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Abstract

In this paper we introduce the Lipschitz-Dunkl spaces associated with reflection group
Zd

2 . We provide characterizations of these spaces involving Bochner-Riesz means and
we obtain an approximation result that involves partial Dunkl integrals.
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1 Introduction

The Dunkl theory is built around Dunkl operators. They are differential-difference oper-
ators, associated to a finite reflection group, introduced by C.F. Dunkl [3] in 1989. They
can be regarded as a generalization of the usual partial derivatives by additional reflection
terms. Dunkl operators lead to generalizations of various analytic structures like the Fourier
transform and the convolution product. By introducing Dunkl’s intertwining operator and
Dunkl kernel [4] and thereafter Dunkl transform [5], C.F. Dunkl built up a framework for
an harmonic analysis theory with reflection groups. During the last years, the Dunkl theory
have gained considerable interest in various fields of mathematics.
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This paper deals with Lipschitz-Dunkl spaces. Assuming that the reflection group in-
volving in definition of the Dunkl operator isZd

2 , we consider the function spaceΛDβ that
we call Lipschitz-Dunkl and which is the set of functionsf ∈ L∞

κ (Rd) satisfying

sup
z∈Rd\{0}

(‖z‖−β‖τz f − f‖∞ ,κ) < ∞ ,

whereτz is the Dunkl translation operator (see [16, 18]) and0 < β≤ 1.
We obtain a characterization of the spacesΛDβ that involves Bochner-Riesz means, (for

the definition of Bochner-Riesz means for the classical Fourier transform, one can see [15,
p.170])

σδ
T f (x) = c2

κ

Z

‖y‖≤T

(
1− ‖y‖

2

T2

)δ

Fκ f (y)Eκ(ix,y)wκ(y)dy, x∈ Rd ,

when0 < β < 1.
Also, using Bochner-Riesz means, we establish a necessary condition for a functionf ∈
L2

κ(Rd) to be inΛD1 . Finally we prove an approximation result for the functions belonging
to ΛDβ, where0 < β < 1, involving the partial Dunkl integrals,

sT f (x) = c2
κ

Z

‖y‖≤T
Fκ f (y)Eκ(ix,y)wκ(y)dy, x∈ Rd .

Similar results have been obtained by Betancor and Rodrı́guez-Mesa in [1] in the framework
of Hankel transfom. Their work was motivated by one of D.V. Giang [7] , where Lipschitz
spaces, onR , are studied through the classical Fourier transform and Hilbert transform.

The authors are supported by the DGRST research project 04/UR/15-02.

2 Dunkl harmonic analysis onRd

For α ∈ Rd \{0}, we denote byσα the reflection in the hyperplaneHα orthogonal toα :

σα(x) = x− 2〈α,x〉
‖α‖2 α , x∈ Rd .

A finite subsetR of Rd \{0} is called a root system if it verifies :

(1) R ∩R.α = {−α,α} , for all α ∈ R .

(2) σα(R ) = R , for all α ∈ R .

Let R be a root system. The subgroupW =W(R ) of the orthogonal groupO(d), which
is generated by the reflections{σα | α ∈R } is called the reflection group associated with
R . It is shown in [6] thatW is finite. For a givenα ∈ Rd \

[

β∈R
Hβ , we consider the

following subsystemR+ of R :

R+ = {β ∈ R | 〈α,β〉> 0} ,
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that we call positive subsystem ofR . Notice that for eachβ ∈ R , eitherβ ∈ R+ or−β ∈
R+ . A function κ : R −→ C is called a multiplicity function onR if it is W−invariant.
This means thatκ is constant on each orbit ofR under the action ofW. In this paper, we
assume that the multiplicity functionκ is nonnegative. We associate withκ the index

γ = γ(R ) = ∑
α∈R+

κ(α)≥ 0,

and the weight functionwκ defined by

wκ(x) = ∏
α∈R+

|〈α,x〉|2κ(α) , x∈ Rd .

Notice that, sinceκ isW−invariant, the definition of the weight functionwκ does not depend
of the special choice ofR+ . On the other hand,wκ is W−invariant and homogeneous of
degree2γ.

Further, we introduce the Mehta-type constantcκ by

cκ =
(Z

Rd
e−‖x‖

2/2wκ(x)dx

)−1

.

In the case whered = 1 andα = 1, we havecκ =
1

2
γ+ 1

2 Γ
(
γ+ 1

2

) .

We denote byLp
κ(Rd) , 1≤ p≤ +∞, the space of complex-valued functionsf , mea-

surable onRd such that

‖ f‖p,κ =
[Z
Rd
| f (x)|pwκ(x)dx

] 1
p

< +∞ , if p < +∞,

and
‖ f‖∞ ,κ = esssup

x∈Rd

| f (x)|< +∞ .

