
Computationally Secure Two-Round

Authenticated Message Exchange ?

Klaas Ole Kürtz, Henning Schnoor, and Thomas Wilke

Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
{kuertz|schnoor|wilke}@ti.informatik.uni-kiel.de

Abstract. We study two-round authenticated message exchange proto-
cols consisting of a single request and a single response, with the realistic
assumption that the responder is long-lived and has bounded memory.
We first argue that such protocols necessarily need elements such as time-
stamps to be secure. We then present such a protocol and prove that it
is correct and computationally secure.
In our model, the adversary provides the initiator and the responder
with the payload of their messages, which means our protocol can be
used to implement securely any service based on authenticated message
exchange. We even allow the adversary to read and reset the memory
of the principals and to use, with very few restrictions, the private keys
of the principals for signing the payloads or parts thereof. The latter
corresponds to situations in which the keys are not only used by our
protocol. We use timestamps to secure our protocol, but only assume
that each principal has access to a local clock.

1 Introduction

A characteristic feature of web services (see, e. g., [ML07,LB07]) and
other services provided in the Internet (such as remote procedure call
[Sun98,Win99]) is their restricted form of communication. Unlike in
other cryptographic settings, these protocols have only two rounds:
In the first round, a client sends a single message (request) to a
server; in the second round, the server replies with a single message
(response) containing the result of processing the request. A central
security goal arising is that of authenticated message exchange: The
server wants to be convinced that the request is new and originated
from the alleged client, while the client wants to be convinced that
the response originated from the intended server and is a response
to his request.

? This work was partially supported by the DFG under grant KU 1434/4-1.

The main objective of this paper is to provide a security model for
such two-round authenticated message exchange protocols (2AMEX
protocols) and to prove that a natural and practical protocol, which
follows recommendations stated in various places of the literature,
see, for instance, [NKMHB06], is computationally secure, assuming
that the underlying signature scheme is resistant against existential
forgeries.

A simple protocol to achieve the aforementioned security goals
works as follows: The client appends a message id (e. g., random
nonce or sequence number) to his actual request, signs the result,
and sends the signed message to the server. The server verifies the
signature on the received message and checks that it has not seen the
message id previously. It takes the result of processing the request,
appends the message id he received from the client, signs the result,
and sends the signed message to the client. Finally, the client verifies
the signature and the message id.— The problem here is that the
server needs to keep track of all message id’s it has seen, because
otherwise it is easy to mount replay attacks. In this paper, we show
how to use timestamps in order to ensure security even with bounded
memory.

The fact that we want to devise a single protocol for implement-
ing arbitrary services brings up the following issue. In contrast to
what happens in traditional authentication protocols, say in au-
thenticated key exchange (see, e. g., [BR93]), where the messages
exchanged have a fixed format, we have to allow the messages ex-
changed to carry a so-called payload, which can be of arbitrary and
to the authentication protocol unknown structure. In particular, we
want to allow that a payload contains security-related data such as
signed parts, as defined in [NKMHB06]. As a realistic assumption,
the private key that a principal uses for such signatures inside the
payload may be the same as the one used for signing entire proto-
col messages. But obviously, in order for the entire protocol to be
secure such a use of private keys to sign parts of the payload has to
be restricted. To account for this, our protocol and security model
is such that, on the one hand, the adversary is allowed to gener-
ate all payloads, but, on the other hand, he is only provided with a
protocol-dependent signature oracle (rather than all private keys).

2

We analyze our protocol in a model adapted from [BR93]. An-
other option would be to use a simulation-based model such as
Canetti’s Universal Composition model [Can01], Küster’s model us-
ing inexhaustible Turing machines [Küs06] or Backes, Pfitzmann,
and Waidner’s Cryptographic Library [BPW03]. These models have
the feature that they provide a notion of composition which allows
for modular security proofs. However, there does not seem to be a
way to “decompose” the long-lived server algorithm in our protocol
into simpler components such that these models simplify our security
proof.
Related work. To the best of our knowledge there is no prior work
on the security of authenticated message exchange in a setting sim-
ilar to the one we study. In contrast, there is a wide range of pa-
pers on entity authentication protocols (often in connection with
key exchange), see, for instance, the seminal paper on entity au-
thentication and key exchange, [BR93], which our paper is based
on. Bellare and Rogaway’s paper has a very brief section about “au-
thenticated exchange of text”, which discusses how in a three-round
entity authentication protocol authenticated data can be transmit-
ted. In that paper, the authors do not, however, give a formal def-
inition of authenticated exchange of text nor do they consider two-
round protocols nor is their setting general enough to support an
arbitrary service using this protocol. Entity authentication has also
been studied in the Universal Composition model [CH06] and in
combination with the cryptographic library [BP03]; a computational
analysis of the Needham-Schroeder-Lowe entity authentication pro-
tocol [NS78,Low96] is given in [War05]. Another crucial difference to
our model is that in the mentioned papers, the responder (server) is
short-lived, whereas in our model a server processes an unbounded
number of requests from different clients, which is reminiscent of op-
timistic contract-signing protocols, see [ASW98,GJM99], where the
trusted third party potentially needs to remember an unbounded
number of requests.

Timestamps, which are crucial to our work, have been used in
various cryptographic settings, for instance, in a key exchange proto-
col proposed in [DS81]. In [DG04,BEL05] symbolic models for pro-
tocols with timestamps are introduced and techniques to analyze
protocols within these models are described. In [KLP07] the timing

3

model is similar to ours, however, the paper is concerned with secure
multi-party computation.

In our model, we allow the adversary to reset the server at any
time; in [BFGM01] resetting of principals is discussed in a different
context.

2 The Protocol 2AMEX-1—Informal
Description

In this section, we describe our protocol 2AMEX-1 informally.
In 2AMEX-1, an authenticated message exchange between a

client with identity c and a server with identity s works as follows.

1. a) c is asked by a user to send the request pc
b) c→ s : {(From : c,To : s,MsgID : r,Time : t,Body : pc)}skc
c) s checks whether the message is admissible and if not, stops
d) s forwards the request (r, pc) to the addressed service

2. a) s receives a response (r, ps) from the service
b) s checks whether the response is admissible and if not, stops
c) s→ c : {(From : s,To : c,Ref : r,Body : ps)}sks
d) c forwards the response ps to the user

Here, r is a randomly chosen message identity which is also used
as a handle by the (see steps 1. d) and 2. a)), t is the local time of
the client, pc is the payload the client sends, ps is the payload the
server returns, and {·}skc and {·}sks stand for signing the message
by the client and server, respectively. Repeating the message id of
the request allows the client to verify that ps is indeed a response to
the request pc.

The interesting parts are steps 1. c) and 2. b). We assume that
there is a constant caps > 0, the so-called capacity of the server, and
a constant tol+s that indicates its tolerance with respect to inaccurate
clocks. At all times the server keeps a time tmin and a finite set L of
triples (t, r, c) of pending and handled requests. At the beginning or
after a reset, tmin is set to ts + tol+s , where ts denotes the local time
of the server, and L is set to the empty set.

Step 1. c). Upon receiving a message as above, the server rejects
if t /∈

[
tmin + 1, ts + tol+s

]
or if (t′, r, c′) ∈ L for some t′ and c′, and

4

otherwise proceeds as follows: If L contains less than caps elements, it
inserts (t, r, c) into L. If L contains caps elements or more, the server
deletes all tuples containing the oldest timestamp from L, until L
contains less than caps tuples. Then it sets tmin to the timestamp
contained in the last tuple deleted from L, and finally inserts (t, r, c)
into L.

Step 2. b). When asked to send a payload ps with message handle
r, the server rejects if there is no triple (t, r, c) ∈ L with c 6= ε.
If it does not reject, it updates L by overwriting c with ε in the
tuple (t, r, c) to ensure that the service cannot respond to the same
message twice.

In the rest of this paper we give a formal framework for specifying
and analyzing such protocols, in particular, we define what it means
for such protocols to be correct and secure, and prove that 2AMEX-
1 is indeed correct and secure, provided the underlying signature
scheme is so.

3 Protocol Model

The formal framework we are working in is an adaptation of the
framework for entity authentication introduced by Bellare and Rog-
away in [BR93] to the message authentication setting.

