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Abstract

We examine the spectra and fine spectra of lacunary matrices over the sequence spaces
c0,c and`∞.
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1 Introduction

Let X andY be Banach spaces andT : X →Y be a bounded linear operator. ByR(T), we
denote the range ofT, i.e.,

R(T) = {y∈Y : y = Tx;x∈ X}.

By B(X), we denote the set of all bounded linear operators onX into itself. If X is any
Banach space andT ∈ B(X) then theadjoint T∗ of T is a bounded linear operator on the
dualX∗ of X defined by(T∗φ)(x) = φ(Tx) for all φ ∈ X∗ andx∈ X with ||T||= ||T∗||. Let
X 6= {θ} be a complex normed space andT : D(T)→ X be a linear operator with domain
D(T)⊂ X. With T , we associate the operatorTλ = T−λI , whereλ is a complex number
andI is the identity operator onD(T). If Tλ has an inverse, which is linear, we denote it
by T−1

λ , that isT−1
λ = (T−λI)−1 and call it theresolvent operatorof T . Many properties

of Tλ andT−1
λ depend onλ, and spectral theory is concerned with those properties. For
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instance, we shall be interested in the set of allλ in the complex plane such thatT−1
λ exists.

Boundedness ofT−1
λ is another property that will be essential. We shall also ask for what

λ’s the domain ofT−1
λ is dense inX. For our investigation ofT , Tλ andT−1

λ , we need
some basic concepts in spectral theory which are given as follows (see [12], pp. 370-371):

Let X 6= {θ} be a complex normed space andT : D(T)→ X be a linear operator with
domainD(T)⊂ X. A regular valueλ of T is a complex number such that
(R1) T−1

λ exists,
(R2) T−1

λ is bounded,
(R3) T−1

λ is defined on a set which is dense inX.
The resolvent setρ(T) of T is the set of all regular valuesλ of T . Its complement

σ(T) =C\ρ(T) in the complex planeC is called thespectrumof T . Furthermore, the spec-
trum σ(T) is partitioned into three disjoint sets as follows: Thepoint spectrumσp(T,X) is
the set such thatT−1

λ does not exist. A complex numberλ ∈ σp(T,X) is called aneigen-
valueof T. Thecontinuous spectrumσc(T,X) is the set such thatT−1

λ exists and satisfies
(R3) but not (R2). Theresidual spectrumσr(T,X) is the set of complex numbers such that
T−1

λ exists but does not satisfy (R3).
A triangle is a lower triangular matrix with nonzero entries on the main diagonal. We

shall write`∞, c andc0 for the spaces of all bounded, convergent and null sequences, re-
spectively. LetN denote the set of positive integers. Letµ andγ be two sequence spaces
andA = (ank) be an infinite matrix of real or complex numbersank , wheren, k∈ N. Then,
we say thatA defines a matrix mapping fromµ into γ, and we denote it by writingA : µ→ γ,
if for every sequencex = (xk) ∈ µ the sequenceAx= {(Ax)n}, theA-transform ofx, is in γ;
where

(Ax)n = ∑
k

ankxk (n∈ N). (1.1)

By (µ : γ), we denote the class of all matricesA such thatA : µ→ γ. Thus,A∈ (µ : γ) if and
only if the series on the right side of (1.1) converges for eachn∈N and everyx∈ µ, and we
haveAx= {(Ax)n}n∈N ∈ γ for all x∈ µ.

By a lacunary θ = (kr); r = 0,1,2, . . ., wherek0 = 0, we shall mean an increasing
sequence of non-negative integers withkr −kr−1 → ∞ asr → ∞. The intervals determined
by θ will be denoted byIr = (kr−1,kr ] and the length of the intervals will behr = kr −kr−1.
For any lacunary sequenceθ let

Nθ = {x = (xk) : there existsL such thatyr =
1
hr

∑
Ir

|xk−L| → ∞}.

If x∈ Nθ we let

||x||θ = sup
r

(
1
hr

∑
k∈Ir

|xk|).

Then (Nθ, || · ||θ) is a BK-space (see, Freedman et. al. [7]). Several authors including
Karakaya [17], Savaş, Patterson [18], Orhan and Fridy [9] defined some new sequence
spaces using lacunary sequences.
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Let x = (x1,x2, ...) and y = (y1,y2, ...), then thelacunary operatoris defined by the
relationL(x) = y where

yr =
1
hr

∑
k∈Ir

xk

and soL is represented by the matrix

L =




1
h1

1
h1

· · · 1
h1

0 0 0 0 0 · · ·
0 0 0 0 1

h2

1
h2

· · · 1
h2

0 · · ·
0 0 0 0 0 0 0 0 1

h3
· · ·

...
...