E(Rd) designates the space of infinitely differentiable functions onRd .

Definition 2.1. Let R be a root system. We fix a positive subsystemR+ of R and we
consider a multiplicity functionκ on R . The Dunkl operatorsTj ; 1 ≤ j ≤ d , on Rd

associated with the reflection groupW and the multiplicity functionκ are the first-order
differential- difference operators given by

Tj f (x) =
∂ f
∂x j

(x)+ ∑
α∈R+

κ(α)α j
f (x)− f (σα(x))

〈α,x〉 , f ∈ E(Rd) , x∈ Rd ,

whereα j = 〈α,ej〉 , (e1,e2, . . . ,ed) being the canonical basis ofRd .

Notice that this definition does not depend on the special choice ofR+ . Furthermore, in
the caseκ = 0 the operatorsTj , 1≤ j ≤ d, reduce to the corresponding partial derivatives.
Examples : 1) In R , any root system takes the formR = {−α , α} whereα > 0. The
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corresponding reflection group isZ2 = {id,σ} acting onR by σ(x) = −x. Therefore, the
Dunkl operator onR associated with the multiplicity parameterγ is given by

T f(x) =
d f
dx

(x)+ γ
f (x)− f (−x)

x
, f ∈ E(R) , x∈ R .

2) InRd , R = {±e1,±e2, . . . ,±ed} is a root system. The reflection group associated with
R is W = Zd

2 and the Dunkl operators related toW are given, forx = (x1,x2, . . . ,xd) ∈ Rd ,
by

Tj f (x) =
∂ f
∂x j

(x)+
d

∑
i=1

κi
f (x)− f (x̂i)

xi
, 1≤ j ≤ d , f ∈ E(R) ,

wherex̂i = (x1, . . . ,xi−1,−xi ,xi+1 . . . ,xd) andκ1,κ2, . . . ,κd are nonnegative real numbers.
According to [4] , there exists a linear isomorphismVκ of the algebra of polynomials on

Rd , P = C[Rd] , determined uniquely by

Vκ(Pn) = Pn , Vκ|P0
= id andTjVκ = Vκ

∂
∂x j

, n∈ N∪{0} , 1≤ j ≤ d ,

wherePn ⊂ P is the subspace of homogeneous polynomials of degreen.
It is known thatVκ , which is called the Dunkl’s intertwining operator, is a positive operator
(see [12] .) More precisely, M. R̈osler has proved in [12] the following integral representa-
tion of Vκ :

Theorem 2.2. For eachx∈ Rd , there exists a unique probability measureµκ
x on the Borel

σ−algebra ofRd such that

Vκ(p)(x) =
Z

Rd
p(y)dµκ

x(y) , p∈ P . (2.1)

The representing measuresµκ
x are compactly supported and theirs supports verifysuppµκ

x ⊆
{y∈ Rd | ‖y‖ ≤ ‖x‖}. Moreover, they satisfy

µκ
rx(B) = µκ

x(r
−1B) , µκ

w(x)(B) = µκ
x(w

−1(B)) , r > 0, w∈W ,

for each Borel setB⊆ Rd .

By means of the identity (2.1), the Dunkl’s intertwining operatorVκ , may be extended
to E(Rd) . In fact,Vκ establishes a topological isomorphism fromE(Rd) onto itself (see
[18, Theorem 3.1])

The Dunkl kernelEκ(x,y) on Rd×Rd has been introduced by C.F. Dunkl in [4] by
means of the Dunkl intertwiningVκ as follows

Eκ(x,y) = Vκ

(
e〈 . ,y〉

)
(x) , x,y∈ Rd .

For y∈ Rd , the functionx 7−→ Eκ(x,y) can be viewed as the unique solution onRd of the
following initial problem





Tju(x,y) = y j u(x,y), 1≤ j ≤ d ,

u(0,y) = 1.
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Examples : 1) If d = 1 then, forγ > 0, the Dunkl kernel takes the form

Eγ(x,y) = jγ− 1
2
(ixy)+

xy
2γ+1

jγ+ 1
2
(ixy), x,y∈ R ,

where, forα >−1/2,

jα(z) = 2αΓ(α+1)
Jα(z)

zα = Γ(α+1)
+∞

∑
n=0

(−1)n( z
2)2n

n!Γ(n+α+1)
, z∈ C ,

with Jα is the Bessel function of the first kind and orderα (see [19])
2) In the case of the reflection groupW = Zd

2 , the multiplicity functionκ is represented by
d positive real numbersκ1,κ2, . . . ,κd (we suppose thatκ > 0.) The expression of Dunkl
kernelEκ and [20, Theorem 4.3] yield

Eκ(x,y) =
d

∏
m=1

(
Γ

(
κm+ 1

2

)
√

πΓ(κm)

Z 1

−1
(1− t2)κm−1(1+ t)etxmym dt

)
, x,y∈ Rd .