As mentioned earlier, in a bounded memory setting time is nec-
essary to achieve resistance against replay attacks. We use ltime-bit
numbers as time values for an arbitrary fixed ltime ∈ N. We also
assume there is an arbitrary fixed identifier set IDs ⊆ {0, 1}lID for
an arbitrary fixed lID ∈ N whose elements are called identifiers. We
use them to identify principals, which can act both as clients and as
servers.

Restricting IDs to be a finite set and fixing ltime makes the pre-
sentation more accessible. All of our results remain true when these
parameters are varied with the security parameter: The length of
time values ltime and the length of identifiers lID could grow polyno-
mially with the security parameter.

5

3.1 Signature Schemes

Our message exchange protocols use signature schemes, where a sig-
nature scheme S is a triple of algorithms (G,S, V), satisfying the
following conditions:
– G is a key generation algorithm, i. e., a probabilistic polynomial-

time algorithm which on input 1k, with k being the security pa-
rameter, produces a pair (pk, sk), where pk is a public key and
sk the corresponding secret key,

– S is a signing algorithm, i. e., a probabilistic polynomial-time al-
gorithm which for any bit string b ∈ {0, 1}∗ and any secret key
sk produces a signature S(b, sk), and

– V is a deterministic verification algorithm which on input
((b, S(b, sk)), pk) returns true if (pk, sk) has been generated by
G.

By {b}sk, we denote the pair (b, S(b, sk)), i. e., the bit string b ac-
companied by a valid signature obtained from the signature scheme.
In the remainder of the paper, we use a fixed signature scheme.

3.2 Clients and Servers

Before defining clients and servers formally, we describe how they are
supposed to operate. An intended run of an authenticated message
exchange protocol between a client c ∈ IDs and a server s ∈ IDs
is initiated by the client-side environment which wants to call some
service on the server. The protocol run consists of two rounds, request
and response, modeled by four steps as illustrated in Figure 1 (cf. our
protocol description in Section 2):

client send The client is given a request payload pc by the envi-
ronment which is a request to the service provided by the server
s. The client encapsulates the payload, adding security data etc.,
and sends the resulting message mc over the network.

server receive The server receives the message mc from the net-
work, accepts the message and unwraps it, giving the payload pc,
a handle h, and the identified sender of the incoming message c
to the service.

server send The server is provided with a response payload ps and
the handle h by the service (which chose ps as a response to

6

E
n
v
ir
o
n
m
e
n
t

N
e
tw
o
rk

Client

μ

pc mc
mc

ms

ms
ps

ps

pc

μ

μ

μ

receive

send

Server

S
e
rv
ic
e

send

receive

1
2

3
4

Fig. 1. Message flow in four steps.

the request payload pc). The server encapsulates the payload and
sends a message, ms, over the network.

client receive Finally, the client receives the message ms from the
network and returns ps to the environment.

To give the strongest security guarantees possible, the roles of
the environment, the service, and the network are all played by the
adversary in our security model. As the adversary is free to choose
any payload, our protocols support any service.

This leads to the following formal definitions. A client algorithm
is a probabilistic polynomial-time algorithm. As first input parame-
ter, the client gets an instruction which can either be send or receive.
The same is true for a server algorithm with the only difference
that for a server algorithm there is a third instruction, reset. Table 1
specifies the input parameters and output values of client and server
algorithms. We first explain the input parameters for the client; then
we turn to the server.

Client and Server Algorithms: Input and Output. First of all, the
client algorithm gets a security parameter which is used to define
polynomial running time. Second, the client algorithm is provided
with the identifier of the principal it is running for, c ∈ IDs, and with
the identifier of the server it is supposed to be talking to, s ∈ IDs.
Third, the client algorithm is provided with the family of public keys,
pkIDs = {pka}a∈IDs, and its own private key skc. Fourth, it gets the

7

input client Γ server Σ

instruction α ∈ {send, receive} α ∈ {send, receive, reset}
security parameter 1k 1k

identity c ∈ IDs s ∈ IDs
partner’s identity s ∈ IDs
public keys pkIDs pkIDs

private key skc sks
local time t ∈ {0, 1}ltime t ∈ {0, 1}ltime

payload or message p or m ∈ {0, 1}∗ p or m ∈ {0, 1}∗
message handle h ∈ {0, 1}∗
state information µ µ

output client Γ server Σ

message or payload m or p ∈ {0, 1}∗ m or p ∈ {0, 1}∗
decision δ ∈ {A,R} δ ∈ {A,R}
assumed partner c ∈ IDs ∪ {ε}
message handle h ∈ {0, 1}∗
state information µ′ µ′

Table 1. Input and output values of the algorithms Γ and Σ.

local time t ∈ {0, 1}ltime . Fifth, the client is provided with the payload
p ∈ {0, 1}∗ it is supposed to send to the server, or with a message
m ∈ {0, 1}∗ obtained from the network. Finally, our client processes
multiple requests, one after the other, which means is has a history
or, in other words, a state. We model this by state information that
it is provided with—the parameter µ ∈ {0, 1}∗, initialized with ε.

For the server instructions, the situation is similar. But a server
can receive input from various clients, so it is not provided with a
particular client identifier. Rather, the server has to extract this from
the message it receives and store it to send a response later on. When
asked to respond to a specific message, the server is also provided
by the service with a message handle identifying the message the
service wants to respond to. Also, for a reset instruction, the state
information and the message given to the server is ε.

Next, we explain the output values for the server. First of all,
when receiving a message mc, the server algorithm extracts the pay-
load p ∈ {0, 1}∗ carried by mc and returns it. Second, the server
algorithm reports his decision δ ∈ {A,R}: A (accept) means that
the command was executed successfully, while R (reject) indicates
an error (which can be a failed authentication or another protocol

8

error). Third, the server algorithm reports the identifier of the client
it assumes it received a message from or it intends to send a mes-
sage to. When the decision is R, the dummy value εis used. Fourth,
the server outputs a message handle h ∈ {0, 1}∗. When the service
wants to respond to mc, it has to provide the server with this exact
message handle. Finally, the server outputs state information, which
it will be provided with the next time it will be called, unless it is
reset.

Clients have the same output syntax except that there is no need
to output a message handle or the assumed partner, because the
latter is contained in the input values of the algorithm.

Execution Orders. There are only certain sequences of instructions to
client and server algorithms that make sense: We require the client
to (i) only accept the first send request it receives, (ii) accept at
most one receive request, and (iii) accept a receive request only after
it accepted a send request. The server is required to accept a send
request with message handle h if there is a previous receive request
it accepted earlier with the same message handle h, and if between
these both requests it accepted no other request.

This can be formalized as follows, where we start with the client.
Let k ∈ N, let c, s be identifiers, let µ0 = ε, let {αj}j∈N be a sequence
of instructions with αj ∈ {send, receive}, let {tj}j∈N be an monoton-
ically increasing sequence of timestamps and {bj}j∈N a sequence of
bit strings. Assume that for all i ∈ N we have

Γ (αi, 1
k, c, s, pkIDs, skc, ti, bi, µi) = (b′i, δi, µi+1) ,

then we require that (i) only for the smallest i1 ∈ N with αi1 = send
we have δi1 = A, if such an i1 exists; (ii) there is at most one i2 ∈ N
with αi2 = receive and δi2 = A; and (iii) if there is i2 as in (ii), then
there is an i1 as in (i) with i1 < i2.

For the server, let k, s, {tj}j∈N and {bj}j∈N be as above, let
{hj}j∈N be a sequence of message handles, and let {αj}j∈N be a
sequence of instructions with αj ∈ {send, receive, reset} and µ′−1 = ε.

9

If for all i ∈ N we have

Σ(αi, 1
k, s, pkIDs, sks, ti, bi, hi, µi) = (b′i, δi, ci, h

′
i, µ
′
i)

with µi =

{
ε if αi = reset
µ′i−1 otherwise,

then we require that for each pair i1, i3 ∈ N with i1 < i3, αi1 =
receive, δi1 = A, αi3 = send, and h′i1 = hi3 , that δi3 = A if there is no
i2 ∈ N with i1 < i2 < i3 and δi2 = A.

3.3 2AMEX Protocols, Adversary, and the Experiment

We now give the formal definition of a Two-Round Authenticated
Message Exchange (2AMEX) protocol. Such a protocol is a tuple
Π = (Γ,Σ, τ, F, E) where
– Γ is a client algorithm,
– Σ is a server algorithm,
– τ is a time function (see below),
– F is a freshness function (also see below), and
– E is an exception set as defined below.

