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Abstract

We examine the spectra and fine spectra of lacunary matrices over the sequence spaces
Co,C andle.
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1 Introduction

Let X andY be Banach spaces afid X — Y be a bounded linear operator. BJT), we
denote the range df, i.e.,

RT)={yeY:y=TxxeX}.

By B(X), we denote the set of all bounded linear operatorXanto itself. If X is any
Banach space antl € B(X) then theadjoint T* of T is a bounded linear operator on the
dualX* of X defined by(T*@)(x) = @(Tx) for all p € X* andx € X with ||T|| = ||T*||. Let

X # {6} be a complex normed space ahd D(T) — X be a linear operator with domain
D(T) C X. With T , we associate the operaffr= T — Al, whereA is a complex number
andl is the identity operator oD(T). If T, has an inverse, which is linear, we denote it
by T{l, that isT/\*1 = (T —Al)~1 and call it theresolvent operatoof T . Many properties

of T, and TA‘1 depend on\, and spectral theory is concerned with those properties. For
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instance, we shall be interested in the set ohal the complex plane such th@f1 exists.
Boundedness oT{1 is another property that will be essential. We shall also ask for what
A’s the domain of'l'{1 is dense inX. For our investigation o , T, andT{1 , we need
some basic concepts in spectral theory which are given as follows (see [12], pp. 370-371):

Let X # {6} be a complex normed space ahd D(T) — X be a linear operator with
domainD(T) C X. A regular value\ of T is a complex number such that
(R1) T, * exists,

(R2) T, ' is bounded,
(R3) TA‘1 is defined on a set which is denseXn

Theresolvent sep(T) of T is the set of all regular values of T . Its complement
o(T) =C\p(T) in the complex plan€ is called thespectrunof T . Furthermore, the spec-
truma(T) is partitioned into three disjoint sets as follows: Tg@nt spectruno,(T, X) is
the set such thaif)\‘1 does not exist. A complex numbare ap(T,X) is called areigen-
valueof T. Thecontinuous spectrura.(T, X) is the set such thélt{l exists and satisfies
(R3) but not (R2). Theesidual spectrunm, (T, X) is the set of complex numbers such that
T, * exists but does not satisfy (R3).

A triangle is a lower triangular matrix with nonzero entries on the main diagonal. We
shall write 4, ¢c andcg for the spaces of all bounded, convergent and null sequences, re-
spectively. LetN denote the set of positive integers. leandy be two sequence spaces
andA = (ak) be an infinite matrix of real or complex numbex , wheren, k € N. Then,
we say thaf defines a matrix mapping frominto y, and we denote it by writing\: p— v,
if for every sequence = (x) € pthe sequencAx= {(AxX)n}, the A-transform ofx, is iny;
where

(AX)n = Zankxk (neN). (1.1)

By (1Y), we denote the class of all matric&such thatA: p—y. Thus,A € (u:y) if and
only if the series on the right side of (1.1) converges for ea€tN and every € 4, and we
haveAx= {(AX)n}nen € Yfor all x e p.

By alacunary® = (k;); r =0,1,2,..., whereky = O, we shall mean an increasing
sequence of non-negative integers wWith- k. _1 — o asr — o. The intervals determined
by 8 will be denoted by, = (k_1,k] and the length of the intervals will bg = k; —k,_1.
For any lacunary sequenfdet

Np = {x= (X«) : there existd such that, = hi Z Xk — L| — oo}.
r r

If x € Ng we let
1
X||g = sup(i—
|[X/[e rIO(h

3 ).

T kel

Then (Ng, || - ||o) is a BK-space (see, Freedman et. al. [7]). Several authors including
Karakaya [17], Savas, Patterson [18], Orhan and Fridy [9] defined some new sequence
spaces using lacunary sequences.
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Let x = (Xg,%,...) andy = (y1,Y2,...), then thelacunary operatoris defined by the

