Communications in Mathematical Analysis

Volume 7, Number 1, pp. 1–10 (2009) ISSN 1938-9787

www.commun-math-anal.org

FINE SPECTRA OF LACUNARY MATRICES

MUHAMMED ALTUN*

Department of Mathematics Adıyaman University Adıyaman, 02040, TURKEY

VATAN KARAKAYA[†] Institute of Basic and Applied Sciences Adıyaman University Adıyaman, 02040, TURKEY

(Communicated by Toka Diagana)

Abstract

We examine the spectra and fine spectra of lacunary matrices over the sequence spaces c_0, c and ℓ_{∞} .

AMS Subject Classification: Primary 47A10; Secondary 47B37.

Keywords: Spectrum of an operator, lacunary matrices, the sequence spaces c_0, c and ℓ_{∞} .

1 Introduction

Let *X* and *Y* be Banach spaces and $T: X \to Y$ be a bounded linear operator. By R(T), we denote the range of *T*, i.e.,

$$R(T) = \{ y \in Y : y = Tx; x \in X \}.$$

By B(X), we denote the set of all bounded linear operators on X into itself. If X is any Banach space and $T \in B(X)$ then the *adjoint* T^* of T is a bounded linear operator on the dual X^* of X defined by $(T^*\phi)(x) = \phi(Tx)$ for all $\phi \in X^*$ and $x \in X$ with $||T|| = ||T^*||$. Let $X \neq \{\theta\}$ be a complex normed space and $T : \mathcal{D}(T) \to X$ be a linear operator with domain $\mathcal{D}(T) \subset X$. With T, we associate the operator $T_{\lambda} = T - \lambda I$, where λ is a complex number and I is the identity operator on $\mathcal{D}(T)$. If T_{λ} has an inverse, which is linear, we denote it by T_{λ}^{-1} , that is $T_{\lambda}^{-1} = (T - \lambda I)^{-1}$ and call it the *resolvent operator* of T. Many properties of T_{λ} and T_{λ}^{-1} depend on λ , and spectral theory is concerned with those properties. For

^{*}E-mail address: maltun@adiyaman.edu.tr

[†]E-mail address: vkarakaya@adiyaman.edu.tr

instance, we shall be interested in the set of all λ in the complex plane such that T_{λ}^{-1} exists. Boundedness of T_{λ}^{-1} is another property that will be essential. We shall also ask for what λ 's the domain of T_{λ}^{-1} is dense in X. For our investigation of T, T_{λ} and T_{λ}^{-1} , we need some basic concepts in spectral theory which are given as follows (see [12], pp. 370-371):

Let $X \neq \{\theta\}$ be a complex normed space and $T : \mathcal{D}(T) \to X$ be a linear operator with domain $\mathcal{D}(T) \subset X$. A *regular value* λ of *T* is a complex number such that (**R1**) T_{λ}^{-1} exists, (**R2**) T_{λ}^{-1} is bounded,

(**R3**) T_{λ}^{-1} is defined on a set which is dense in X.

The resolvent set $\rho(T)$ of T is the set of all regular values λ of T. Its complement $\sigma(T) = \mathbb{C} \setminus \rho(T)$ in the complex plane \mathbb{C} is called the *spectrum* of T. Furthermore, the spectrum $\sigma(T)$ is partitioned into three disjoint sets as follows: The *point spectrum* $\sigma_p(T,X)$ is the set such that T_{λ}^{-1} does not exist. A complex number $\lambda \in \sigma_p(T,X)$ is called an *eigen*value of T. The continuous spectrum $\sigma_c(T,X)$ is the set such that T_{λ}^{-1} exists and satisfies (R3) but not (R2). The *residual spectrum* $\sigma_r(T, X)$ is the set of complex numbers such that T_{λ}^{-1} exists but does not satisfy (R3).