...
...

...
...

...
...

...
...


 .

We summarize the knowledge in the existing literature concerning the spectrum and the
fine spectrum of the linear operators defined by some particular limitation matrices over
some sequence spaces. Wenger [19] examined the fine spectrum of the integer power of
the Ces̀aro operator overc and Rhoades [16] generalized this result to the weighted mean
methods. Reade [15] worked the spectrum of the Cesàro operator over the sequence space
c0. Gonzales [11] studied the fine spectrum of the Cesàro operator over the sequence space
`p. Okutoyi [14] computed the spectrum of the Cesàro operator over the sequence spacebv.
Recently, Yıldırım [20] worked the fine spectrum of the Rhally operators over the sequence
spacesc0 andc. Next, Coşkun [8] studied the spectrum and fine spectrum for the p-Cesàro
operator acting over the spacec0. Akhmedov and Başar [1, 2] have determined the fine
spectrum of the Cesàro operator over the sequence spacesc0, `∞ and`p. Quite recently, de
Malafosse [13], Altay and Başar [4] have, respectively, studied the spectrum and the fine
spectrum of the difference operator over the sequence spacessr ,c0 andc wheresr denotes
the Banach space of all sequencesx = (xk) normed by

||x||sr = sup
k∈N

|xk|
rk , (r > 0).

Akhmedov and Başar [3], Altay and Başar [5] have determined the fine spectrum of the
difference operator∆ and generalised difference operatorB(r,s) over the sequence spaces`p

andc0,c, respectively. Later Bilgiç and Furkan [6] worked on the spectrum of the operator
B(r,s, t), defined by a triple-band lower triangular matrix, over the sequence spaces`1 and
bv.

In this work, our purpose is to determine the fine spectra of the lacunary operatorL over
the sequence spacesc0 andc and`∞.

Lemma 1.1. Let µ denote one of the sequence spacesc0,c or `∞. Then the lacunary oper-
ator L : µ→ µ is bounded and||L||(µ:µ) = 1.

Proof. Let us do the proof forc0. The proof forµ= c or `∞ is similar. Letx= (x1,x2, . . .) ∈
c0 and recall thatc0 is normed by||x||= supn |xn|. Let Lx = y = (y1,y2, . . .). Then for each
r ∈ N we have

|yr | ≤ 1
hr

∑
k∈Ir

|xk| ≤ ||x||.

Hence||Lx|| ≤ ||x|| and so||L|| ≤ 1.
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Now, takex = (x1,x2, . . .) ∈ c0 with the entries

xk =
{

1 if k∈ I1
0 otherwise

.

ThenLx = (1,0,0, . . .) and||Lx||/||x||= 1. Hence||L||= 1.

2 The fine spectra of the lacunary operators

Lemma 2.1. σp(L,c0)⊃ {λ ∈ C : |λ|< 1}.
Proof. Supposeλ ∈ C be such that|λ| < 1. Let s = min{r ∈ N : hr ≥ 2} and define the
sequence of positive integers(nr); r = s,s+ 1, . . . by the recurrence relationns = ks and
nr = knr−1 for r > s. In this way we get to a new partition of the set(0,∞), i.e.

(0,∞) =
[

r≤s

Ir ∪
∞[

t=1

(ns+t−1,ns+t ].

Now define the sequencex = (x1,x2, . . .) so that

xq =





0 if q < s
1 if q = s
hsλ−1
hs−1 if q 6= sandq∈ Is
hsλ−1
hs−1 λt if q∈ (ns+t−1,ns+t ]

.

Let us first show thatx∈ c0. The fractionhsλ−1
hs−1 is a constant, so letA = |hsλ−1

hs−1 |. Let ε > 0
be given. Chooset0 ∈ N so that|λ|t0A < ε. Then forN = ns+t0 we have

|xq|< ε for q > N.