A time function is a function that assigns to each client message
mc a time value τ(mc). The intended interpretation is that τ(mc) is
the time at which mc was created. The time function well be used
to phrase the correctness condition (see Section 5).

A freshness function is a function which, for an identity s, state
information µs and a time ts, specifies a freshness interval F (s, µs, ts),
see Section 4 for an example. This is the interval of time values the
server s considers fresh, i. e., for the server to consider a message
fresh the time value of that message has to be in the server’s freshness
interval.

An exception set is a set of bit strings called exceptions which is
recognizable in polynomial time. This is the set of bit strings which
the signature oracle (see below) will refuse to sign for the adversary.

The Experiment. We now describe how all these components work
together. This is done, as usual, by defining a notion of experiment,
which also incorporates the notion of adversary.

For every principal a ∈ IDs a server instance Σa runs under the
identity a. For every principal c ∈ IDs and every principal s ∈ IDs

10

arbitrarily many client instances Γ i
c,s can run where c acts as a client

and s as a server, and where i is a natural number.
We let the adversary control all these instances, that is, the ad-

versary can decide when to call such an instance, which payloads
to choose, which local times are used, etc. The only restriction that
we impose is that local times are monotone, i. e., for each principal,
the value of the local clock in each step of the experiment cannot be
smaller than the value in the previous step.

There is a signature oracle, denoted with S, which can be used by
the adversary (i) to sign bit strings while he constructs the payload
for a send instruction, and (ii) to corrupt a principal’s key. The corre-
sponding instructions are sign and corrupt. Clearly, we cannot allow
the adversary to use the signature oracle to sign every bit string.
Therefore, the exception set refuses to sign bit strings belonging to
the exception set specified in the protocol description.

The experiment works in steps, where in each step the adversary
can choose local times for the involved principals and perform an
action (send, receive, reset, sign, corrupt), for which he provides the
parameters under his control and receives the output values. The
details of this process are given in Table 2. Note that the adversary
even has access to the local state information µ of the principals.
This implies that a principal cannot store its secret key locally with-
out compromising the security of the protocol—however this is not
necessary anyway, since the secret key is given to the client and
server algorithms in each step.

In the experiment traces are recorded for each instance, which
allow us to define correctness and security of a protocol, see the next
section. A trace is a sequence of tuples containing a step number and
the observable action of the instance in the corresponding step, i. e.,
the local time t, the payloads and messages received or sent by the
instance in this step, as well as the decision of the instance (accept
or reject), and finally, for servers entries denoting the identity of
the client that the server believes it is communicating with and the
message handle.

The experiment ExpΠ,A,k for an adversary A against a protocol
Π as above with security parameter k proceeds as described in Ta-
ble 2, where we use v R←−A to describe assigning the output of the
(randomized) algorithm A to the variable v.

11

1. Generate keys.
For each a ∈ IDs:
(a) Let (pka, ska) R←−G(1k).
(b) Send (a, pka) to the adversary.

2. Initialize clocks.
For each a ∈ IDs, let ta(0)←− 0.

3. Initialization of the clients.
For each i ∈ N and c, s ∈ IDs, let tric,s ←− ε and µic,s ←− ε.

4. Initialize states and traces of the servers.
For each s ∈ IDs, let µs ←− ε and trs ←− ε.

5. Initialize step counter.
Let n←− 0.

6. Run the adversary.
Run the adversary A step by step and do the following for each step:
a) Let n←− n+ 1.
b) For each a ∈ IDs, let A choose the value ta(n) ∈ {0, 1}ltime with ta(n) ≥

ta(n− 1).
c) Call client, server or signature algorithm as follows according to the adversary’s

selection:
– Γ ic,s : send(p)

(i) (m, δ, µ) R←−Γ (send, 1k, c, s, pkIDs, skc, tc(n), p, µic,s),
(ii) µic,s ←− µ,

(iii) tric,s ←− tric,s · (n, send, tc(n), p,m, δ),
(iv) return (m, δ, µ) to the adversary.

– Σs : receive(m)
(i) (p, δ, c, h, µ) R←−Σ(receive, 1k, s, pkIDs, sks, ts(n),m, ε, µs),
(ii) µs ←− µ,

(iii) trs ←− trs · (n, receive, ts(n), p,m, δ, c, h),
(iv) return (p, δ, c, h, µ) to the adversary.

– Σs : send(p, h)
(i) (m, δ, c, h′, µ) R←−Σ(send, 1k, s, pkIDs, sks, ts(n), p, h, µs),

(ii) µs ←− µ,
(iii) trs ←− trs · (n, send, ts(n), p,m, δ, c, h),
(iv) return (m, δ, c, h′, µ) to the adversary.

– Γ ic,s : receive(m)
(i) (p, δ, µ) R←−Γ (receive, 1k, c, s, pkIDs, skc, tc(n),m, µic,s),
(ii) µic,s ←− µ,

(iii) tric,s ←− tric,s · (n, receive, tc(n), p,m, δ),
(iv) return (p, δ, µ) to the adversary.

– Σs : reset()
(i) (m, δ, c, h, µ) R←−Σ(reset, 1k, s, pkIDs, sks, ts(n), ε, ε, ε),

(ii) µs ←− µ,
(iii) trs ←− trs · (n, reset, ts(n), ε, ε,A, ε, ε),
(iv) return (m, δ, c, h, µ) to the adversary.

– S : corrupt (a)
(i) trs ←− trs · (n, corrupt, ts(n), ε, ε,A, ε, ε),

(ii) return ska to the adversary.
– S : sign(a, p)

(i) If p /∈ E, return {p}ska to the adversary, otherwise return ε to the
adversary.

Table 2. The experiment ExpΠ,A,k for an adversary A against a protocol Π =
(Γ,Σ, τ, F,E) with security parameter k. 12

4 The Protocol 2AMEX-1—Formal Description

In this section, we recast our protocol 2AMEX-1 within the formal
framework developed in the previous section, and comment on vari-
ous aspects of it.

4.1 Formal Description

Recall the informal description from Section 2 and the formal ap-
pearance of a 2AMEX protocol from Section 3. What we have to
specify is a signature scheme, the server algorithm as well as the
client algorithm, the time function as well as the freshness function,
and the exceptions set.

Signature scheme. For the signature scheme, we allow an arbitrary
one that is resistant against existential forgery (see Section 6.2 for
details).

Server Algorithm, Freshness Function, and Time Function. Let s
be the identity that the server algorithm Σ is called with. As state
information µ, the server uses a tuple (tmin, L) consisting of a variable
tmin holding a single timestamp and a set L of triples of the form
(t, r, c) where t is a timestamp, r is a message id, and c is an identity.

The freshness function is defined by F (s, (tmin, L), t) =[
tmin + 1, t+ tol+s

]
.

The server first checks if it is called with state information ε and
if so (i. e. initially and after each reset), sets tmin to ts + tol+s where
ts is the current local time of the server, and sets L to the empty
set. Then the server proceeds according to the instruction.

Upon receiving mc = {(From : c,To : s′,MsgID : r,Time : t,
Body : pc)}skc , at local server time ts with state information
µ = (tmin, L), the server s performs the following:

1. If one of the following conditions is met, stop and return
(ε,R, ε, ε, µ):
(a) s′ 6= s,
(b) V (mc, pkc) returns false,
(c) t /∈ F (s, µ, ts),
(d) (t′, r, c′) ∈ L for some t′, c′.

13

2. While |L| ≥ caps,
(a) tmin ←− min{t′ | (t′, r′, c′) ∈ L},
(b) L←− {(t′, r′, c′) ∈ L | t′ > tmin}.

3. L←− L ∪ {(t, r, c)}.
4. Return (pc,A, c, r, (tmin, L)).

Observe that this corresponds to steps 1. c) and 1. d) of the informal
description in Section 2.

The following corresponds to steps 2. a)–c) of the informal de-
scription in Section 2. When asked to send a payload ps with message
handle r and state information µ = (tmin, L), the server algorithm
proceeds as follows:

1. Look for (t, r, c) ∈ L with c 6= ε. If no matching triple is found in
the list, return (ε,R, ε, ε, µ).

2. ms ←− {(From : s,To : c,Ref : r,Body : ps)}sks .
3. L←− (L \ {(t, r, c)}) ∪ {(t, r, ε)}.
4. Return (ms,A, c, ε, (tmin, L)).