Finally, by using [11, Lemma 2.1], we get

Eκ(x,y) =
d

∏
m=1

(
jκm− 1

2
(ixmym)+

xmym

2κm+1
jκm+ 1

2
(ixmym)

)
, x,y∈ Rd .

Below, let us collect some known properties of Dunkl kernel which we can find in many
references, for instance, [4, 12, 14, 16, 17].
Properties : (i) The Dunkl kernel has the Bochner-type representation

Eκ(x,z) =
Z

Rd
e〈y,z〉dµκ

x(y) , x∈ Rd , z∈ Cd ,

whereµκ
x are the representing measures from Theorem 2.2 .

(ii) For all x,y∈ Rd , |Eκ(x, iy)| ≤ 1.
(iii) For all x,y∈ Cd , Eκ(x,y) = Eκ(y,x) .
(iv) For all x,y∈ Cd andλ ∈ C , Eκ(λx,y) = Eκ(x,λy) .

The functionEκ(x, iy) plays the role of the exponential functionei〈x,y〉 in the classical
Fourier analysis. In fact, C.F. Dunkl [5] has introduced the Dunkl transform, in terms of
Dunkl kernel, by

Fκ f (x) =
Z

Rd
f (y)Eκ(−ix,y)wκ(y)dy, f ∈ L1

κ(Rd) , x∈ Rd .

Further results concerning the Dunkl transform were later provided by M.F.E. de Jeu in [9].
The results listed in the below theorem are proved in [5, 9]

Theorem 2.3. (i) The Schwartz spaceS(Rd) is invariant underFκ .
(ii) (Inversion formula) For all f ∈ L1

κ(Rd) such thatFκ f belongs toL1
κ(Rd), we have

f (x) = c2
κ

Z

Rd
Fκ f (y)Eκ(iy,x)wκ(y)dy, a.e x∈ Rd . (2.2)
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(iii) (Plancherel’s theorem) The normalized Dunkl transformcκFκ can be uniquely
extended to an isometric isomorphism onL2

κ(Rd). In particular, we have the following
Plancherel’s formula

Z

Rd
| f (x)|2 wκ(x)dx= c2

κ

Z

Rd
|Fκ f (y)|2 wκ(y)dy, f ∈ L2

κ(Rd) . (2.3)

K. Trimèche has introduced in [18] the Dunkl translation operators by defining them,
on E(Rd) , by

τx f (y) = Vx
κ ⊗Vy

κ [(Vκ)−1 f (x+y)] , f ∈ E(Rd) , x,y∈ Rd ,

here the superscript denotes the relevant variable. These operators satisfy for allf ∈E(Rd)
andx,y∈ Rd , the following properties

τ0 f = f , Tj (τx f ) = τx (Tj f ) and τx f (y) = τy f (x) , 1≤ j ≤ d .

It is obvious from the definition that we have for allx,y∈ Rd andz∈ Cd

τx (Eκ( . , z))(y) = Eκ(x,z)Eκ(y,z) .

Further properties of the Dunkl translation are in the below proposition which is shown in
[18]

Proposition 2.4. Assume thatf belongs toS(Rd) . Then we have

Fκ(τx f )(y) = Eκ(ix,y)Fκ f (y) , x,y∈ Rd . (2.4)

Moreover,

τx f (y) = c2
κ

Z

Rd
Fκ f (ξ)Eκ(ix,ξ)Eκ(iy,ξ)wκ(ξ)dξ . (2.5)

As the Dunkl transform is an isometry ofL2
κ(Rd) onto itself and the functionEκ(ix,y)

is bounded, we can define the Dunkl translation operators onL2
κ(Rd) by the relation (2.4) of

the above proposition (see S. Thangavelu and Y. Xu [16].) On the other hand, by combining
the relation (2.4) with Plancherel formula we deduce thatτx , x ∈ Rd , is bounded as an
operator onL2

κ(Rd) into itself. Forp different from 2 theLp boundedness ofτx is still an
open problem. At the moment an explicit formula forτx f is unknown in general. However,
a such formula is known when the reflection group isW = Zd

2 (see [11] and [16]) and when
f is radial (see [13] .)