A triangle is a lower triangular matrix with nonzero entries on the main diagonal. We shall write ℓ_{∞} , c and c_0 for the spaces of all bounded, convergent and null sequences, respectively. Let \mathbb{N} denote the set of positive integers. Let μ and γ be two sequence spaces and $A = (a_{nk})$ be an infinite matrix of real or complex numbers a_{nk} , where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from μ into γ , and we denote it by writing $A: \mu \to \gamma$, if for every sequence $x = (x_k) \in \mu$ the sequence $Ax = \{(Ax)_n\}$, the A-transform of x, is in γ ; where

$$(Ax)_n = \sum_k a_{nk} x_k \qquad (n \in \mathbb{N}).$$
(1.1)

By $(\mu: \gamma)$, we denote the class of all matrices A such that $A: \mu \to \gamma$. Thus, $A \in (\mu: \gamma)$ if and only if the series on the right side of (1.1) converges for each $n \in \mathbb{N}$ and every $x \in \mu$, and we have $Ax = \{(Ax)_n\}_{n \in \mathbb{N}} \in \gamma$ for all $x \in \mu$.

By a *lacunary* $\theta = (k_r)$; r = 0, 1, 2, ..., where $k_0 = 0$, we shall mean an increasing sequence of non-negative integers with $k_r - k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r)$ and the length of the intervals will be $h_r = k_r - k_{r-1}$. For any lacunary sequence θ let

$$N_{\theta} = \{x = (x_k): \text{ there exists } L \text{ such that } y_r = \frac{1}{h_r} \sum_{I_r} |x_k - L| \to \infty \}.$$

If $x \in N_{\theta}$ we let

$$||x||_{\theta} = \sup_{r} \left(\frac{1}{h_r} \sum_{k \in I_r} |x_k|\right)$$

Then $(N_{\theta}, ||\cdot||_{\theta})$ is a BK-space (see, Freedman et. al. [7]). Several authors including Karakaya [17], Savaş, Patterson [18], Orhan and Fridy [9] defined some new sequence spaces using lacunary sequences.

Let $x = (x_1, x_2, ...)$ and $y = (y_1, y_2, ...)$, then the *lacunary operator* is defined by the relation L(x) = y where

$$y_r = \frac{1}{h_r} \sum_{k \in I_r} x_k$$

and so L is represented by the matrix

$$L = \begin{bmatrix} \frac{1}{h_1} & \frac{1}{h_1} & \cdots & \frac{1}{h_1} & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \frac{1}{h_2} & \frac{1}{h_2} & \cdots & \frac{1}{h_2} & 0 & \cdots \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{h_3} & \cdots \\ \vdots & \ddots \end{bmatrix}.$$

We summarize the knowledge in the existing literature concerning the spectrum and the fine spectrum of the linear operators defined by some particular limitation matrices over some sequence spaces. Wenger [19] examined the fine spectrum of the integer power of the Cesàro operator over *c* and Rhoades [16] generalized this result to the weighted mean methods. Reade [15] worked the spectrum of the Cesàro operator over the sequence space c_0 . Gonzales [11] studied the fine spectrum of the Cesàro operator over the sequence space ℓ_p . Okutoyi [14] computed the spectrum of the Cesàro operator over the sequence space b_r . Recently, Yıldırım [20] worked the fine spectrum of the Rhally operators over the sequence space spaces c_0 and *c*. Next, Coşkun [8] studied the spectrum and fine spectrum for the p-Cesàro operator acting over the space c_0 . Akhmedov and Başar [1, 2] have determined the fine spectrum of the Cesàro operator and ℓ_p . Quite recently, de Malafosse [13], Altay and Başar [4] have, respectively, studied the spectrum and the fine spectrum of the difference operator over the sequence spaces s_r, c_0 and *c* where s_r denotes the Banach space of all sequences $x = (x_k)$ normed by

$$||x||_{s_r} = \sup_{k\in\mathbb{N}} \frac{|x_k|}{r^k}, \qquad (r>0).$$

Akhmedov and Başar [3], Altay and Başar [5] have determined the fine spectrum of the difference operator Δ and generalised difference operator B(r,s) over the sequence spaces ℓ_p and c_0, c , respectively. Later Bilgic and Furkan [6] worked on the spectrum of the operator B(r,s,t), defined by a triple-band lower triangular matrix, over the sequence spaces ℓ_1 and *bv*.