The time function is defined by τ(mc) = t where mc is as above.

Client Algorithm. Let c be the client identity that Γ is called with.
If the instruction is to send a payload pc to server s at time t and the
state information µ is ε, the algorithm randomly chooses the mes-
sage id r R←−{0, 1}k, sets mc = {(From : c,To : s,MsgID : r,Time : t,
Body : pc)}skc and returns (mc,A, r). If requested to send when µ 6= ε,
it returns (ε,R, µ). Note that this corresponds to steps 1. a) and 1. b)
of the informal description in Section 2.

The following corresponds to steps 2. c) and 2. d) of the informal
description in Section 2. If the algorithm is instructed to receive
a message ms = {(From : s′,To : c′,Ref : r′,Body : p′s)}sks′ when the
state information is µ, it proceeds as follows:

1. If one of the following conditions is met, stop and return (ε,R, µ):
(a) |µ| 6= k,
(b) s′ 6= s,
(c) c′ 6= c,
(d) V (ms, pks) returns false,
(e) r′ 6= µ.

2. Return (ps,A, 0
k+1).

14

Bit String Representations and Exceptions. Our description above
leaves open the actual format of the messages. We assume that the
tags (From, . . .) and tuples which form the messages are represented
as bit strings in such a way that the individual components can be
retrieved without ambiguity.

The set E ⊆ {0, 1}∗ is the set of all bit string representations
of messages of the form (From : c,To : s,MsgID : r,Time : t,Body : pc)
or (From : s,To : c,Ref : r,Body : ps). We assume the bit string rep-
resentation is such that E is recognizable in polynomial time. For
example, by using SOAP [ML07] one can meet these requirements.

This completes the definition of our protocol. Note that it can
easily be seen that the restrictions on execution orders from Sec-
tion 3.2 hold. Also, it is easy to see that our protocol indeed achieves
to work with bounded memory as desired:

Remark 4.1. The size of the state of a server s is bounded by the size
of the bit string representation of (tmin, L), where tmin ∈ {0, 1}ltime is
a timestamp and L is a list of caps many tuples of the form (t, r, c)
with t ∈ {0, 1}ltime , r ∈ {0, 1}k and c ∈ {0, 1}lID .

4.2 Comments and Caveats

Resets. From the specification of 2AMEX-1, it is immediate that
after a reset there is a delay in accepted messages: If a reset of a server
s happens at a step nr, then the next accepted message must have a
timestamp exceeding ts(nr) + tol+s . However, such a delay is natural,
since for any protocol that resists replay attacks, if a reset happens at
step nr, and n1 < nr < n2, then the intervals F (s, µs(n1), ts(n1)) and
F (s, µs(n2), ts(n2)) must be disjoint. Due to asynchronous clocks, we
need the interval F (s, µs(n), ts(n)) to exceed the time ts(n), therefore
rejecting valid messages cannot be completely avoided.

To illustrate this, assume that a protocol is designed in such
a way that immediately after a reset, i. e., without an increase in
the server time, the interval of accepted messages is not empty, and
there is a message m that the server accepts. Then the adversary can
simply reset the server, deliver the message m, and then reset and
deliver again, without ever changing the value of the server clock.
Since for the server, the two events of receiving the message m are

15

indistinguishable, it accepts the message twice. Therefore, in any
secure protocol, the interval F will be empty when a reset happened,
as long as the clock of s has not been increased. It easily follows from
inspection of our protocol (as well as from the above reasoning and
our later security proof) that in 2AMEX-1 this is the case.

Parameterization. Our protocol is parameterized, since tol+s and
caps can be chosen freely. We will see that for any choice of tol+s
and caps the protocol is correct and secure—however, our correct-
ness definition relies on “reasonable” values for the intervals F . A
message m sent by a client c in step n1 and received by a server
s in step n2 is rejected if tc(n1) = τ(m) /∈ F (s, µs(n2), ts(n2)). By
construction of the protocol, there are two ways in which this can
happen: (i) tc(n1) > ts(n2) + tol+s , or (ii) tc(n1) ≤ t′min where t′min is
s’s internal variable tmin before step n2.

The first of these issues can occur when the clocks of client
and server are asynchronous, which in realistic environments is very
likely. To circumvent this problem, one should choose the constant
tol+s large enough to deal with usually occurring time differences
between the local clocks of the principals.

The second case occurs after a reset or if, in step n2, the server s
has accepted more messages with timestamps in the future of tc(n1)
than the maximal number of message id entries it can maintain in
the set L. This can happen, for instance, due to network properties
that slow down the delivery of messages. Obviously, increasing caps
makes this case occur less frequently, in particular, if the servers
would have unbounded memory, it would not occur at all.

Responding to old Messages. A protocol is only required to allow
the service to respond to the most recently received and accepted
message (see Execution Orders in Section 3.2). But a good proto-
col should allow the service to respond to more, i. e. older messages,
while still accepting incoming messages. In our protocol, we can give
the following guarantee on how long the service will be able to re-
spond to a message:

Let t be a timestamp and let µ = (tmin, L) be the state informa-
tion of a server s. Assume that L already contains n1 tuples whose
timestamps are older than t, and let n2 = caps − |L|. Now if a mes-

16

sage m is received and accepted with τ(m) > tmin, the service will be
able to respond to m using its message handle as long as the server,
after accepting m, does not accept more than n1 +n2 messages with
a timestamp greater than or equal to τ(m).

Dishonest Timestamps. In a way, the protocol 2AMEX-1 gives the
clients incentive to “lie” in their timestamps, since for the clients,
it is advantageous to claim a timestamp in the future, as long as
the timestamp does not exceed the sum of the server clock plus
its tolerance. Assume, for example, that the server tolerance tol+s is
very large, let’s say 24 hours. Then a client has an advantage if it
adds 24 hours to the timestamp of each message that it sends to
the server s, since its messages will most likely not be rejected due
to old timestamps. This has an unwanted effect on the operation of
the server: If this client (or a group of clients acting in the same
way) sends many requests to the server, and if the server does not
have enough memory, the value tmin of s will soon be in the future
as well, which leads to the rejection of valid incoming messages. The
consequence of this line of thought is that in practice, it is desirable
that the “center” of the intervals F should always be the present
time, so that the most successful strategy for the clients is to use
truthful timestamps.

In Section 7, we explain how this can be achieved.

5 Correctness and Security Definitions

We now define what it means that a protocol is correct and secure
in our model. For a fixed execution of the experiment, an identifier
s and a natural number n, we define µs(n) to be the content of the
state information µs before the nth step. We say that for a principal
a ∈ IDs the principal’s key is corrupted in the experiment at step n,
if there is a step number n′ ≤ n such that in step n′, the adversary
performed a S : corrupt (a) query.

From now on, with tric,s and trs, we refer to the corresponding
traces after running the experiment.

17

5.1 Correctness Definition

Informally, our notion of correctness requires that if messages are
delivered as intended by the network (i. e., the adversary), then all
parties accept (given that the messages are considered fresh by the
servers), the sender of each message is correctly determined, and the
payloads are delivered correctly. Formally, we say that an adversary
A is benign if it only delivers messages that were obtained from a
client or server instance, and delivers a message at most once to
every instance. This models a situation in which arbitrary payload
is sent over a network in which messages may get lost, all messages
can be read by anybody, and servers can loose state information,
but no message is altered, no false messages are introduced, and no
replay attacks are attempted.

Definition 5.1. A 2AMEX protocol Π is correct if it satisfies the
following for any benign adversary A, any security parameter k, and
any c, s ∈ IDs:
1. If (n1, send, t1, pc,mc,A) ∈ tric,s, (n2, receive, t2, p

′
c,mc, δs, c

′, h) ∈
trs, and τ(mc) ∈ F (s, µs(n2), t2), then c′ = c, pc = p′c, and δs = A,
with all but negligible probability.

2. If additionally (n3, send, t3, ps,ms,A, c
′, h) ∈ trs and (n4, receive,

t4, p
′
s,ms, δc) ∈ tric,s with n2 < n3 and n1 < n4, but with no

(n′, . . . ,A, . . .) ∈ trs having n2 < n′ < n3, then we also require
that ps = p′s and δc = A.

