

《计算机组网原理》原理篇

第四章 100Mb/s快速以太网组网技术

第3章重点回顾

- 以太网工作原理 CSMA/CD
- 碰撞槽时间及最小帧长度的计算
- 曼彻斯特编码的原理及优点
- 10BaseT的技术特点
- 集线器工作原理及功能

本章重点

- 100M以太网与10M以太网的兼容性
- 100M以太网为什么采用新的编码
- 100M以太网的网段长度(即跨距)
- ■自动协商机制

第四章 100Mb/s快速以太网组网技术

100Mbps以太网又称快速以太网。 100Mbps以太网的帧格式、CSMA/CD工作方式与 10Mbps以太网完全一致。

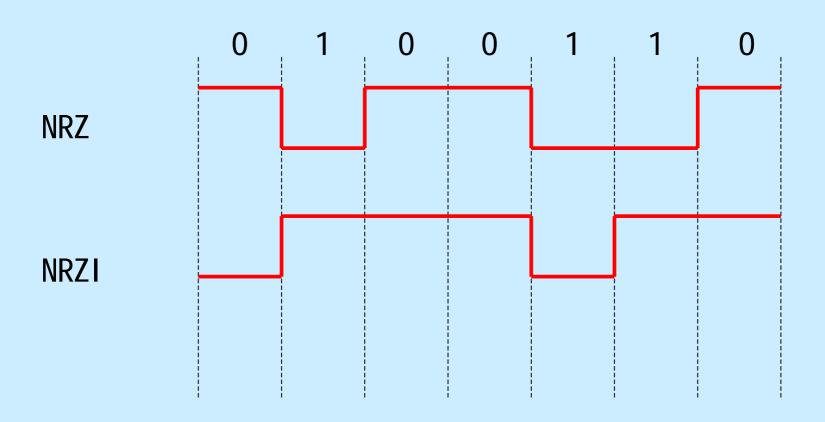
- > 物理层标准
- > 编码
- > 跨距
- ➤ 10Mbps与100Mbps自适应

4.1 快速以太网体系结构

1. 物理层标准 不同介质的标准

MAC子层				
100BASETX	100BASEFX	100BASET4	100BASET2	
2对5类UTP	光纤	4对3类UTP	2对3类UTP	

4种不同的100Mb/s以太网物理层


最常用的是5类非屏蔽双绞线UTP和光纤

2 编码

降低波特率

- ➤ 100BASE TX和100BASE FX: 4B/5B码(二对线) 100M * 5/4 = 125 M baud
- ➤ 100BASE T4:8B6T码(四对线) 100M * 6/8 * 1/3 = 25 M baud
- ➤ 100BASE T2: PAM 5 * 5 (二对线)
 25 M baud