relationL(x) =y where
1

Yr = Wr k;r Xk

and soL is represented by the matrix

1 1 1

I S A
|00 0 0 5 o O
|0 0 0O 0 0 0O 0 03

We summarize the knowledge in the existing literature concerning the spectrum and the
fine spectrum of the linear operators defined by some particular limitation matrices over
some sequence spaces. Wenger [19] examined the fine spectrum of the integer power of
the Cesaro operator ovet and Rhoades [16] generalized this result to the weighted mean
methods. Reade [15] worked the spectrum of thed@esperator over the sequence space
co. Gonzales [11] studied the fine spectrum of thedfe®perator over the sequence space
¢p. Okutoyi [14] computed the spectrum of the @esoperator over the sequence space
Recently, Yildirim [20] worked the fine spectrum of the Rhally operators over the sequence
spacexy andc. Next, Coskun [8] studied the spectrum and fine spectrum for the pr€es
operator acting over the spacg Akhmedov and Basar [1, 2] have determined the fine
spectrum of the Cé&so operator over the sequence spages. and/,. Quite recently, de
Malafosse [13], Altay and Basar [4] have, respectively, studied the spectrum and the fine
spectrum of the difference operator over the sequence spacgandc wheres: denotes
the Banach space of all sequenges (xx) normed by

|X|
IIXls = SUp~ (r>0).
c

Akhmedov and Basar [3], Altay and Basar [5] have determined the fine spectrum of the
difference operatak and generalised difference operagr, s) over the sequence spadgs
andcy, ¢, respectively. Later Bilgi¢c and Furkan [6] worked on the spectrum of the operator
B(r,s,t), defined by a triple-band lower triangular matrix, over the sequence spaasad
bv.

In this work, our purpose is to determine the fine spectra of the lacunary opexater
the sequence spacesandc and/..

Lemma 1.1. Let u denote one of the sequence spags or /.. Then the lacunary oper-
ator L : p— pis bounded andL ||y = 1.

Proof. Let us do the proof focy. The proof foru= c or 4, is similar. Letx = (X,%p,...) €
Co and recall thatg is normed by|x|| = sup, |%n|. LetLx=y = (y1,¥2,...). Then for each
r € Nwe have

1
el < > Il < I
I KET,

Hence||Lx|| < ||x|| and so||L|| < 1.
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Now, takex = (Xg, X2, ...) € Co with the entries

(1 ifkel
“ 1 0 otherwise"

ThenLx= (1,0,0,...) and||Lx||/||X|| = 1. Hence||L|| = 1. O

2 The fine spectra of the lacunary operators

Lemma 2.1. op(L,co) D{A € C: |A| < 1}.

Proof. Suppose\ € C be such thafA| < 1. Lets= min{r € N: h; > 2} and define the
sequence of positive integefs;); r = s,s+ 1,... by the recurrence relatiom; = ks and
nr = ky,_, forr > s. In this way we get to a new partition of the §6tx), i.e

(0,0) = It U  (Nsyt—1,Nsyt]-
r<s t=1

Now define the sequenese= (X1, X2, ...) So that
0 ifg<s
1 ifg=s
ke %%% if q£sandge s
I if g€ (Nsi1,Nsu]

hs)\

Let us first show thax € co. The fraction is a constant, so le = [}-1|. Lete >0
be given. Choosk € N so that]A|°A < €. Then forN = ns,t, we have

IXq| < €forgq>N.

Hencex € cy. Now, let us show that is an eigenvector of the operatoicorresponding to
the valueh. We need to show thaix = Ax, i.e. (Lx)q = AxXq forall g € N.
Case 1g<s

Xq=0. Sincehy =hy =--- =hs_1 =1, theg—throw of the matrix_is (0,0,...,0,1,0,0,...)
wherel s in theq—th place. Hence

(LX)g = 1xq = 0.
Case 2g=s

Xq = 1. Theq—th row of the matrixL is (0,0,...,O,hls,his, R 1.0,0,...) where the terms
i appeaths times and the firsﬁ appears in the—th place. We can see that |5 and
xS =1 If r € Is\{s} thenx, = "2=L. So we have

hsA —1

(LX)q = he—1

[1+(hs—1)

=A=A
he = ] Xq

Case 31 ;é sandq € Is
Xq = f2=1. Theq— th row of the matrixL is (0,0,. ..,O,h—lq,hi, ,hl,O 0,...) where the
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termsh—lq appearhg times and they appear in all tme-th places where € Iq. Thenr €
(kg—1,kg]. Sinceq € Is\{s}, we haveq € (s k¢, in other wordsqg € [s+ 1,ks]. Hence
r € (ks,ki,] = (ns,Ns+1] and this means, = %)\ forallr € lg. Then

1 1. haA-1 haA — 1
LX)g = — =—1h Al = A=A
( )q hq requr hq[ q hs—l ] hs—l Xq

Case 4t is fixed andg € (Ns;t—1, Ns 1]