Note that this definition leaves a loop hole for “correct”, but
utterly useless protocols: The freshness function F is part of the
specification, and a protocol only has to be correct with regard to this
choice of F . Hence a protocol in which F always returns the empty
interval is not required to accept any messages. For protocols to be
useful in practice, it is desirable to have a large freshness interval.

Similarly, this definition only guarantees that the service can re-
spond to the last message that the server received and accepted.
Using message handles, a good protocol should allow the service to
respond to any of the recently received messages.

The reason why we only require the server to accept with all but
negligible probability is that we allow randomness in our algorithms,
and therefore collisions cannot be ruled out completely.

18

5.2 Security Definition

We will now define when a protocol is called secure by defining a
function which matches client and server traces. We will only con-
sider the acceptance trace of a client instance Γ i

c,s, which is the sub-
sequence of all steps in the trace tric,s of the form (n, . . . ,A). We also
say that an instance accepts at step n if there is an entry of the form
(n, . . . ,A) or (n, . . . ,A, . . .) in its trace.

Depending on the result of the experiment, we define the event
NoMatchingΠ,A,k, which is intended to model the event that the ad-
versary A has successfully “broken” the protocol Π with security pa-
rameter k. A partner function is a partial map f : IDs× IDs×N 99K
N. Informally, for each client instance Γ i

c,s, the function f points to
a step (identified by step counter n) in which the server accepts the
message sent from c to s in session i, if there is such a step.

If a “matching” partner function (see below) can be defined, then
the experiment was successful in the sense that the adversary did not
compromise authenticity of the message exchange. More formally,
matching w. r. t. a given partner function is defined as follows.

1. A trace tric,s of a client c matches the server trace trs of the server
s w. r. t. a given partner function f if the acceptance trace of Γ i

c,s

is of the form (n1, send, t1, pc,mc,A)(n4, receive, t4, ps,ms,A) and
there are timestamps t2, t3, step numbers n1 < n2 < n3 < n4,
and a handle h such that (n2, receive, t2, pc,mc,A, c, h) ∈ trs and
(n3, send, t3, ps,ms,A, c, h) ∈ trs, and f(c, s, i) = n2.

2. A step (n2, receive, t2, pc,mc,A, c, h) in the trace trs of a server s
matches the client trace tric,s of the client c w. r. t. a given partner
function f if f(c, s, i) = n2 and the first accepting step in tric,s is
of the form (n1, send, t1, pc,mc,A) for some t1 and n1 < n2.

For a partner function f , the event NoMatchingfΠ,A,k (designed to
model that f is not a partner function that validates the communi-
cation in the result of the experiment) consists of two cases:

(a) There are parties c and s, a session number i, and a step number
n4, such that c and s are not corrupted at step n4, the client
instance Γ i

c,s accepts at step n4, but the trace tric,s does not
match the server trace trs w. r. t. f , or

(b) there are parties c and s and a step number n2, such
that c is not corrupted at step n2, and there is a step

19

(n2, receive, t2, pc,mc,A, c, h) ∈ trs which does not match the
client trace tric,s w. r. t. f for any session number i.

The event NoMatchingΠ,A,k denotes the event that NoMatchingfΠ,A,k
occurs for all partial functions f : IDs × IDs × N 99K N when the
experiment is run with protocol Π, adversary A and security param-
eter k, i. e., the event that there does not exist a partner function
that validates the success of the experiment.

The advantage of an adversary A running against Π is the prob-
ability that the adversary is successful in breaking the protocol, for-
mally defined by:

AdvΠ,A(k) = Pr
[
NoMatchingΠ,A,k

]
.

Definition 5.2. A 2AMEX protocol Π is secure if for every
polynomial-time adversary A the advantage of A, AdvΠ,A(k), is a
negligible function of the security parameter k.

Note that this notion of security also rules out replay at-
tacks: If a server accepts a message mc twice from the same
client c, then in the trace trs there are two different entries
(n1, receive, t1, p

1
c ,mc,A, c, h

1) and (n2, receive, t2, p
2
c ,mc,A, c, h

2),
where n1 6= n2. If the event NoMatching does not occur, then, by
definition, there must be a partner function f and tuples (c, s, i1)
and (c, s, i2) such that f(c, s, i1) = n1 and f(c, s, i2) = n2. Since f is
a function and n1 6= n2, it follows that i1 6= i2. Therefore, the client
c did send the message mc twice: once in session i1, and once in
session i2.

Hence, our notion of security does allow a server to accept the
same message twice, but only if it also has been sent twice. However,
since there is no communication between server and client except for
the exchanged messages, the server has no way of knowing whether a
message that has been received twice was also sent twice. Therefore,
protocols satisfying our security definition will have to be designed
in such a way that a message is accepted at most once by a server
(with all but negligible probability).

Note that it is of course allowed for the server to accept the same
payload twice from the same client.

20

6 Correctness and Security Proof

6.1 Correctness of 2AMEX-1

Theorem 6.1. 2AMEX-1 is a correct 2AMEX protocol.

Proof. Assume that (n1, send, t1, pc,mc,A) ∈ tric,s and (n2, receive, t2,
p′c,mc, δs, c

′, h) ∈ trs in an experiment whereA is a benign adversary,
and assume that t1 ∈ F (s, µs(n2), t2).

First, note that the probability that the message id of mc is the
same as a message that was previously delivered is negligible, since A
is benign and therefore delivers mc at most once to s, and the prob-
ability of a message id being generated twice is negligible. Hence, we
can assume n1 < n2. We show that the probability of all four cases
that lead to rejection of the message on the server side is negligible.
Since mc was created by the client instance Γ i

c,s, we know that the
To- and From-fields of mc are s and c, respectively, and that mc was
signed with c’s private key. Due to the above, we also know that the
probability of mc’s message id already appearing in the set L main-
tained by s is negligible. Finally, the message cannot be rejected in
step 1(c), since by the prerequisites, τ(mc) = t1 ∈ F (s, µs(ns), t2).
Thus, the server accepts with all but negligible probability. By con-
struction of the protocol, it is also clear that the server concludes
that the message has been sent by c, and that p′c = pc because the
Body-Field of mc equals pc.

Now assume that additionally (n3, send, t3, ps,ms,A, c
′, h) ∈ trs

and (n4, receive, t4, p
′
s,ms, δc) ∈ tric,s with n2 < n3 and n1 < n4, but

with no (n′, . . . ,A, . . .) ∈ trs having n2 < n′ < n3.
First, we know that the server only generates one response for

the incoming message mc (as he overwrites c with ε in the tuple
(t, r, c) in L after sending the response), and since the adversary is
benign, this response is delivered only once to c, so n4 is the only
step in which a response can be accepted by c. Now we know that
the probability of rejection by the client is zero, because the To-field
of the response is set to c, the message id is correct as it was stored
in the server’s memory (which was not reset between n2 and n3), and
the server’s signature is correct. Thus, the client accepts the message
at n4 and we also have p′s = ps because the Body-field of the response
is set to ps by the server. ut

21

In the remainder of this section we show that the protocol
2AMEX-1 satisfies our security definition, provided the signature
scheme used satisfies a standard security requirement.

We define the following notation: For a server identity s, let
tsmin(n) denote the value of s’s internal variable tmin before step n.

6.2 Security of Signature Schemes

Our security proof for 2AMEX-1 will rely on the signature scheme
being resistant against existential forgery. We briefly explain this
notion: An adversary against a signature scheme is a probabilis-
tic polynomial-time algorithm which as input receives the security
parameter 1k, a public key pk generated by the key generation al-
gorithm, and has access to a signature oracle O, which on input
m generates a valid signature of m corresponding to the public key
pk. The signature scheme is resistant against existential forgery if
any adversary against the scheme has negligible probability (in the
security parameter) of producing a pair (m, s), where s is a valid
signature of m (corresponding to the key pk), and s has not been
obtained by querying the oracle O.

We adopt this definition to our scenario, which requires handling
of signatures of a group of users as well as dynamic corruption. An
adaptively corrupting n-user adversary against the signature scheme
S is a probabilistic polynomial-time algorithm A that gets as input
n public keys generated by the key generation algorithm of S, and
can perform the following actions:

– Obtain, via a signature oracle, a valid signature for any message
and any of the involved public keys,

– via a corrupt (i)-query, obtain the secret key corresponding to the
ith public key.