预备知识:NRZ 和 NRZI

NRZI码有很好的接收可靠性

预备知识:波特率和比特率

波特率:线路上信号每秒变化的次数

单位:波特 baud

注意与比特率(又称信号传送速率)的区别

比特率:每秒传输二进制数据的位数

单位:比特/秒 bps

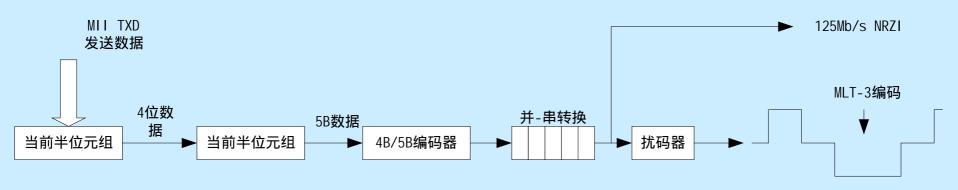
波特率与比特率的关系: $C = B \log_2 n$

C:比特率 B:波特率

n:调制电平数或线路的状态数,为2的整数倍

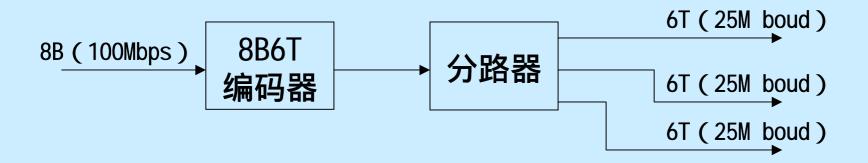
希望在低波特率的情况下获得高的比特率,这样能降低对线路的要求。

4B/5B码


表 14.6 4B/5B 码组

数据输入(4比特)	码组(5比特)	NRZI 模式	解释
0000	11110		数据 0
0001	01001		数据!
0010	00101		数据 2
0011	10101		数据 3
0100	01010		数据 4
0101	01011		数据 5
0110	01110		数据 6
0111	01111		数据 7
1000	10010		数据 8
1001	10011		数据 9
1010	10110		数据 A
1011	10111	上海交通大字计算机系	数据 B

MLT-3编码


对双绞线的100BASETX来说,为减少线路上的辐射,对4B/5B编码后的信号进一步采用MLT-3编码处理,步骤如下:

- 1) 将NRZI信号转换回NRZ
- 2) 置乱:对比特流进行置乱处理,产生均匀的频谱分布
- 3) 编码:用三级电平表达二进制数

100BASE-TX 数据编码及发送

8B6T码

4.2 快速以太网系统组成

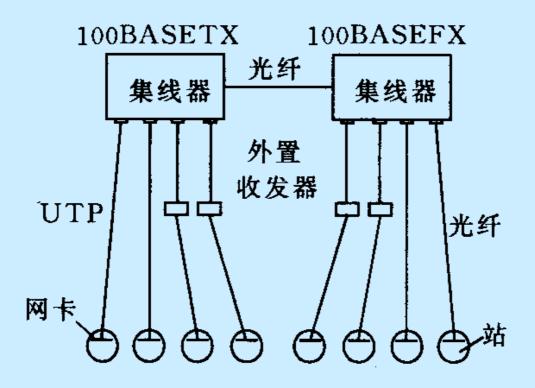
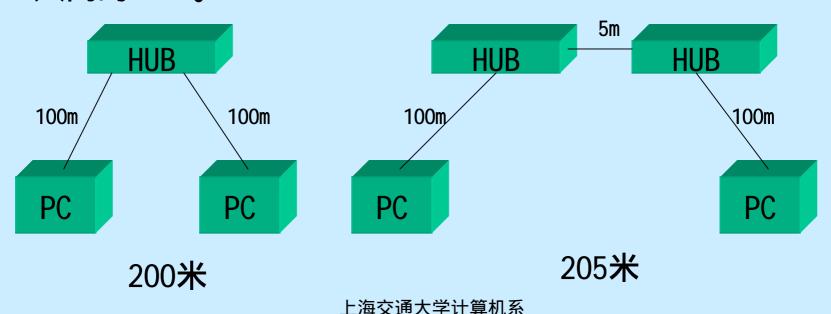


图 4.3 快速以太网系统组成

4.3 快速以太网与10BASET/FL性能比较


表 4.1 100M 快速以太网与 10BASET/FL 性能比较

	10BASET/FL	100BASETX/FX
IEEE 标准	802. 3i/j	802. 3 u
拓扑结构	星状	星状
传输率	10 Mb/s	100 Mb/s
媒体	3、4、5 类 UTP,MMF	5 类 UTP、STP,MMF、SMF
最长媒体段	UTP:100 m,MMF:2 km	UTP,STP:100 m,MMF:2 km,
		SMF:40 km
编码	曼彻斯特编码	4 b/5 b 代码,NRZI 编码
帧结构	符合 DIX、802.3 标准	符合 DIX、802.3 标准
CSMA/CD	符合 DIX、802.3 标准	符合 DIX、802.3 标准
碰撞槽时间	51. 2 μs(512 bit)	5. 12 μs(512 bit)
碰撞域范围	UTP:500 m(4 个中继器)	2个中继器:
	·	UTP,STP:205 m
	10BASET/FL	100BASETX/FX
		F:228 m
		UTP+F:216 m
		无中继器:UTP、STP:100 m
		F:412 m
交换技术	支持	支持
	支持 上海交通大学计算	~ 10 大 、、、