Hencex∈ c0. Now, let us show thatx is an eigenvector of the operatorL corresponding to
the valueλ. We need to show thatLx = λx, i.e. (Lx)q = λxq for all q∈ N.
Case 1:q < s
xq = 0. Sinceh1 = h2 = · · ·= hs−1 = 1, theq−th row of the matrixL is (0,0, . . . ,0,1,0,0, . . .)
where1 is in theq− th place. Hence

(Lx)q = 1xq = 0.

Case 2:q = s
xq = 1. Theq− th row of the matrixL is (0,0, . . . ,0, 1

hs
, 1

hs
, . . . , 1

hs
,0,0, . . .) where the terms

1
hs

appearhs times and the first1hs
appears in thes− th place. We can see thats∈ Is and

xs = 1. If r ∈ Is\{s} thenxr = hsλ−1
hs−1 . So we have

(Lx)q =
1
hs

∑
q∈Is

xq =
1
hs

[1+(hs−1)
hsλ−1
hs−1

] = λ = λxq.

Case 3:q 6= sandq∈ Is
xq = hsλ−1

hs−1 . Theq− th row of the matrixL is (0,0, . . . ,0, 1
hq

, 1
hq

, . . . , 1
hq

,0,0, . . .) where the
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terms 1
hq

appearhq times and they appear in all ther − th places wherer ∈ Iq. Thenr ∈
(kq−1,kq]. Sinceq ∈ Is\{s}, we haveq ∈ (s,ks], in other wordsq ∈ [s+ 1,ks]. Hence
r ∈ (ks,kks] = (ns,ns+1] and this meansxr = hsλ−1

hs−1 λ for all r ∈ Iq. Then

(Lx)q =
1
hq

∑
r∈Iq

xr =
1
hq

[hq
hsλ−1
hs−1

λ] =
hsλ−1
hs−1

λ = λxq.

Case 4:t is fixed andq∈ (ns+t−1,ns+t ]
xq = hsλ−1

hs−1 λt . Theq− th row of the matrixL is (0,0, . . . ,0, 1
hq

, 1
hq

, . . . , 1
hq

,0,0, . . .) where the

terms 1
hq

appearhq times and they appear in all ther − th places wherer ∈ Iq. Thenr ∈
(kq−1,kq]. q∈ (ns+t−1,ns+t ], in other wordsq∈ [ns+t−1+1,ns+t ]. Hencer ∈ (kns+t−1,kns+t ] =
(ns+t ,ns+t+1] and this meansxr = hsλ−1

hs−1 λt+1 for all r ∈ Iq. Then

(Lx)q =
1
hq

∑
r∈Iq

xr =
1
hq

[hq
hsλ−1
hs−1

λt+1] =
hsλ−1
hs−1

λt+1 = λxq.

Sincet is arbitrary the equality above holds for anyt with q∈ (ns+t−1,ns+t ].
Hencex is an eigenvector corresponding to the valueλ with |λ| < 1. So we have

σp(L,c0)⊃ {λ ∈ C : |λ|< 1}.

Corollary 2.2. σp(L, `∞)⊃ σp(L,c)⊃ {λ ∈ C : |λ|< 1}.

Theorem 2.3. For µ one of the sequence spacesc0,c or `∞, we have

σ(L,µ) = {λ ∈ C : |λ| ≤ 1}.

Proof. Since the lacunary operator is bounded over each of the spacesc0,c and `∞, the
spectra of the operator over these spaces are compact. We also know that for any spectral
valueλ we have|λ| ≤ ||T|| whenT is a bounded linear operator (see e.g. [12]). This means
that for λ ∈ σ(L,µ) we haveλ ≤ ||L||(µ:µ) = 1 whenµ = c0,c or `∞. Combining this with
the results of Lemma 2.1 and Corollary 2.2 we have

{λ ∈ C : |λ|< 1} ⊂ σp(L,µ)⊂ {λ ∈ C : |λ| ≤ 1}

whenµ = c0,c or `∞. Now, using the compactness of the setσp(L,µ) we get to the result
we need.

Theorem 2.4. The lacunary operatorL : µ→ µ is not compact, whenµ is one of the se-
quence spacesc0,c or `∞.

Proof. By Theorem 8.3-1 of [12], the set of eigenvalues of any compact linear operator on
a normed space is countable. But, the set of eigenvalues ofL is uncountable by Lemma 2.1
and Corollary 2.2.