The experiment in which such an adversary is run proceeds as
follows: First, n public/private key pairs (pk1, sk1), . . . , (pkn, skn) are
generated by the key generation algorithm of S, the public keys are
handed to the adversary. Then the adversary is run, its queries are
answered accordingly. The adversary is successful if it can generate
a triple (m, s, i), such that no corrupt (i)-query was performed by
the adversary before, the signature s was not obtained by an oracle

22

query, and s is a valid signature for m for the public key pki. In this
case we also say that the adversary has achieved existential forgery
against pki (without prior corruption).

We say that a signature scheme S is secure in the n-user setting
with adaptive corruption if every adversary has negligible success
probability (in the security parameter).

It is obvious that a signature scheme meeting the above security
definition is also resistant against existential forgery. We now prove
that the converse is also true:

Lemma 6.2. Let S be a signature scheme that is resistant against
existential forgery, and let n be a fixed natural number. Then S is
also secure in the n-user setting with adaptive corruption.

Proof. Assume that there is an adversary Aadapt
SIG against S that has

non-negligible success probability in the n-user setting with adaptive
corruption. We construct an adversary Asingle

SIG that has non-negligible
probability of achieving existential forgery against S in the usual
sense.
Asingle

SIG gets a single public key pkx (generated by the key gen-
eration algorithm of S) and a signature oracle O for this key. It
chooses i ≤ n randomly and sets pki = pkx. Using the key genera-
tion algorithm, it generates n − 1 public/secret key pairs (pkj, skj)

for j ≤ n, j 6= i, and simulates the adversary Aadapt
SIG , handling oracle

queries regarding the key pki by querying the oracle O, and oracle
queries regarding the public key pkj for j 6= i by computing the sig-
nature itself with the secret key skj. Queries of the form corrupt (j)
are handled by returning skj if j 6= i, if a query corrupt (i) is made,

Asingle
SIG reports failure.

Since pki is generated with the same key generation algorithm as
the other keys, the probability that the simulated Aadapt

SIG obtains a
valid signature for pki (without a corrupt (i)-query preceding the suc-
cess) is the same as that it achieves existential forgery (without pre-
ceding corruption) w. r. t. any of the other keys. In particular, since
the number of keys is fixed, the probability of achieving existential
forgery without prior corruption against the key pki is non-negligible.
It is clear that in the cases where Aadapt

SIG achieves existential forgery
for pki, Asingle

SIG is successful. Therefore, Asingle
SIG has a non-negligible

23

success probability. This is a contradiction, since S is secure against
existential forgery. ut

We also note that it has been observed that resistance against
existential forgery is not sufficient to achieve natural security goals in
the multi-user setting [MS04], however this level of security suffices
to obtain security in our protocol.

6.3 Security of 2AMEX-1

Theorem 6.3. 2AMEX-1 is a secure 2AMEX protocol, provided
that the signature scheme used resists existential forgery.

We first show that 2AMEX-1 is resistant against replay attacks. The
following lemma states that the same message is not accepted twice
by a server during a protocol run:

Lemma 6.4. Let A be an adversary, k a security param-
eter, and s ∈ IDs. Then in a run of Exp2AMEX-1,A,k, if
(n1, receive, ts(n1), p1,m1,A, c1, h1) and (n2, receive, ts(n2), p2,
m2,A, c2, h2) are entries in trs with m1 = m2, then n1 = n2.

Proof. Assume that a server s accepts a message m = {(From : c,
To : s,MsgID : r,Time : t,Body : x)}skc twice, at steps n1 and n2,
where n1 < n2. Then at the step n1, the pair (t, r, c) is inserted into
L. At point n2, since s accepts the message m again, we know that
(t, r, c) is not contained in L anymore. Also, tsmin(n2) < t (otherwise,
s rejects).

Assume there was no reset between n1 and n2. Since (t, r, c)
has been removed from L at some point before n2, we know that
tsmin(n2) ≥ t due to the construction of the protocol. This is a con-
tradiction to the above.

Hence a reset happened at step nr, where n1 < nr < n2. Due
to the monotonicity of the clocks, ts(n1) ≤ ts(nr). Since the server
accepted the message m with timestamp t at point n1, we know that
t ≤ ts(n1) + tol+s . We also know that ts(nr) + tol+s ≤ tsmin(n2), since
the server runs 2AMEX-1. Therefore we conclude tsmin(n2) < t ≤
ts(n1) + tol+s ≤ ts(nr) + tol+s ≤ tsmin(n2)—a contradiction. ut

24

Note that the preceding proof of Lemma 6.4 is the only situa-
tion where we actually use monotonicity of the clocks—it is clear
that clocks are needed only to circumvent replay attacks. Also, it is
immediate from the proof that it suffices to demand that clocks of
participants who act in the server role are monotone. We now can
prove Theorem 6.3:

Proof. Assume there is a polynomial-time adversary AAUT that
achieves non-negligible probability of NoMatching. We construct
an adaptively corrupting |IDs|-user adversary against the signature
scheme S used by 2AMEX-1 that has non-negligible success proba-
bility. Due to Lemma 6.2 it then follows that the signature scheme
is not resistant against existential forgery, which is a contradiction.
Note that in the protocol 2AMEX-1, the adversary can compute
the local state information µ of all involved principals by only
observing their output behavior. We therefore can assume that
that the adversary disregards the state information given to it by
the experiment. In particular, no security relevant information is
given to the adversary after the initialization phase, except the
messages and payloads sent and received by the principals, the
fact whether they accept or reject incoming requests, the identified
communication partner when a server instance is called, and secret
keys obtained with S : corrupt (a) queries.

We construct the adversary ASIG against the signature scheme.
By definition, ASIG has access to signature oracles and public keys
for all involved parties, as well as access to private keys pki via
corrupt (i)-queries. ASIG proceeds as follows: It initializes the vari-
ables of the experiment (traces, private information, etc.) as in a
legitimate run of Exp2AMEX-1,AAUT,k

. It then simulates AAUT, han-
dling calls of instances as follows: When a client or server instance is
called by AAUT, then ASIG simulates the client or server algorithm,
where it derives the input parameters for the client or server algo-
rithm (except for the secret key) in the exact same way as defined in
the experiment: From AAUT, ASIG obtains a message or a payload,
and generates the remaining arguments depending on the type of
action defined by the adversary call (send, receive, or reset). During
this simulation, ASIG uses the signature oracles to generate the sig-
natures that are signed by client and server algorithms for messages

25

that are elements of E, i. e., are unsigned 2AMEX-1 messages. Note
that every message which was signed in this way appears in the trace
of the corresponding principal. Queries of the form S : corrupt (a) are
answered by using the corrupt (i)-queries available to ASIG. Finally,
when the simulated AAUT uses a query of the form S : sign(a, p), the
adversary ASIG uses the signature oracle to obtain the corresponding
signature if p /∈ E, and returns ε otherwise. Note for later reference
that this ensures that every signature for a valid 2AMEX-1 message
that AAUT did not generate internally (possibly with access to the
secret key after corruption) appears in the trace of the corresponding
principals.

Additionally, ASIG keeps track of a step counter for the number
of steps, as well as the traces and internal variables of server and
client oracles as in the original experiment. Finally, ASIG constructs
a partner function as follows: For every client instance Γ i

c,s, if the
first accepting step in tric,s (which must be a send-instruction) is
(n, send, t, p,m,A), then let f(c, s, i) = n′, where n′ is the smallest
step number referring to an accepting receive-query of the server
instance Σs with incoming message m, if such a step exists. Let
f(c, s, i) be undefined otherwise. Since valid 2AMEX-1 messages can
be recognized in polynomial time, andAAUT runs in polynomial time,
ASIG runs in polynomial time. By construction,ASIG is an adaptively
corrupting |IDs|-user adversary against S. We show that ASIG has
non-negligible success probability.

Since for the simulated AAUT, there is no difference between
this experiment and the original Exp2AMEX-1,AAUT,k

, the newly con-
structed adversary ASIG has non-negligible probability of achieving
NoMatching defined with respect to the simulated experiment in the
obvious way. We now show that unless message id’s for different
messages coincide, each occurrence of NoMatching w. r. t. f implies
existential forgery in the multi-user setting against a public key that
has not been corrupted. Since ASIG can verify whether a message
it produces contains a signature that is a successful forgery, every
event of NoMatching thus allows ASIG to produce a forged signa-
ture. Therefore, if AAUT is successful in achieving NoMatching with
non-negligible probability, then ASIG is successful in achieving exis-
tential forgery with non-negligible probability as required (note that
collision of message id’s happens with negligible probability only).