In this work, our purpose is to determine the fine spectra of the lacunary operator L over the sequence spaces c_0 and c and ℓ_{∞} .

Lemma 1.1. Let μ denote one of the sequence spaces c_0, c or ℓ_{∞} . Then the lacunary operator $L: \mu \to \mu$ is bounded and $||L||_{(\mu:\mu)} = 1$.

Proof. Let us do the proof for c_0 . The proof for $\mu = c$ or ℓ_{∞} is similar. Let $x = (x_1, x_2, ...) \in c_0$ and recall that c_0 is normed by $||x|| = \sup_n |x_n|$. Let $Lx = y = (y_1, y_2, ...)$. Then for each $r \in \mathbb{N}$ we have

$$|y_r| \leq \frac{1}{h_r} \sum_{k \in I_r} |x_k| \leq ||x||.$$

Hence $||Lx|| \le ||x||$ and so $||L|| \le 1$.

Now, take $x = (x_1, x_2, ...) \in c_0$ with the entries

$$x_k = \begin{cases} 1 & \text{if } k \in I_1 \\ 0 & \text{otherwise} \end{cases}$$

Then Lx = (1, 0, 0, ...) and ||Lx||/||x|| = 1. Hence ||L|| = 1.

2 The fine spectra of the lacunary operators

Lemma 2.1. $\sigma_p(L, c_0) \supset \{\lambda \in \mathbb{C} : |\lambda| < 1\}.$

Proof. Suppose $\lambda \in \mathbb{C}$ be such that $|\lambda| < 1$. Let $s = \min\{r \in \mathbb{N} : h_r \ge 2\}$ and define the sequence of positive integers (n_r) ; r = s, s + 1, ... by the recurrence relation $n_s = k_s$ and $n_r = k_{n_{r-1}}$ for r > s. In this way we get to a new partition of the set $(0, \infty)$, i.e.

$$(0,\infty) = \bigcup_{r\leq s} I_r \cup \bigcup_{t=1}^{\infty} (n_{s+t-1}, n_{s+t}].$$

Now define the sequence $x = (x_1, x_2, ...)$ so that

$$x_q = \begin{cases} 0 & \text{if } q < s \\ 1 & \text{if } q = s \\ \frac{h_s \lambda - 1}{h_s - 1} & \text{if } q \neq s \text{ and } q \in I_s \\ \frac{h_s \lambda - 1}{h_s - 1} \lambda^t & \text{if } q \in (n_{s+t-1}, n_{s+t}] \end{cases}$$

Let us first show that $x \in c_0$. The fraction $\frac{h_s \lambda - 1}{h_s - 1}$ is a constant, so let $A = \lfloor \frac{h_s \lambda - 1}{h_s - 1} \rfloor$. Let $\varepsilon > 0$ be given. Choose $t_0 \in \mathbb{N}$ so that $|\lambda|^{t_0} A < \varepsilon$. Then for $N = n_{s+t_0}$ we have

$$|x_q| < \varepsilon$$
 for $q > N$.

Hence $x \in c_0$. Now, let us show that *x* is an eigenvector of the operator *L* corresponding to the value λ . We need to show that $Lx = \lambda x$, i.e. $(Lx)_q = \lambda x_q$ for all $q \in \mathbb{N}$. Case 1: q < s