In the case whend = 1, M. Rösler has shown in [11] that the Dunkl translation operators
τx , x∈ R possess an integral representation

τx f (y) =
Z

R
f (t)dνx,y(t) , f ∈ E(R) , (2.6)

whereνx,y is a finite signed measure onR, with uniformly bounded total variation norm
and supported in[−|x|− |y| ,−||x|− |y||]∪ [||x|− |y|| , |x|+ |y|] .
An immediate consequence of the explicit formula (2.6) is theLp boundedness of the Dunkl
translation operator onR . S. Thangavelu and Y. Xu have shown in [16] that the explicit
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formula (2.6) extends to the case where the reflection group isW = Zd
2 . They have proved,

in this case, that the operatorτx , x∈ Rd , is bounded onLp
κ(Rd) , 1≤ p≤ +∞ , and we

have
‖τx f‖p,κ ≤ 3‖ f‖p,κ , x∈ Rd , f ∈ Lp

κ(Rd) . (2.7)

The Dunkl convolution product?κ of two functions f andg in L2
κ(Rd) , (see [16]) , is

given by

f ?κ g(x) =
Z

Rd
τx f (−y)g(y)wκ(y)dy, x∈ Rd .

For f and g belonging inD(Rd) the following equalities of the Dunkl convolution
product?κ are shown in [18]

f ?κ g = g?κ f and Fκ( f ?κ g) = (Fκ f )(Fκg) . (2.8)

Lemma 2.5. Let f ∈ L2
κ(Rd) andg∈ L1

κ(Rd). Then

Fκ ( f ?κ g)(x) = Fκ f (x)Fκg(x) a.ex∈ Rd . (2.9)

Proof. For everyf ∈D(Rd) andg∈ L1
κ(Rd) , the identity (2.9) holds.

Fix g∈ L1
κ(Rd) . For everyf ∈ L2

κ(Rd) , f ?κ g∈ L2
κ(Rd) and we have

‖Fκ ( f ?κ g)‖2,κ = ‖ f ?κ g‖2,κ ≤ ‖g‖1,κ‖ f‖2,κ , f ∈ L2
κ(Rd) .

On the other hand,Fκg∈ L∞
κ (Rd) then we have also

‖Fκ f Fκg‖2,κ ≤ ‖g‖∞ ,κ‖ f‖2,κ , f ∈ L2
κ(Rd) .

Therefore, for everyg∈ L1
κ(Rd) each term of the identity (2.9) define a bounded operator

from L2
κ(Rd) into itself. SinceD(Rd) is a dense subset ofL2

κ(Rd) we get the identity (2.9)
for every f ∈ L2

κ(Rd) andg∈ L1
κ(Rd) .

Lemma 2.6. Let f ∈ L1
κ(Rd) andg∈ Lp

κ(Rd) , 1≤ p < +∞. Then we have

τv( f ?κ g) = τv f ?κ g = f ?κ τvg, v∈ Rd . (2.10)

Proof. SinceD(Rd) is a dense subset ofLq
κ(Rd) (1≤ q< +∞) it is sufficient to prove (2.10)

when f andg are inD(Rd). By using the relations (2.5), (2.4) and the second equality
of (2.8) , we can write

τv( f ?κ g)(x) = c2
κ

Z

Rd
Fκ f (ξ)Fκ(τvg)(ξ)Eκ(ix,ξ)wκ(ξ)dξ , x,v∈ Rd .

Next invoking the Fubini’s theorem and again the relation (2.5), we deduce that we have

τv( f ?κ g)(x) =
Z

Rd
τvg(z)τx f (−z)wκ(z)dz= f ?κ τvg(x) , x,v∈ Rd .

With the help of the commutativity of the convolution operator?κ we complete the proof.



28 L. Kamoun and S. Negzaoui

The Dunkl translation operator,τx (x ∈ Rd) , can be extended to all radial functions
in Lp

κ(Rd) provided that1≤ p≤ 2. In this sense, the following proposition collects some
results demonstrated by Thangavelu and Xu in [16]

Proposition 2.7. (i) Let f be a radial function inLp
κ(Rd) , 1≤ p≤ 2. For eachx∈ R , the

following inequality holds
‖τx f‖p,κ ≤ ‖ f‖p,κ . (2.11)

(ii) If f is a bounded radial function belonging toL1
κ(Rd) then the convolution product

f ?κ g can be defined for allg∈ Lp
κ(Rd) , 1≤ p≤+∞ , and we have

‖ f ?κ g‖p,κ ≤ ‖ f‖1,κ ‖g‖p,κ . (2.12)

At the end of this section we recall a result which was shown by the first author (see
[10, Lemma 2.3])

Proposition 2.8. Let f be a radial function inL1
κ(Rd) such that the functionF, given by

F(‖x‖) = f (x) , x ∈ Rd , is differentiable onR+ . Assume that the functiong defined by
g(x) = F ′(‖x‖) , x∈ Rd , belongs toL1

κ(Rd) . Then, for allu∈ Sd−1 ,

‖τtu f − f‖1,κ ≤ t ‖g‖1,κ , t > 0.