26

It remains to prove the above claim: Every occurrence of
NoMatching implies a collision of message id’s, or existential forgery
against the signature scheme. We show this indirectly: Assume
that the event NoMatching occurs, and neither existential forgery
against an uncorrupted key, nor collision of message id’s occurs. In
particular, NoMatchingf appears, where f is the partner function
constructed above. We distinguish the two cases in the definition of
NoMatchingf (see Section 5.2).

First Case. Assume that case (a) occurs, and existential forgery
and the collision of message id’s both did not occur. By defini-
tion of the NoMatching event, there are parties c, s, a session num-
ber i, and a step n4 such that c and s are not corrupted at step
n4, the client Γ i

c,s accepted at n4, but tric,s does not match the
server trace trs w. r. t. f . This means that the accepting steps of
tric,s are of the form (n1, send, t1, pc,mc,A)(n4, receive, t4, ps,ms,A),
but there are no t2, t3, n2, n3, h′ with n1 < n2 < n3 < n4, such that
(n2, receive, t2, pc,mc,A, c, h

′) ∈ trs and (n3, send, t3, ps,ms,A, c, h
′) ∈

trs with f(c, s, i) = n2. Since both c and s are not corrupt at step n4,
the signature oracle available to AAUT does not allow the signing of
valid protocol messages, and we assumed that existential forgery did
not occur, it follows that every valid protocol message signed with
the keys of c or s that was obtained before the step n4 were obtained
by a call of the client or server instance.

Since the client Γ i
c,s accepted the incoming message ms, we know

that ms is a valid 2AMEX-1 message send by a server with s’s sig-
nature. Note that 2AMEX-1 allows to distinguish messages sent by
client or by servers: The former contain a message id, the latter a
reference to one. By the above, this means that AAUT obtained ms

from a call to the server instance Σs. By construction of the pro-
tocol, this means that there is an entry (n3, send, t3, p

′
s,ms,A, c

′, h)
in the server trace trs, and since AAUT had access to ms in step n4,
it follows that n3 < n4. Since the client instance Γ i

c,s extracted the
payload ps from ms, and the server instance Σs encapsulated the
payload p′s into ms, it follows that ps = p′s. Since Γ i

c,s accepts ms, it
is addressed to c, and by construction of the protocol it follows that
c = c′. Therefore the above step in trs is (n3, send, t3, ps,ms,A, c, h),
with n3 < n4.

27

Further, we know that a server s accepts a send-request only
if there is a preceding receive-request accepted by s with a match-
ing message handle (i. e., a message id). Hence there is an entry
(n2, receive, t2, p

′
c,m

′
c,A, c

′′, h) in the trace trs with n2 < n3, and there
is no accepted receive instruction or send instruction with message
handle h in trs with a step number between n2 and n3. By con-
struction of the protocol, it follows that c′′ = c. Since Σs accepts
the message m′c and determines the sender to be c′′ = c, it follows
that m′c is a valid 2AMEX-1 client message, is addressed to s, and
carries a correct signature for c’s key. Due to the above, and since
m′c is addressed to the server s, we can assume that m′c was ob-
tained by the call of a client instance Γ i′

c,s. Hence there is an entry

(n′1, send, t′1, p
′′
c ,m

′
c,A) with n′1 < n2 in the client trace tri

′
c,s. Since the

payload p′′c was encapsulated into m′c, and p′c was extracted from m′c,
it follows that p′′c = p′c.

Since Γ i
c,s accepts ms, we know that (due to the verification of

message id’s, and since we assumed that collision of id’s does not
occur) ms contains a reference to the message id of mc, which en-
capsulated the payload pc. Since ms was created by Σs using the
message handle that Σs output when processing m′c, we know from
the construction of 2AMEX-1 that ms carries a reference to the mes-
sage id contained in m′c. Hence mc and m′c have the same message
id, and by the above assumption it follows that m′c = mc, implying
p′c = pc = p′′c . It follows that the above step in trs is of the form
(n2, receive, t2, pc,mc,A, c, h). Again due to our assumption that col-
lisions of message id’s do not occur, and since mc was created in both
the client session i and in the session i′, it further follows that i = i′

and thus n1 = n′1, which implies n1 < n2 < n3 < n4. In particular,
the message mc was sent by the client instance Γ i

c,s.

We now show that f(c, s, i) = n2. By construction, since mc is
the message created by the client instance Γ i

c,s, f(c, s, i) = n, where
n is the lowest step number such that Σs accepted the message mc

in step n. By the above, we know that Σs accepted mc in step n2.
By Lemma 6.4, we know that a server accepts a message at most
once. Hence it follows that n2 = n, and by the steps exhibited in
the server trace trs above, we know that the trace tric,s matches the
server trace trs w. r. t. f—a contradiction.

28

Second Case. In case (b), there are parties c and s and a step
n2 such that c is not corrupted in step n2, and there is a step
(n2, receive, t2, pc,mc,A, c, h) in the trace trs which does not match
tric,s for any session number i, i. e., there is no i such that the first
accepting entry in tric,s is of the form (n1, send, t1, pc,mc,A) for some
n1 < n2 such that f(c, s, i) = n2.

Since s accepts mc and determines that it has been sent by c,
we know that mc carries a valid signature by c, and is a 2AMEX-1
message. Since we assume that existential forgery does not occur, c
is not corrupt in step n2, and mc is addressed to s, we know that
mc was obtained from a client instance Γ i

c,s. Hence there is an entry
(n1, send, t1, p

′
c,mc,A) in tric,s, with n1 < n2 (since mc must be ob-

tained before the adversary can use it). Since p′c is the payload encap-
sulated in mc and pc is the payload extracted from pc, it follows that
pc = p′c. Hence the above step is of the form (n1, send, t1, pc,mc,A).
Since mc is the message created by the instance Γ i

c,s and mc was
accepted by Σs in step n2 (and, by Lemma 6.4, in no other step), it
follows that f(c, s, i) = n2. Hence the step (n2, receive, t2, pc,mc,A)
matches the trace tric,s—a contradiction. ut

7 Practical Considerations and “good”
parameters

A weakness of the protocol as stated in Section 4 are the rather
vague guarantees implied by our security definition. As discussed at
the end of Section 4.2, a certain type of denial-of-service attack can
be mounted against the protocol, which results in the intervals F
being empty, or to be in the future entirely, essentially rendering a
server inaccessible for all parties who set their clocks honestly.

Therefore, as mentioned before, it is important to choose the
parameters for the server, i. e., the tolerance tol+s and the capacity
caps in a way that circumvents problems like this. In the following
theorem, we specify one way of choosing values for these parameters,
that imply “liveliness” of the servers at all times.

Theorem 7.1. Let s be a server running 2AMEX-1, and let tol−s be
a real number such that

29

– the minimal time (measured by the server’s local clock) between
accepting two messages as well as between a reset and accepting
the first message is at least tdiff ,

– the server tolerance is tol+s ,

– caps >
(tol+s + tol−s)

tdiff

.

Then for any local server time ts, if the last reset (or initialization)
of s happened before ts − (tol+s + tol−s), then tsmin ≤ ts − tol−s .

Before proving the theorem, we explain its significance. The claim
that it it establishes is that (resets aside), the value tmin is always at
least tol−s units of time before the current server time. Hence tol−s is
the minimal amount of time that the server can “look into the past”
via its recorded set of messages, and by the way that the protocol is
designed, this means that messages with a timestamp set this much
in the past (relative to the local server time) can still get accepted.
Hence the value tol−s is a “backwards tolerance” with respect to out-
of-sync clocks in the same way as tol+s gives “forward tolerance”. For
practical choices of these values, one should keep in mind that tol−s
also needs to compensate for the network delay between sending and
receiving a message, hence arguably “backward tolerance” should be
higher than “forward tolerance”.

The reason why the theorem only guarantees the inequality for
the case that at least tol−s units of time have passed since the last
reset is that as discussed in Section 4.2, after a reset, there must be a
time where no incoming message can be accepted, and obviously one
has to wait longer to ensure that messages with timestamps further
in the past can be accepted again.