 $x_q = 0$. Since $h_1 = h_2 = \cdots = h_{s-1} = 1$, the q - th row of the matrix L is $(0, 0, \dots, 0, 1, 0, 0, \dots)$ where 1 is in the q - th place. Hence

$$(Lx)_q = 1x_q = 0.$$

Case 2: q = s

 $x_q = 1$. The q - th row of the matrix *L* is $(0, 0, \dots, 0, \frac{1}{h_s}, \frac{1}{h_s}, \dots, \frac{1}{h_s}, 0, 0, \dots)$ where the terms $\frac{1}{h_s}$ appear h_s times and the first $\frac{1}{h_s}$ appears in the s - th place. We can see that $s \in I_s$ and $x_s = 1$. If $r \in I_s \setminus \{s\}$ then $x_r = \frac{h_s \lambda - 1}{h_s - 1}$. So we have

$$(Lx)_q = \frac{1}{h_s} \sum_{q \in I_s} x_q = \frac{1}{h_s} [1 + (h_s - 1)\frac{h_s \lambda - 1}{h_s - 1}] = \lambda = \lambda x_q$$

<u>Case 3:</u> $q \neq s$ and $q \in I_s$ $x_q = \frac{h_s \lambda - 1}{h_s - 1}$. The q - th row of the matrix L is $(0, 0, \dots, 0, \frac{1}{h_q}, \frac{1}{h_q}, \dots, \frac{1}{h_q}, 0, 0, \dots)$ where the

terms $\frac{1}{h_q}$ appear h_q times and they appear in all the r-th places where $r \in I_q$. Then $r \in (k_{q-1}, k_q]$. Since $q \in I_s \setminus \{s\}$, we have $q \in (s, k_s]$, in other words $q \in [s+1, k_s]$. Hence $r \in (k_s, k_{k_s}] = (n_s, n_{s+1}]$ and this means $x_r = \frac{h_s \lambda - 1}{h_s - 1} \lambda$ for all $r \in I_q$. Then

$$(Lx)_q = \frac{1}{h_q} \sum_{r \in I_q} x_r = \frac{1}{h_q} [h_q \frac{h_s \lambda - 1}{h_s - 1} \lambda] = \frac{h_s \lambda - 1}{h_s - 1} \lambda = \lambda x_q.$$

<u>Case 4:</u> *t* is fixed and $q \in (n_{s+t-1}, n_{s+t}]$

 $x_q = \frac{h_s \lambda - 1}{h_s - 1} \lambda^t$. The q - th row of the matrix L is $(0, 0, \dots, 0, \frac{1}{h_q}, \frac{1}{h_q}, \dots, \frac{1}{h_q}, 0, 0, \dots)$ where the terms $\frac{1}{h_q}$ appear h_q times and they appear in all the r - th places where $r \in I_q$. Then $r \in (k_{q-1}, k_q]$. $q \in (n_{s+t-1}, n_{s+t}]$, in other words $q \in [n_{s+t-1} + 1, n_{s+t}]$. Hence $r \in (k_{n_{s+t-1}}, k_{n_{s+t}}] = (n_{s+t}, n_{s+t+1}]$ and this means $x_r = \frac{h_s \lambda - 1}{h_s - 1} \lambda^{t+1}$ for all $r \in I_q$. Then

$$(Lx)_{q} = \frac{1}{h_{q}} \sum_{r \in I_{q}} x_{r} = \frac{1}{h_{q}} [h_{q} \frac{h_{s} \lambda - 1}{h_{s} - 1} \lambda^{t+1}] = \frac{h_{s} \lambda - 1}{h_{s} - 1} \lambda^{t+1} = \lambda x_{q}.$$

Since *t* is arbitrary the equality above holds for any *t* with $q \in (n_{s+t-1}, n_{s+t}]$.

Hence *x* is an eigenvector corresponding to the value λ with $|\lambda| < 1$. So we have $\sigma_p(L, c_0) \supset \{\lambda \in \mathbb{C} : |\lambda| < 1\}$.