3 Lipschitz-Dunkl spaces associated with the reflection group
Zd

2

Throughout this section, we assume that the reflection group isW = Zd
2 . Furthermore,

we represent byC a positive constant whose value can vary from one line to another. We
introduce new function spaces that we call Lipschitz-Dunkl spaces as follows. For0 < β≤
1, the Lipschitz-Dunkl spaceΛDβ is the set of functionsf ∈ L∞

κ (Rd) verifying

sup
z∈Rd\{0}

(‖z‖−β‖τz f − f‖∞ ,κ) < +∞ .

Remark3.1. If f ∈ ΛDβ then we have

sup
t>0

[
t−β

Z

Sd−1
‖τtu f − f‖∞ ,κ dσ(u)

]
< +∞ .

Sd−1 being the unit sphere onRd with the normalized surface measuredσ.

Let T > 0 andδ ≥ 0. We define the Bochner-Riesz meanσδ
T f of a function f ∈

L1
κ(Rd) by

σδ
T f (x) = c2

κ

Z

‖y‖≤T

(
1− ‖y‖

2

T2

)δ

Fκ f (y)Eκ(ix,y)wκ(y)dy, x∈ Rd .

The results of the two below lemmas were proved in [10, proposition 3.1, Lemma 3.1
and Lemma 3.2]
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Lemma 3.2. Let f ∈ L1
κ(Rd). If δ > γ+ d−1

2 then forT > 0 , the Bochner-Riesz mean off
is given by the following convolution relation

σδ
T f = ΦT,δ ?κ f , (3.1)

where

ΦT ,δ(x) =
cκ Γ(δ+1)T2γ+d

2γ+ d
2 Γ

(
γ+ d

2 +δ+1
) jγ+ d

2+δ(T ‖x‖) , x∈ Rd . (3.2)

and Z

Rd
ΦT ,δ(x)wκ(x)dx= 1, T > 0.

Lemma 3.3. Let δ≥ d+1
2 , 1≤ p < +∞ and f ∈ Lp

κ(Rd) . We have,

f (x)Log2=
Z +∞

0

[
σδ

2T f (x)−σδ
T f (x)

] dT
T

, a.ex∈ Rd.

Theorem 3.4. Let f ∈ L2
κ(Rd) , δ≥ d+1

2 and 0 < β < 1 such that
γ+ d−2

2 < δ−β− 1
2 . Thenf ∈ ΛDβ if and only if Tβ‖σδ

T f − f‖∞ ,κ
is bounded on(0,+∞).

Proof. Assume thatf ∈ ΛDβ . According to Lemma 3.2 , we can write

σδ
T f (x)− f (x) =

Z

Rd
ΦT ,δ(y) [τy f (x)− f (x)]wκ(y)dy, x∈ Rd ,

whereΦT ,δ is given by the relation (3.2) .
It follows that, for allx∈ Rd ,

σδ
T f (x)− f (x) =

CT2γ+d
Z +∞

0

(Z
Sd−1

[τtu f (x)− f (x)]wκ(u)dσ(u)
)

jγ+ d
2+δ(tT)t2γ+d−1dt ,

By taking into account thatwκ is bounded onSd−1 we deduce that

∣∣∣σδ
T f (x)− f (x)

∣∣∣≤CT2γ+d
Z +∞

0
tβ

∣∣∣ jγ+ d
2+δ(tT)

∣∣∣ t2γ+d−1dt , x∈ Rd .

Next a change of variable leads

∣∣∣σδ
T f (x)− f (x)

∣∣∣≤CT−β
Z +∞

0

∣∣∣ jγ+ d
2+δ(t)

∣∣∣ tβ+2γ+d−1dt , x∈ Rd .

On the other handjγ+ d
2+δ andtγ+ d

2+δ+ 1
2 jγ+ d

2+δ are bounded on(0,+∞). Therefore,

Tβ‖σδ
T f − f‖∞ ,κ ≤C

[Z 1

0
tβ+2γ+d−1dt+

Z +∞

1
tβ+ d

2− 3
2+γ−δ dt

]
,

HenceTβ‖σδ
T f − f‖∞ ,κ is bounded on(0,+∞) .
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Conversely suppose thatTβ‖σδ
T f − f‖∞ ,κ is bounded on(0,+∞) . According to (3.1),

(2.11) and the Ḧolder inequality , we get for allT > 0,

‖σδ
T f‖∞ ,κ ≤ ‖ΦT ,δ‖2,κ ‖ f‖2,κ .