We now prove the theorem.

Proof. Assume the last reset (or initialization, which for the server
is the same event) of s happened at the time tsr (measured in the
clock of s). Fix a sequence of incoming messages since the last reset.
We obviously are only interested in accepted messages, since rejected
messages do not lead to an advance of the value tmin. Further, as-
suming that all messages in the sequence are accepted, we are not
interested in the messages themselves or even the sender and mes-
sage id’s, but only in the time at which they are received by s, and

30

the timestamp they carry. Hence we consider a sequence of messages
as a sequence of pairs M = (tci , t

s
i)i∈N, where a pair (tci , t

s
i) represents

a message that the server s receives at time tsi , and which carries
the client’s timestamp tci . Since the minimal delay between incoming
messages and between a reset and an incoming message is tdiff , we
require that tsr+tdiff ≤ ts0, and tsi +tdiff ≤ tsi+1 for all i. We also require
that tci ≤ tsi + tol+s for all i (other sequences cannot be accepted by
the server). With tsmin(M)(ts) we denote the value of tmin at the local
server time ts, when the server s receives the sequence M (obviously,
for this value only the elements in M with an incoming time of at
most ts are considered).

It is easy to see that tsmin(M)(ts) for a fixed ts, considered as
a function in M , is monotone in the following sense: Lowering an
incoming-time value of a pair or increasing the timestamp of a pair
in M does not decrease the value of tsmin(M)(ts), as long as the mod-
ified sequence still obeys the restrictions explained above. It there-
fore follows that we only have to consider the extreme case where
messages come with the highest possible frequency and having the
highest (at that time) admissible timestamp, i. e., we only need to
consider the canonical sequence Mc = (tsr+i·tdiff , t

s
r+tol+s +i·tdiff)i≥1.

This sequence Mc can be thought of as the optimal denial of service
attack against the server s. By construction of the protocol and due
to choice of caps, s only removes elements from L if there are more
than (tol+s +tol−s)/tdiff elements in the set L.

The claim that we need to prove is:

if t ≥ tsr + tol+s + tol−s then tsmin(Mc)(t) ≤ t− tol−s .

We first consider the case t = tsr + tol+s + tol−s . In this case,
exactly tol+s + tol−s units of time have passed since the last reset.
In this time, s has accepted exactly (tol+s +tol−s)/tdiff messages, which is
less than caps. Therefore, no element has been removed from the set,
and tmin still has the value that it was set to at the last reset, which
is tsr + tol+s by the specification of the protocol. Hence tsmin(Mc)(t) =
tsr + tol+s = t− tol−s , which proves the required inequality. For points
in time beyond t = tsr + tol+s + tol−s , it suffices to prove that tmin

does not advance faster than ts. This is easy to see, since by the
setup of the sequence Mc, tmin advances by exactly tdiff for each

31

element removed from the set L, and for each received message, at
most one message is removed from this set (since all messages have
different timestamps). Finally, the delay between the acceptance of
two messages, and hence the minimal delay between advancements of
tmin, is exactly tdiff . Therefore, given the sequence Mc, the value tmin

increases at most as fast as the server clock, and hence the inequality
is maintained. ut

8 Conclusion

For the the natural security goal of authenticated message exchange
in two rounds, we introduced a computational model and security
definition. We also presented a protocol 2AMEX-1 which uses time-
stamps to achieve security even with bounded memory. We proved
security in our model even if the adversary is allowed to reset the
memory of long-lived servers and has partial access to the signature
scheme. This models the realistic situation that our protocol does
not have exclusive access to the public-key infrastructure.

32

References

[ASW98] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange
of digital signatures (extended abstract). In EUROCRYPT, pages 591–
606, 1998.

[BEL05] Liana Bozga, Cristian Ene, and Yassine Lakhnech. A symbolic decision
procedure for cryptographic protocols with time stamps. Journal of Logic
and Algebraic Programming, 65(1):1–35, 2005.

[BFGM01] Mihir Bellare, Marc Fischlin, Shafi Goldwasser, and Silvio Micali. Identifi-
cation protocols secure against reset attacks. In Birgit Pfitzmann, editor,
EUROCRYPT, volume 2045 of Lecture Notes in Computer Science, pages
495–511. Springer, 2001.

[BP03] Michael Backes and Birgit Pfitzmann. A cryptographically sound security
proof of the needham-schroeder-lowe public-key protocol. In Proceedings
of the 23rd Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS, pages 1–12, 2003.

[BPW03] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic
library with nested operations. In S. Jajodia, V. Atluri, and T. Jaeger,
editors, Proceedings of the 10th ACM Conference on Computer and Com-
munications Security (CCS 2003), pages 220–230. ACM, 2003.

[BR93] M. Bellare and P. Rogaway. Entity authentication and key distribution.
In D. Stinson, editor, Advances in Cryptology – Crypto ’93, 13th An-
nual International Cryptology Conference, volume 773 of Lecture Notes
in Computer Science, pages 232–249. Springer-Verlag, 1993.

[Can01] R. Canetti. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In Proceedings of the 42nd Annual Symposium on
Foundations of Computer Science (FOCS 2001), pages 136–145. IEEE
Computer Society, 2001.

[CH06] Ran Canetti and Jonathan Herzog. Universally composable symbolic
analysis of mutual authentication and key-exchange protocols. In Shai
Halevi and Tal Rabin, editors, TCC, volume 3876 of Lecture Notes in
Computer Science, pages 380–403. Springer, 2006.

[DG04] Giorgio Delzanno and Pierre Ganty. Automatic verification of time sen-
sitive cryptographic protocols. In Kurt Jensen and Andreas Podelski, ed-
itors, TACAS, volume 2988 of Lecture Notes in Computer Science, pages
342–356. Springer, 2004.

[DS81] Dorothy E. Denning and Giovanni M. Sacco. Timestamps in key distri-
bution protocols. Communications of the ACM, 24(8):533–536, 1981.

[GJM99] Juan A. Garay, Markus Jakobsson, and Philip D. MacKenzie. Abuse-free
optimistic contract signing. In Michael J. Wiener, editor, CRYPTO, vol-
ume 1666 of Lecture Notes in Computer Science, pages 449–466. Springer,
1999.

[KLP07] Yael Tauman Kalai, Yehuda Lindell, and Manoj Prabhakaran. Concur-
rent composition of secure protocols in the timing model. J. Cryptology,
20(4):431–492, 2007.

[Küs06] Ralf Küsters. Simulation-based security with inexhaustible interactive
turing machines. In CSFW, pages 309–320. IEEE Computer Society,
2006.

[LB07] Canyang Kevin Liu and David Booth. Web services description language
(WSDL) version 2.0 part 0: Primer. W3C recommendation, W3C, 2007.
http://www.w3.org/TR/wsdl20-primer.

33

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key pro-
tocol using FDR. In Tiziana Margaria and Bernhard Steffen, editors,
TACAS, volume 1055 of Lecture Notes in Computer Science, pages 147–
166. Springer, 1996.

[ML07] Nilo Mitra and Yves Lafon. SOAP version 1.2 part 0: Primer (second
edition). Technical report, W3C, 2007. http://www.w3.org/TR/soap12-
part0/.

[MS04] Alfred Menezes and Nigel Smart. Security of signature schemes in a multi-
user setting. Designs, Codes and Cryptography, 33(3):261–274, 2004.

[NKMHB06] Anthony Nadalin, Chris Kaler, Ronald Monzillo, and Phillip Hallam-
Baker. Web services security: SOAP message security 1.1 (WS-Security
2004). Technical report, OASIS Web Services Security TC, 2006. OASIS
Standard.

[NS78] Roger M. Needham and Michael D. Schroeder. Using encryption for
authentication in large networks of computers. Communications of the
ACM, 21(12):993–999, 1978.

[Sun98] Sun Microsystems. RPC: Remote procedure call protocol specification
version 2. IETF RFC 1057 (Informational), 1998.

[War05] Bogdan Warinschi. A computational analysis of the Needham-Schroeder-
(Lowe) protocol. Journal of Computer Security, 13(3):565–591, 2005.

[Win99] Dave Winer. XML-RPC specification. http://www.xmlrpc.com/spec,
1999.

34