Corollary 2.2. $\sigma_p(L, \ell_{\infty}) \supset \sigma_p(L, c) \supset \{\lambda \in \mathbb{C} : |\lambda| < 1\}.$

Theorem 2.3. For μ one of the sequence spaces c_0, c or ℓ_{∞} , we have

$$\sigma(L,\mu) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}.$$

Proof. Since the lacunary operator is bounded over each of the spaces c_0, c and ℓ_{∞} , the spectra of the operator over these spaces are compact. We also know that for any spectral value λ we have $|\lambda| \leq ||T||$ when T is a bounded linear operator (see e.g. [12]). This means that for $\lambda \in \sigma(L,\mu)$ we have $\lambda \leq ||L||_{(\mu;\mu)} = 1$ when $\mu = c_0, c$ or ℓ_{∞} . Combining this with the results of Lemma 2.1 and Corollary 2.2 we have

$$\{\lambda \in \mathbb{C} : |\lambda| < 1\} \subset \sigma_p(L,\mu) \subset \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$$

when $\mu = c_0, c$ or ℓ_{∞} . Now, using the compactness of the set $\sigma_p(L, \mu)$ we get to the result we need.

Theorem 2.4. The lacunary operator $L : \mu \to \mu$ is not compact, when μ is one of the sequence spaces c_0, c or ℓ_{∞} .

Proof. By Theorem 8.3-1 of [12], the set of eigenvalues of any compact linear operator on a normed space is countable. But, the set of eigenvalues of L is uncountable by Lemma 2.1 and Corollary 2.2.

Theorem 2.5. $\sigma_p(L, \ell_{\infty}) = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}.$

Proof. Let $|\lambda| \le 1$ be given. The sequence *x* which was given in the proof of Lemma 2.1, is bounded since λ^t is bounded for $|\lambda| \le 1$ and the fraction $\frac{h_s \lambda - 1}{h_s - 1}$ is a constant. *x* is also an eigenvector for λ with $|\lambda| \le 1$. The proof of the equality $Lx = \lambda x$, is the same as in the proof of Lemma 2.1.

Since $\sigma(L, \ell_{\infty})$ is partitioned into with $\sigma_p(L, \ell_{\infty}), \sigma_c(L, \ell_{\infty})$ and $\sigma_r(L, \ell_{\infty})$ we deduce the next result.

Corollary 2.6. $\sigma_c(L, \ell_{\infty}) = \sigma_r(L, \ell_{\infty}) = \emptyset.$

Theorem 2.7.

$$\sigma_p(L,c_0) = \begin{cases} \{\lambda \in \mathbb{C} : |\lambda| < 1\} \cup \{1\} & \text{if } h_1 = 1\\ \{\lambda \in \mathbb{C} : |\lambda| < 1\} & \text{if } h_1 \neq 1 \end{cases}$$

Proof. By Lemma 2.1 and Theorem 2.3 we have

$$\{\lambda \in \mathbb{C} : |\lambda| < 1\} \subset \sigma_p(L, c_0) \subset \{\lambda \in \mathbb{C} : |\lambda| \le 1\}.$$

So we only need to examine the values λ with $|\lambda| = 1$.

Let us first show that any value λ with $|\lambda| = 1$ and $\lambda \neq 1$ cannot be an eigenvalue of the lacunary operator *L*. Let $x \in c_0$ be an eigenvector for a given λ with $|\lambda| = 1$ and $\lambda \neq 1$. Then the linear system of equations

$$\lambda x_1 = \frac{1}{h_1} \sum_{k \in I_1} x_k$$

$$\lambda x_2 = \frac{1}{h_2} \sum_{k \in I_2} x_k$$

:
(2.1)

hold. Let *s* be defined as in the proof of lemma 2.1. If s > 1, the first s - 1 linear equations of (2.1) will be of the form

 $\lambda x_k = x_k$

k = 1, 2, ..., s - 1. Hence $x_k = 0$ for k = 1, 2, ..., s - 1. So without loss of generality let s = 1. Let x_m be the first nonzero entry of x. Case 1: m = 1