Xq = hﬁg"_‘ll)\t. Theq— th row of the matrixL is (0,0,...,0, h—lq, h—lq, . hiq,o, 0,...) where the
termsh—lq appearhq times and they appear in all tme-th places where € Iq. Thenr €
(Kg—1,Kg)- 9 € (Nsyt—1,Ns1t], in Other words) € [Ns 1+ 1,Ns (] Hencer € (Kn,,, ;,Kng, ] =
(Nsyt, Nsy+1] and this means, = %7\”1 forallr € Iq. Then

_1 _1 hS)\_lH-l_hS}\_l t+1 _
(LX)q_hqrEqur_hq[hq hs—l)\ ]_ hs—l)\ _)\Xq

Sincet is arbitrary the equality above holds for amyith q € (Ns;t—1, Nstt]-
Hencex is an eigenvector corresponding to the valuavith |A| < 1. So we have
op(L,co) D{A e C: || < 1}. O

Corollary 2.2. op(L,%w) D ap(L,c) D{A e C:|A| < 1}.
Theorem 2.3. For pone of the sequence spa@gsc or /., we have
oL,y ={AeC: |\ <1}

Proof. Since the lacunary operator is bounded over each of the spgaeand /., the
spectra of the operator over these spaces are compact. We also know that for any spectral
valueA we haveA| < ||T|| whenT is a bounded linear operator (see e.g. [12]). This means
that forA € o(L, ) we have < ||L|(y = 1 whenp = co,c or £.,. Combining this with

the results of Lemma 2.1 and Corollary 2.2 we have

{AeC: Al <1} Ccop(L,p) c{AecC:|A <1}

whenp = cg,c or £,. Now, using the compactness of the sgiL, ) we get to the result
we need. O

Theorem 2.4. The lacunary operatok : u— pis not compact, whep is one of the se-
guence space®),C Or /.

Proof. By Theorem 8.3-1 of [12], the set of eigenvalues of any compact linear operator on
a normed space is countable. But, the set of eigenvaluessaincountable by Lemma 2.1
and Corollary 2.2. O

Theorem 2.5. 0p(L,le) = {A € C:|A| <1}
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Proof. Let |A| < 1 be given. The sequenaevhich was given in the proof of Lemma 2.1,
is bounded sinca! is bounded fofA| < 1 and the fractiorﬂjj%ll is a constantx is also an
eigenvector foh with |A| < 1. The proof of the equalityx = Ax, is the same as in the proof
of Lemma 2.1. O

Sincea(L, /) is partitioned into withop(L, 4w ), 0¢(L, 4w) andoy (L, 4, ) we deduce the
next result.

Corollary 2.6. 0¢(L,%w) = 0r(L,le) = 0.
Theorem 2.7.

oste-{ REGHIZH Mot
Proof. By Lemma 2.1 and Theorem 2.3 we have

{AeC: Al <1} Cop(l,co) C{AeC: |\ <1}

So we only need to examine the valdewith |A| = 1.

Let us first show that any valuewith |A\| = 1 andA # 1 cannot be an eigenvalue of
the lacunary operatdr. Letx € ¢y be an eigenvector for a givenwith |A| = 1 andA # 1.
Then the linear system of equations

1

AXp1=— ) X
My kgl

Axp = 1 Xk (2.2)
h2 kelz

hold. Letsbe defined as in the proof of lemma 2.1slt# 1, the firsts— 1 linear equations
of (2.1) will be of the form

AXi = Xk

k=12,...,.s—1 Hencexx=0fork=12,...,s—1. So without loss of generality let
s= 1. Letxn be the first nonzero entry af

Caselm=1

The first equation of (2.1) will be

1 1
A= =)x = E(X2+X3+---+Xkl)-
Sincex; # 0 andA — hil # 0, there is at least one nonzero entry{i, Xs, ..., X, }. Let us
choose one of these nonzero entries and let {,bé.eta = |x,| > 0. Thet; —th equation
of (2.1) will be

1
)\th = 7(Xk([ 71)+1+Xk(t pt2 +e +thl)'
ht 1 1
1

The right side of above equality is the arithmetic mean of the entries
X, 1)1 X, 1)+25 -+ > Xigy Since absolute value of the left side|dsq,| = |A| [%,| = &, at
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least one of the entrieep((lrlﬁl,xk(lrlﬁz, e Xig has absolute value greater or equahto
Let x;, be an entry withx,| > a.
Thet, —th equation of (2.1) will be

1
A, = he, (Xk(tz—l)JFl Xkt T th2>‘
2

The right side of above equality is again the arithmetic mean of the entries

i, 1+1 Xk, 1425+ - Xk, SinCe absolute value of the left sidefAsc,| = [A| [%,| > a, at
least one of the entrieﬁ(tz,nﬂ,Xk(t2,1)+z, e X, has absolute value greater or equahto
Let X, be an entry withx,| > a. In the same way we can fing,, %.,.... By the way of
constructiort; > tj_1; i = 2,3,... and hencéx,,x,,...) is a subsequence afwhich does
not converge to zero. This is a contradiction to the facttlmaty. So there is no eigenvector
corresponding to the givewith m= 1.