Theorem 2.5. σp(L, `∞) = {λ ∈ C : |λ| ≤ 1}.
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Proof. Let |λ| ≤ 1 be given. The sequencex which was given in the proof of Lemma 2.1,
is bounded sinceλt is bounded for|λ| ≤ 1 and the fractionhsλ−1

hs−1 is a constant.x is also an
eigenvector forλ with |λ| ≤ 1. The proof of the equalityLx= λx, is the same as in the proof
of Lemma 2.1.

Sinceσ(L, `∞) is partitioned into withσp(L, `∞),σc(L, `∞) andσr(L, `∞) we deduce the
next result.

Corollary 2.6. σc(L, `∞) = σr(L, `∞) = /0.

Theorem 2.7.

σp(L,c0) =
{ {λ ∈ C : |λ|< 1}∪{1} if h1 = 1
{λ ∈ C : |λ|< 1} if h1 6= 1

.

Proof. By Lemma 2.1 and Theorem 2.3 we have

{λ ∈ C : |λ|< 1} ⊂ σp(L,c0)⊂ {λ ∈ C : |λ| ≤ 1}.

So we only need to examine the valuesλ with |λ|= 1.
Let us first show that any valueλ with |λ| = 1 andλ 6= 1 cannot be an eigenvalue of

the lacunary operatorL. Let x∈ c0 be an eigenvector for a givenλ with |λ|= 1 andλ 6= 1.
Then the linear system of equations

λx1 =
1
h1

∑
k∈I1

xk

λx2 =
1
h2

∑
k∈I2

xk (2.1)

...

hold. Lets be defined as in the proof of lemma 2.1. Ifs> 1, the firsts−1 linear equations
of (2.1) will be of the form

λxk = xk

k = 1,2, . . . ,s− 1. Hencexk = 0 for k = 1,2, . . . ,s− 1. So without loss of generality let
s= 1. Let xm be the first nonzero entry ofx.
Case 1:m= 1
The first equation of (2.1) will be

(λ− 1
h1

)x1 =
1
h1

(x2 +x3 + · · ·+xk1).

Sincex1 6= 0 andλ− 1
h1
6= 0, there is at least one nonzero entry in{x2,x3, . . . ,xk1}. Let us

choose one of these nonzero entries and let it bext1. Let a = |xt1|> 0. Thet1− th equation
of (2.1) will be

λxt1 =
1
ht1

(xk(t1−1)+1 +xk(t1−1)+2 + · · ·+xkt1
).

The right side of above equality is the arithmetic mean of the entries
xk(t1−1)+1,xk(t1−1)+2, . . . ,xkt1

. Since absolute value of the left side is|λxt1| = |λ| |xt1| = a, at
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least one of the entriesxk(t1−1)+1,xk(t1−1)+2, . . . ,xkt1
has absolute value greater or equal toa.

Let xt2 be an entry with|xt2| ≥ a.
Thet2− th equation of (2.1) will be

λxt2 =
1
ht2

(xk(t2−1)+1 +xk(t2−1)+2 + · · ·+xkt2
).

The right side of above equality is again the arithmetic mean of the entries
xk(t2−1)+1,xk(t2−1)+2, . . . ,xkt2

. Since absolute value of the left side is|λxt2| = |λ| |xt2| ≥ a, at
least one of the entriesxk(t2−1)+1,xk(t2−1)+2, . . . ,xkt2

has absolute value greater or equal toa.
Let xt3 be an entry with|xt3| ≥ a. In the same way we can findxt4,xt5, . . .. By the way of
constructionti > ti−1; i = 2,3, . . . and hence(xt1,xt2, . . .) is a subsequence ofx which does
not converge to zero. This is a contradiction to the fact thatx∈ c0. So there is no eigenvector
corresponding to the givenλ with m= 1.
Case 2:m> 1
Them− th equation of (2.1) will be

λxm =
1

hm
(xk(m−1)+1 +xk(m−1)+2 + · · ·+xkm).

xm 6= 0 and as in Case 1, the right side of above equality is the arithmetic mean of the entries
xk(m−1)+1,xk(m−1)+2, . . . ,xkm. So at least one of the entries
xk(m−1)+1,xk(m−1)+2, . . . ,xkm has absolute value greater or equal to|xm|. Using this procedure
recursively as in Case 1 we can find a subsequence ofx which does not converge to zero,
contradicting to the fact thatx∈ c0. So there is no eigenvector corresponding to the givenλ
with m> 1.