The first equation of (2.1) will be

$$(\lambda - \frac{1}{h_1})x_1 = \frac{1}{h_1}(x_2 + x_3 + \dots + x_{k_1}).$$

Since $x_1 \neq 0$ and $\lambda - \frac{1}{h_1} \neq 0$, there is at least one nonzero entry in $\{x_2, x_3, \dots, x_{k_1}\}$. Let us choose one of these nonzero entries and let it be x_{t_1} . Let $a = |x_{t_1}| > 0$. The $t_1 - th$ equation of (2.1) will be

$$\lambda x_{t_1} = \frac{1}{h_{t_1}} (x_{k_{(t_1-1)}+1} + x_{k_{(t_1-1)}+2} + \dots + x_{k_{t_1}}).$$

The right side of above equality is the arithmetic mean of the entries $x_{k_{(t_1-1)}+1}, x_{k_{(t_1-1)}+2}, \dots, x_{k_{t_1}}$. Since absolute value of the left side is $|\lambda x_{t_1}| = |\lambda| |x_{t_1}| = a$, at

6

least one of the entries $x_{k_{t_1-1}+1}, x_{k_{t_1-1}+2}, \ldots, x_{k_{t_1}}$ has absolute value greater or equal to *a*. Let x_{t_2} be an entry with $|x_{t_2}| \ge a$.

The $t_2 - th$ equation of (2.1) will be

$$\lambda x_{t_2} = \frac{1}{h_{t_2}} (x_{k_{(t_2-1)}+1} + x_{k_{(t_2-1)}+2} + \dots + x_{k_{t_2}}).$$

The right side of above equality is again the arithmetic mean of the entries

 $x_{k_{(t_2-1)}+1}, x_{k_{(t_2-1)}+2}, \ldots, x_{k_{t_2}}$. Since absolute value of the left side is $|\lambda x_{t_2}| = |\lambda| |x_{t_2}| \ge a$, at least one of the entries $x_{k_{(t_2-1)}+1}, x_{k_{(t_2-1)}+2}, \ldots, x_{k_{t_2}}$ has absolute value greater or equal to *a*. Let x_{t_3} be an entry with $|x_{t_3}| \ge a$. In the same way we can find x_{t_4}, x_{t_5}, \ldots By the way of construction $t_i > t_{i-1}$; $i = 2, 3, \ldots$ and hence $(x_{t_1}, x_{t_2}, \ldots)$ is a subsequence of *x* which does not converge to zero. This is a contradiction to the fact that $x \in c_0$. So there is no eigenvector corresponding to the given λ with m = 1.

Case 2:
$$m > 1$$

The m - th equation of (2.1) will be

$$\lambda x_m = \frac{1}{h_m} (x_{k_{(m-1)}+1} + x_{k_{(m-1)}+2} + \dots + x_{k_m}).$$

 $x_m \neq 0$ and as in Case 1, the right side of above equality is the arithmetic mean of the entries $x_{k_{(m-1)}+1}, x_{k_{(m-1)}+2}, \dots, x_{k_m}$. So at least one of the entries

 $x_{k_{(m-1)}+1}, x_{k_{(m-1)}+2}, \ldots, x_{k_m}$ has absolute value greater or equal to $|x_m|$. Using this procedure recursively as in Case 1 we can find a subsequence of x which does not converge to zero, contradicting to the fact that $x \in c_0$. So there is no eigenvector corresponding to the given λ with m > 1.

 λ was arbitrary with $|\lambda| = 1$ and $\lambda \neq 1$. Case 1 and Case 2 show that there is no eigenvector in c_0 that corresponds to any λ with $|\lambda| = 1$ and $\lambda \neq 1$.

If $h_1 \neq 1$, then s = 1 and we can prove that $\lambda = 1$ is not an eigenvalue of the operator *L* in the same way as above.