4.4 快速以太网系统的跨距

100M以太网的传送速率是10M以太网的10倍,所以同样的帧长度在100M以太网中的发送时间只有10M以太网的1/10。

根据前一章的分析,可知跨距与最小帧长度的关系,所以在快速以太网中跨距近似为10M以太网的1/10。

计算机组网原理

根据第3章的计算并考虑N个中继器的延迟时间

Slot time =
$$2(\tau + t_{PHY} + N \times t_{PHY})$$

因 Lmin/R = Slot time,

$$T = S/V$$

所以

$$Lmin/R = 2 (S/v + t_{PHY} + N \times t_{PHY})$$

得:

$$S = \frac{1}{2} v(Lmin /R - 2t_{PHY} - 2N \times t_{中继器})$$
上海交通大学计算机系 计算机组网原理

光纤介质的快速以太网跨距

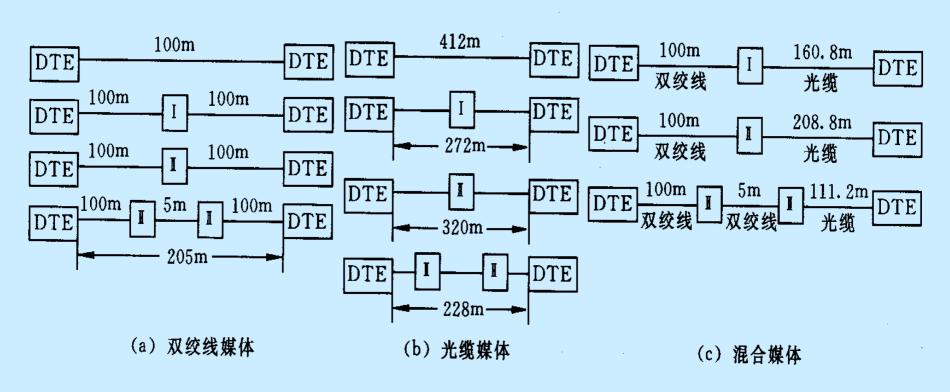


图 4.10 快速以太网系统跨距

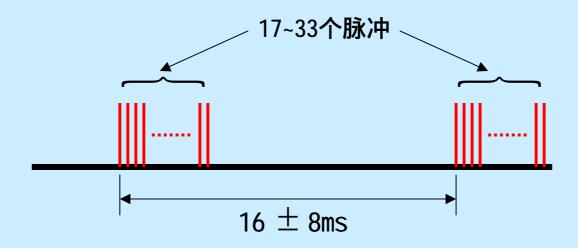
在光纤介质中为什么加了中继器反而使跨距缩短?

根据前章分析,跨距与碰撞检测时间相关,即与信号在介质上传播的时间相关。增加中继器后,中继器上有延迟时间,占用了介质上的传播时间,因而介质长度减少,缩短了跨距。

双工方式工作时,因没有碰撞冲突,不需考虑碰撞检测时间,跨距仅受信号传播衰减的影响,所以跨距可增加到2km。

4.5 自动协商与10Mb/s或100Mb/s自适应功能

网卡、HUB、交换机端口可自动适应10Mb/s和100Mb/s速率。


4.5.1 自动协商 两个通信端口之间通过特殊的编码脉冲进行协商。

NLP(正常链路脉冲): 10M以太网中用于链路完整性测试

FLP(快速链路脉冲)