Hence,

‖ f‖∞ ,κ ≤ ‖σδ
T f − f‖∞ ,κ +‖σδ

T f‖∞ ,κ ≤CT−β +‖ΦT ,δ‖2,κ ‖ f‖2,κ .

This means thatf ∈ L∞
κ (Rd) . We define the operator∆ onL2

κ(Rd) as follows

∆( f , t,u)(x) = τtu f (x)− f (x), t > 0, u∈ Sd−1 , x∈ Rd .

Under the conditionδ≥ d+1
2 we obtain from Lemma 3.3 and the relation (2.10) , for almost

everywherex∈ Rd , t > 0 andu∈ Sd−1 ,

∆( f , t,u)(x)Log2=
Z +∞

0
∆(σδ

2T f −σδ
T f , t,u)(x)

dT
T

. (3.3)

It follows from (2.7) that

‖∆(σδ
2T f −σδ

T f , t,u)‖∞ ,κ ≤ 4‖σδ
2T f −σδ

T f‖∞ ,κ , t > 0 and T > 0. (3.4)

Choose an even smooth functiong onR such thatg(t) = 1 if |t| ≤ 1 andg(t) = 0 if |t| ≥ 2.
Designate byG andH the functions given byG(x) = g(‖x‖) andH(x) = c−2

κ FκG(x) , x∈
Rd. For everyε > 0 andx∈ Rd, we putHε(x) = ε2γ+dH(εx). It is clear thatFκ (Hε)(x) =
G

(
x
ε
)

, ε > 0 andx ∈ Rd. In particular, if‖x‖ ≤ ε thenFκ (Hε)(x) = 1. By combining
Lemma 2.5 with relations (2.4), (2.10) and (3.1) we can write, for allT > 0, t > 0 and
u∈ Sd−1 ,

∆(σδ
2T f −σδ

T f , t,u) = (τtuH2T −H2T)?κ (σδ
2T f −σδ

T f ) .

Therefore, we get from relation (2.12)

‖∆(σδ
2T f −σδ

T f , t,u)‖∞ ,κ ≤ ‖τtuH2T −H2T)‖1,κ ‖σδ
2T f −σδ

T f‖∞ ,κ , (3.5)

whereT > 0, t > 0 andu∈ Sd−1 . The functionH2T verifies the hypotheses of Proposi-
tion 2.8 . Then, a same manner as in [8, Corollary 2.2] and the relation (3.5) yield

‖∆(σδ
2T f −σδ

T f , t,u)‖∞ ,κ ≤CtT‖σδ
2T f −σδ

T f‖∞ ,κ , (3.6)

wheret > 0, u∈ Sd−1 andT > 0.
By using the relations (3.3) , (3.4) and (3.6), we obtain, fort > 0 andu∈ Sd−1 ,

‖τtu f − f‖∞ ,κ ≤C

{
t
Z 1/t

0
‖σδ

2T f −σδ
T f‖∞ ,κdT +

Z +∞

1/t
‖σδ

2T f −σδ
T f‖∞ ,κ

dT
T

}
.

Thus, by taking into account of the boundedness ofTβ‖σδ
T f − f‖∞ ,κ on (0,+∞) we get,

for all t > 0 andu∈ Sd−1 ,

‖τtu f − f‖∞ ,κ ≤C

{
t
Z 1/t

0
T−βdT +

Z +∞

1/t
T−β−1dT

}
≤Ctβ .

This means thatf ∈ ΛDβ .
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Theorem 3.5. Let f be a function inΛD1
T

L2
κ(Rd) andδ > γ+ d−1

2 . Then asT −→+∞

‖σδ
T f − f‖∞ ,κ =





O(T−1) if δ > γ+ d+1
2

O(T2γ+d−2δ) if γ+ d−1
2 < δ≤ γ+ d+1

2

Proof. Let T ∈ (1,+∞). From the well known asymptotic behavior of the first kind Bessel
function we can assert thatΦT ,δ ∈ L2

κ(Rd) . Then we get, forx∈ Rd ,

σδ
T f (x)− f (x) =

CT2γ+d
Z +∞

0

(Z
Sd−1

[τtu f (x)− f (x)]wκ(u)dσ(u)
)

jγ+ d
2+δ(Tt) t2γ+d−1dt ,

whereC does not depend onT. We put

I1 = T2γ+d
Z 1/T

0

(Z
Sd−1

[τtu f (x)− f (x)]wκ(u)dσ(u)
)

jγ+ d
2+δ(Tt) t2γ+d−1dt ,

I2 = T2γ+d
Z T

1/T

(Z
Sd−1

[τtu f (x)− f (x)]wκ(u)dσ(u)
)

jγ+ d
2+δ(Tt) t2γ+d−1dt

and

I3 = T2γ+d
Z +∞

T

(Z
Sd−1

[τtu f (x)− f (x)]wκ(u)dσ(u)
)

jγ+ d
2+δ(Tt) t2γ+d−1dt .