If $h_1 = 1, x = (1, 0, 0, ...)$ is an eigenvector of *L* corresponding to the value $\lambda = 1$. \Box

Theorem 2.8. $\sigma_p(L,c) = \{\lambda \in \mathbb{C} : |\lambda| < 1\} \cup \{1\}.$

Proof. By Corollary 2.2 and Theorem 2.3 we have

$$\{\lambda \in \mathbb{C} : |\lambda| < 1\} \subset \sigma_p(L,c) \subset \{\lambda \in \mathbb{C} : |\lambda| \le 1\}.$$

We only need to examine the values λ with $|\lambda| = 1$.

(1,1,...) is an eigenvector for the value $\lambda = 1$. Hence $1 \in \sigma_p(L,c)$. Now, suppose $x \in c$ is an eigenvector which corresponds to a value λ with $|\lambda| = 1$ and $\lambda \neq 1$. And suppose x converges to a value a. By Silverman-Toeplitz Theorem the operator L preserves limits. This means Lx converges to a and $(L - \lambda I)x$ converges to $a(1 - \lambda)$. Since x is an eigenvector $(L - \lambda I)x = (0, 0, ...)$, and so $a(1 - \lambda) = 0$. Hence a = 0. So $x \in c_0$. This means that x is also an eigenvector of the operator L over c_0 corresponding to the value λ . But by Theorem 2.7 x cannot be such an eigenvector. Therefore any λ with $|\lambda| = 1$ and $\lambda \neq 1$ is not an eigenvalue of the operator L over c.

Lemma 2.9 ([10], p. 59). *T* has a dense range if and only if T^* is one to one.

If $T : c_0 \to c_0$ is a bounded linear operator represented by the matrix A, then it is known that the adjoint operator $T^* : c_0^* \to c_0^*$ is defined by the transpose A^t of the matrix A. It should be noted that the dual space c_0^* of c_0 is isometrically isomorphic to the Banach space ℓ_1 .

Theorem 2.10. $\sigma_r(L, c_0) = \emptyset$.

Proof. Suppose $h_1 \neq 1$, then by Theorem 2.7 $\sigma_r(L, c_0) \subset \{\lambda \in \mathbb{C} : |\lambda| = 1\}$. So let $|\lambda| = 1$. In this case the adjoint operator L^*_{λ} , which is the transpose of L_{λ} , is a triangle, so it is one to one. Hence, by Lemma 2.9 $\lambda \notin \sigma_r(L, c_0)$. So $\sigma_r(L, c_0) = \emptyset$ when $h_1 \neq 1$.

Now, suppose $h_1 = 1$, then by Theorem 2.7 $\sigma_r(L, c_0) \subset \{\lambda \in \mathbb{C} : |\lambda| = 1\} \setminus \{1\}$. So let $|\lambda| = 1$ and $\lambda \neq 1$. In this case the transpose L^*_{λ} is again a triangle, so L^*_{λ} is one to one. Hence, using Lemma 2.9 again we can say $\lambda \notin \sigma_r(L, c_0)$. We also have $\sigma_r(L, c_0) = \emptyset$ for $h_1 = 1$.

Corollary 2.11.

$$\sigma_c(L,c_0) = \begin{cases} \{\lambda \in \mathbb{C} : |\lambda| = 1\} \setminus \{1\} & \text{if } h_1 = 1\\ \{\lambda \in \mathbb{C} : |\lambda| = 1\} & \text{if } h_1 \neq 1 \end{cases}$$

If $T : c \to c$ is a bounded matrix operator represented by the matrix A, then $T^* : c^* \to c^*$ acting on $\mathbb{C} \oplus \ell_1$ has a matrix representation of the form

$$\left[\begin{array}{cc} \chi & 0 \\ b & A^t \end{array}\right],$$

where χ is the limit of the sequence of row sums of *A* minus the sum of the limit of the columns of *A*, and *b* is the column vector whose k^{th} entry is the limit of the k^{th} column of *A* for each $k \in \mathbb{N}$. For $L_{\lambda} : c \to c$, the matrix L_{λ}^* is of the form

$$\left[\begin{array}{cc} 1-\lambda & 0\\ 0 & L^t_\lambda \end{array}\right].$$

Theorem 2.12. $\sigma_r(L, c) = \emptyset$.