Case?2m>1

Them—th equation of (2.1) will be

1
M = - Ry #1127+ %)
xm # 0and as in Case 1, the right side of above equality is the arithmetic mean of the entries
X 1)+25 Xk 1) 425 - - X So at least one of the entries
X1y +15 X1y +2: - - - - Xy NS @bsolute value greater or equaxdgl. Using this procedure
recursively as in Case 1 we can find a subsequengendiich does not converge to zero,
contradicting to the fact thate cp. So there is no eigenvector corresponding to the given
with m> 1.

A was arbitrary with)]A\| =1 andA # 1. Case 1 and Case 2 show that there is no
eigenvector ircy that corresponds to aywith |A| = 1 andA # 1.

If hy #£ 1, thens= 1 and we can prove that= 1is not an eigenvalue of the operator
in the same way as above.

If hy =1,x=(1,0,0,...) is an eigenvector df corresponding to the value=1. [

Theorem 2.8.0p(L,c) ={A € C: |A| <1} U{1}.
Proof. By Corollary 2.2 and Theorem 2.3 we have
{AeC:|A| <1} Cop(l,c)c{AeC: A <1}

We only need to examine the valuesvith |A| = 1.

(1,1,...) is an eigenvector for the value= 1. Hencel € o,(L,c). Now, suppose € ¢
is an eigenvector which corresponds to a valueith |\| = 1 andA # 1. And suppose
x converges to a value By Silverman-Toeplitz Theorem the operator L preserves limits.
This means.x converges taand(L — Al )x converges t@a(1—A). Sincex is an eigenvector
(L—=Al)x=(0,0,...), and soa(1—A) = 0. Hencea= 0. Sox € ¢o. This means that is
also an eigenvector of the operatoovercy corresponding to the valle But by Theorem
2.7 x cannot be such an eigenvector. Therefore &amwith |A\| =1 andA # 1 is not an
eigenvalue of the operattroverc. O
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Lemma 2.9 ([10], p. 59).T has a dense range if and onlyTif is one to one.

If T:cp— cpisabounded linear operator represented by the mAtriten it is known
that the adjoint operatof* : ¢ — cf; is defined by the transpog€ of the matrixA. It
should be noted that the dual spagef ¢, is isometrically isomorphic to the Banach space
/1.

Theorem 2.10.0; (L, co) = 0.

Proof. Supposén # 1, then by Theorem 2.@,(L,cp) C {A € C: |A| =1}. Solet|]A| = 1.
In this case the adjoint operatif, which is the transpose &, is a triangle, so it is one to
one. Hence, by Lemma 2X9¢ o;(L,cp). Soo; (L,co) = 0 whenh; # 1.

Now, supposé; = 1, then by Theorem 2.8, (L,co) C {A € C: |]A| =1}\{1}. So let
IA| =1 andA # 1. In this case the transpos is again a triangle, sb; is one to one.
Hence, using Lemma 2.9 again we can 3ay o;(L,cp). We also havey(L,cg) = 0 for
hi =1 O

Corollary 2.11.

[ eCiN =1\ {1} ifh=1
oc(L, )_{{)\G(C:I?\Izl} ifhi;«él'

If T:c— cisabounded matrix operator represented by the matrix A, THer* — c*
acting onC @ /1 has a matrix representation of the form

x O
b A |’

wherey is the limit of the sequence of row sums &fminus the sum of the limit of the
columns ofA, andb is the column vector whodd” entry is the limit of thek!™ column ofA
for eachk € N. ForL, : ¢ — c, the matrixL; is of the form

[ 1-A O ]
o L
Theorem 2.12.0;(L,c) = 0.

Proof. By Theorem 2.8 (L,c) C {A € C: |]A\|=1}\{1}. So let]A| = 1andA # 1. In this
casel; is a triangle, hence it is one to one. Hence, by Lemma 2.9 wehgwe (L,c). So
or(L,c) =0. O

Corollary 2.13. o¢(L,c) = {A € C: |A| =1}\ {1}.
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