Since
∣∣∣ jγ+ d

2+δ(z)
∣∣∣≤ 1, z≥ 0 andwκ is bounded onSd−1 , we can write

|I1| ≤CT2γ+d
Z 1/T

0
t2γ+d dt =

C
T

. (3.7)

Moreover, sincez
1
2+γ+ d

2+δ jγ+ d
2+δ(z) is a bounded function on(0,+∞) we get

|I2| ≤CTγ+ d
2−δ− 1

2

Z T

1/T
tγ+ d

2−δ− 1
2 dt = C

(
T2γ+d−2δ− 1

T

)
. (3.8)

By virtue of the relation (2.7) and again according to the boundedness of the function
z

1
2+γ+ d

2+δ jγ+ d
2+δ(z), we obtain wheneverδ > γ+ d−1

2 ,

|I3| ≤CTγ+ d
2−δ− 1

2

Z +∞

T
tγ+ d

2−δ− 3
2 dt = CT2γ+d−2δ−1 . (3.9)

From relations (3.7) , (3.8) and (3.9) we obtain the announced result.

ForT > 0, we introduce the partial Dunkl integralsT as an operator onL2
κ(Rd) by

sT f (x) = c2
κ

Z

‖y‖≤T
Fκ f (y)Eκ(ix,y)wκ(y)dy, f ∈ L2

κ(Rd) , x∈ Rd .
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Proposition 3.6. Let f ∈ L2
κ(Rd). We have

sT f (x) =
Z

Rd
τx f (−y)ΦT ,0(y)wκ(y)dy, x∈ Rd (3.10)

Proof. Let T > 0 and f ∈ L2
κ(Rd), we have

sT f (x) =
Z

Rd
c2

κχT (y)Fκ f (y)Eκ(ix,y)wκ(y)dy, x∈ Rd

whereχT is the indicator function of the ball{y∈ Rd | ‖y‖ ≤ T} .
On the other handχT is radial. So, according to [14, Proposition 2.4] and the Sonine’s
formula [19,§12.11 (1)] , we can assert that

Fκ
(
c2

κ χT

)
= ΦT ,0 .

But ΦT ,0 ∈ L2
κ(Rd) andcκFκ is an isometric isomorphism onL2

κ(Rd) then by taking into
account of the relation (2.4) we get

sT f (x) = c2
κ

Z

Rd
Fκ (τx f )(y)Fκ (ΦT ,0)(y)wκ(y)dy, x∈ Rd .

Next, by using Plancherel’s theorem we obtain the relation (3.10) .

Lemma 3.7. Let δ > γ +
d−1

2
and f be a function inL2

κ(Rd) . Then we have, for every

0 < T ≤ ν , the equality
sν(σδ

T f ) = σδ
T f . (3.11)

Proof. we can deduce the equality (3.11) from equalities (3.10), (3.1) and the Sonine’s
formula [19,§12.11 (1)] .

Lemma 3.8. Let T > 0 and f ∈ L2
κ(Rd) . For 1 < p < +∞ such thatγ < 1− d

2
−

∣∣∣∣
1
2
− 1

p

∣∣∣∣ ,

we have (
1
T

Z T

0
|sν f (x)|p dν

)1/p

≤C‖ f‖∞ ,κ , x∈ R , (3.12)

whereC does not depend onT nor x .

Proof. For ν > 0 andx∈ Rd, the partial Dunkl integralsν f (x) can be written,

sν f (x) =
cκν2γ+d

2γ+ d
2 Γ(γ+ d

2 +1)

Z +∞

0

Z

Sd−1
τ−x f (tu)wκ(u) jγ+ d

2
(tν)t2γ+d−1dt dσ(u).

By taking into account thatjγ+ d
2
(z) is a bounded function on(0,+∞) and using relation

(2.7) we get

1
T

Z T

0

∣∣∣∣
Z 1/T

0

(Z
Sd−1

τ−x f (tu)wκ(u)dσ(u)
)

jγ+ d
2
(tν)t2γ+d−1dt

∣∣∣∣
p

ν2γp+dpdν
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≤ C‖ f‖p
∞ ,κ

T

Z T

0

( ν
T

)p(2γ+d)
dν = C‖ f‖p

∞ ,κ .

