must bound the setting of bad1 and bad2. We do this via the following two claims.

Claim C.1 Pr
[

G6I sets bad1
]

≤ q

2µ
+

q

a
�

Proof: We must bound the probability that X∗
2 = Xi

2 for some query i. Suppose query i did not
have right component equal to X∗

1 . Then in this case the probability that X∗
2 = Xi

2 is at most q/a.
Suppose query i has Xi

1 = X∗
1 . But in this case we see then that X∗

2 = Xi
2 only if also Xi

0 = X∗
0 .

The min-entropy requirement for Im implies that the probability this can occur is at most q/2µ.

Claim C.2 Pr
[

G4I sets bad2
]

≤ q

b
�

Proof: We must bound the probability that Xi
3 ≡ Zi

2 + Xi
1 ≡ ρ2(X

i
2) + Xi

1 ≡ X∗
3 (mod b) for

some i ∈ [1 .. q]. The selection of ρ2 occurs after X∗
3 and all Xi

1 are fixed. Let SX2 be the set of
query indices for which ρ2 was evaluated on point X2 ∈ Za. For each X2 ∈ Za, then the probability
that bad2 is set by any of the queries that evaluated ρ2(X2) is at most |SX2 |/2b. That is bad2 is set
if ρ2(X2) equals any of the |SX2 | values defined as X∗

3 −Xi
1 mod b for i ∈ SX2 . However, we know

that that
∑

X2
|SX2 | ≤ q. Thus a union bound gives that the probability of setting bad2 is at most

q/2b.
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