λ was arbitrary with|λ| = 1 and λ 6= 1. Case 1 and Case 2 show that there is no
eigenvector inc0 that corresponds to anyλ with |λ|= 1 andλ 6= 1.

If h1 6= 1, thens= 1 and we can prove thatλ = 1 is not an eigenvalue of the operatorL
in the same way as above.

If h1 = 1, x = (1,0,0, . . .) is an eigenvector ofL corresponding to the valueλ = 1.

Theorem 2.8. σp(L,c) = {λ ∈ C : |λ|< 1}∪{1}.

Proof. By Corollary 2.2 and Theorem 2.3 we have

{λ ∈ C : |λ|< 1} ⊂ σp(L,c)⊂ {λ ∈ C : |λ| ≤ 1}.

We only need to examine the valuesλ with |λ|= 1.
(1,1, . . .) is an eigenvector for the valueλ = 1. Hence1∈ σp(L,c). Now, supposex∈ c

is an eigenvector which corresponds to a valueλ with |λ| = 1 andλ 6= 1. And suppose
x converges to a valuea. By Silverman-Toeplitz Theorem the operator L preserves limits.
This meansLx converges toa and(L−λI)x converges toa(1−λ). Sincex is an eigenvector
(L−λI)x = (0,0, . . .), and soa(1−λ) = 0. Hencea = 0. Sox∈ c0. This means thatx is
also an eigenvector of the operatorL overc0 corresponding to the valueλ. But by Theorem
2.7 x cannot be such an eigenvector. Therefore anyλ with |λ| = 1 and λ 6= 1 is not an
eigenvalue of the operatorL overc.
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Lemma 2.9 ([10], p. 59).T has a dense range if and only ifT∗ is one to one.

If T : c0→ c0 is a bounded linear operator represented by the matrixA, then it is known
that the adjoint operatorT∗ : c∗0 → c∗0 is defined by the transposeAt of the matrixA. It
should be noted that the dual spacec∗0 of c0 is isometrically isomorphic to the Banach space
`1.

Theorem 2.10.σr(L,c0) = /0.

Proof. Supposeh1 6= 1, then by Theorem 2.7σr(L,c0)⊂ {λ ∈ C : |λ|= 1}. So let|λ|= 1.
In this case the adjoint operatorL∗λ, which is the transpose ofLλ, is a triangle, so it is one to
one. Hence, by Lemma 2.9λ /∈ σr(L,c0). Soσr(L,c0) = /0 whenh1 6= 1.

Now, supposeh1 = 1, then by Theorem 2.7σr(L,c0)⊂ {λ ∈ C : |λ| = 1}\{1}. So let
|λ| = 1 andλ 6= 1. In this case the transposeL∗λ is again a triangle, soL∗λ is one to one.
Hence, using Lemma 2.9 again we can sayλ /∈ σr(L,c0). We also haveσr(L,c0) = /0 for
h1 = 1.

Corollary 2.11.

σc(L,c0) =
{ {λ ∈ C : |λ|= 1}\{1} if h1 = 1
{λ ∈ C : |λ|= 1} if h1 6= 1

.

If T : c→ c is a bounded matrix operator represented by the matrix A, thenT∗ : c∗→ c∗

acting onC⊕ `1 has a matrix representation of the form

[
χ 0
b At

]
,

whereχ is the limit of the sequence of row sums ofA minus the sum of the limit of the
columns ofA, andb is the column vector whosekth entry is the limit of thekth column ofA
for eachk∈ N. ForLλ : c→ c, the matrixL∗λ is of the form

[
1−λ 0

0 Lt
λ

]
.

Theorem 2.12.σr(L,c) = /0.

Proof. By Theorem 2.8σr(L,c)⊂ {λ ∈C : |λ|= 1}\{1}. So let|λ|= 1 andλ 6= 1. In this
caseL∗λ is a triangle, hence it is one to one. Hence, by Lemma 2.9 we haveλ /∈ σr(L,c). So
σr(L,c) = /0.

Corollary 2.13. σc(L,c) = {λ ∈ C : |λ|= 1}\{1}.

Acknowledgments

The authors thank the referees for their careful reading of the manuscript and insightful
comments.



Fine Spectra of Lacunary Matrices 9

References

[1] A. M. Akhmedov, F. Basar,On spectrum of the Cesàro operator, Proc. Inst. Math.
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