100M以太网中用于自动协商

- •奇数编号的脉冲为时钟脉冲,用于同步。
- •偶数编号的脉冲为数据脉冲,共16个脉冲(2、4、6.....32),构成一个16位的LCW(链路代码字)。

协商过程

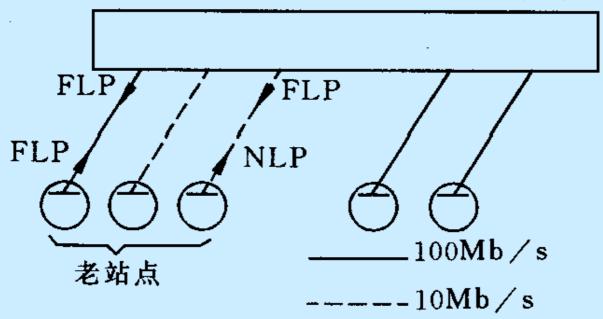

当端口相连,并加电后,双方就通过LCW进行协商,协商完成后,FLP就不再出现。 自动协商优先级如下:

表 4.2 自动协商优先级排队表

优先级	工作模式
1	100BASET2 全双工
2	100BASETX 全双工
3	100BASET2
4	100BASET4
5	100BASETX
6	10BASET 全双工
7	10BASETX

4.5.2 10Mb/s或100Mb/s自适应

具有自动协商的10Mb/s或100Mb/s集线器

图 4.13 10M b/s 或 100 Mb/s 端口自适应

- •通过FLP协商
- •通过FLP与NLP协商_{上海交通大学计算机系} 计算机组网原理

4.6 组网典型连接解决方案

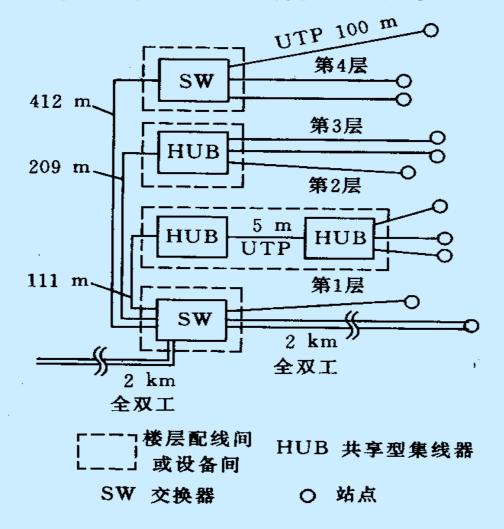
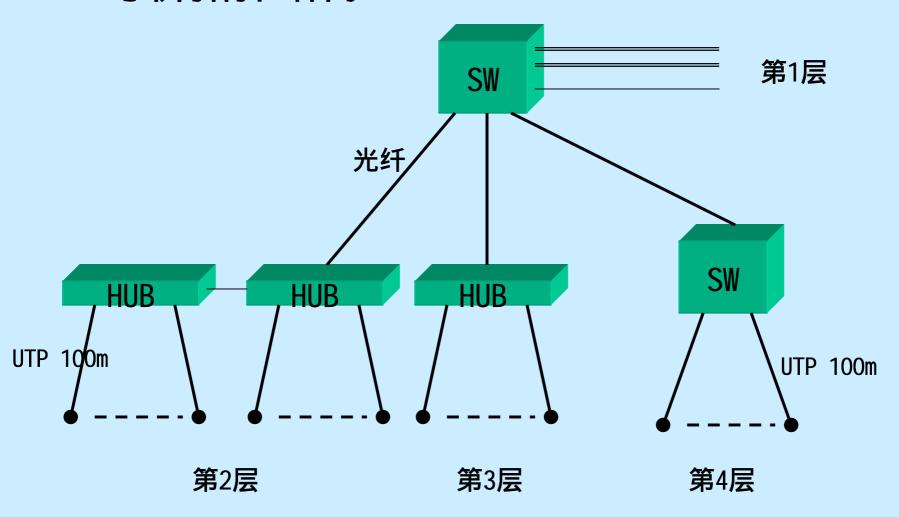



图 4.14 组网典型连接解决方案

计算机组网原理

等价拓扑结构