Proof. By Theorem 2.8 $\sigma_r(L,c) \subset \{\lambda \in \mathbb{C} : |\lambda| = 1\} \setminus \{1\}$. So let $|\lambda| = 1$ and $\lambda \neq 1$. In this case L^*_{λ} is a triangle, hence it is one to one. Hence, by Lemma 2.9 we have $\lambda \notin \sigma_r(L,c)$. So $\sigma_r(L,c) = \emptyset$.

Corollary 2.13. $\sigma_c(L,c) = \{\lambda \in \mathbb{C} : |\lambda| = 1\} \setminus \{1\}.$

Acknowledgments

The authors thank the referees for their careful reading of the manuscript and insightful comments.

References

- A. M. Akhmedov, F. Basar, On spectrum of the Cesàro operator, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 19, 3-8 (2004).
- [2] A. M. Akhmedov, F. Basar, On the fine spectrum of the Cesàro operator in c₀, Math. J. Ibaraki Univ. 36 (2004) 25-32.
- [3] A. M. Akhmedov, F. Basar, On the fine spectra of the difference operator Δ over the sequence space ℓ_p , $(1 \le p < \infty)$, Demonstratio Math., 39 (2006).
- [4] B. Altay, F. Basar, On the fine spectrum of the difference operator on c₀ and c, Inform. Sci. 168 (2004) 217-224.
- [5] B. Altay, F. Basar, On the fine spectrum of the generalized difference operator B(r,s) over the sequence spaces c_0 and c, Internat. J. Math. Math. Sci. 18 (2005) 3005-3013.
- [6] H. Bilgiç, H. Furkan, On the fine spectrum of the operator B(r,s,t) over the sequence spaces ℓ_1 and by, Math. and Comp. Modelling 45 (2007) 883-891.
- [7] A. R. Freedman, J. J. Sember, M. Rafhael, Some Cesàro-type summability spaces, Proc. London. Math. Soc. (3) 37 (1973), 508-520.
- [8] C. Coşkun, *The spectra and fine spectra for p-Cesàro operators*, Turkish J. Math., 21, 207-212 (1997).
- [9] J. Fridy, C. Orhan, *Lacunary statistical summability*, J. Math. Anal. and Appl. 173 (1993), 497-504.
- [10] S. Goldberg, *Unbounded Linear Operators*, Dover Publications, Inc., New York, 1985.
- [11] M. Gonzàlez, The fine spectrum of the Cesàro operator in ℓ_p (1 \infty), Arch. Math. 44 (1985) 355-358.
- [12] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons Inc., New York, 1978.
- [13] B. de Malafosse, Properties of some sets of sequences and application to the spaces of bounded difference sequences of order μ, Hokkaido Math. J. 31 (2) (2002) 283-299.
- [14] J. T. Okutoyi, On the spectrum of C_1 as an operator on by, Commun. Fac. Sci. Univ. Ank. Ser. A1 41 (1992) 197-207.
- [15] J. B. Reade, On the spectrum of the Cesàro operator, Bull. London Math. Soc. 17 (1985) 263-267.
- [16] B. E. Rhoades, *The fine spectra for weighted mean operators*, Pacific J. Math. 104 (1) (1983) 219-230.

- [17] E. Savaş, V. Karakaya, Some new sequence spaces defined by lacunary sequences, Math. Slovaca 57 (2007) No: 4, 1-7.
- [18] E. Savaş, R. Patterson, *Double sequence spaces characterized by lacunary sequences*, Appl. Math. Lett. 20 (2007) No: 9, 964-970.
- [19] R. B. Wenger, *The fine spectra of Hölder summability operators*, Indian J. Pure Appl. Math., 6, 695-712 (1975).
- [20] M. Yıldırım, On the spectrum and fine spectrum of the compact Rhally operators, Indian J. Pure Appl. Math. 27 (8) (1996) 779-784.