Assume now thatp≥ 2 and takeq such that
1
p

+
1
q

= 1. Using the behavior asymptotic of

Bessel function (see [19] or [2] ) , we get

(tν)
1
2 Jγ+ d

2
(tν) =

√
2
π

cos

(
tν− π

4
−

(
γ+

d
2

)
π
2

)
+R(tν)

where 



R(tν)≤ A i f t ≤ 1
ν

R(tν)≤ B
tν

i f t >
1
ν

,

A andB being two positive constants. So, we obtain

1
T

Z T

0

∣∣∣∣
Z +∞

1/T

(Z
Sd−1

τ−x f (tu)wκ(u)dσ(u)
)

ν2γ+d jγ+ d
2
(tν)t2γ+d−1dt

∣∣∣∣
p

dν

≤ 1
T

Z T

0
(|φ1(ν)|p + |φ2(ν)|p + |φ3(ν)|p) dν

where

φ1(ν) =
Z +∞

1/T

(Z
Sd−1

τ−x f (tu)wκ(u)dσ(u)
)

νγ+ d−1
2 tγ+ d−3

2 cos

(
tν− π

4
−

(
γ+

d
2

)
π
2

)
dt ,

φ2(ν) = A
Z 1/ν

1/T

(Z
Sd−1

τ−x f (tu)wκ(u)dσ(u)
)

νγ+ d−1
2 tγ+ d−3

2 dt

and

φ3(ν) = B
Z +∞

1/ν

(Z
Sd−1

τ−x f (tu)wκ(u)dσ(u)
)

νγ+ d−3
2 tγ+ d−5

2 dt

Sincecos(tν− π
4 − (γ + d

2)π
2) = cos(tν)cos(π

4 + (γ + d
2)π

2) + sin(tν)sin(π
4(γ + d

2)π
2) , by

virtue of Hausdorff-Young inequality, we obtain

1
T

Z T

0
|φ1(ν)|pdν≤CT(γ+ d−1

2 )p−1
(Z +∞

1/T

∣∣∣∣
Z

Sd−1
τ−x f (tu)wκ(u)t(γ+

d−3
2 ) dσ(u)

∣∣∣∣
q

dt

) p
q

≤C‖ f‖p
∞ ,κ T(γ+ d−1

2 )p−1
(Z +∞

1/T
t(γ+

d−3
2 )qdt

) p
q

= C‖ f‖p
∞ ,κ

Furthermore, we have

1
T

Z T

0
|φ2(ν)|pdν≤ C

T
‖ f‖p

∞ ,κ

Z T

0
(1− ν

T
)(γ+ d−1

2 )pdν≤C‖ f‖p
∞

and
1
T

Z T

0
|φ3(ν)|pdν≤ C

T
‖ f‖p

∞

Z T

0
dν = C‖ f‖p

∞ .
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Hence the relationship (3.12) holds.

Assume now that1 < p≤ 2. Let q the real number verifying
1
p

+
1
q

= 1. Then,q≥ 2 and

the Hölder inequality yields

(
1
T

Z T

0
|sν f (x)|p dν

)1/p

≤
(

1
T

Z T

0
|sν f (x)|q dν

)1/q

.

It follows that the relationship (3.12) holds.

Theorem 3.9.Let0< β < 1 and f ∈ΛDβ
T

L2
κ(Rd) . If 1< p<

1
β

andγ < 1− d
2
−

∣∣∣∣
1
2
− 1

p

∣∣∣∣ ,

then ∥∥∥∥∥
(

1
T

Z T

0
|sν f − f |p dν

)1/p
∥∥∥∥∥

∞ ,κ

≤CT−β , T ∈ (0,+∞).

Proof. Chooseδ > max(γ+ d−1
2 +β, d+1

2 ) . According to Lemma 3.7 , we are able to write
for everyT > 0 andx∈ Rd ,

(
1
T

Z 2T

T
|sν f (x)− f (x)|p dν

)1/p

=
(

1
T

Z 2T

T

∣∣∣sν( f −σδ
T f )(x)+σδ

T f (x)− f (x)
∣∣∣
p

dν
)1/p

≤
(

1
T

Z 2T

T

∣∣∣sν( f −σδ
T f )(x)

∣∣∣
p

dν
)1/p

+‖σδ
T f − f‖∞ ,κ

By virtue of Lemma 3.8, it follows

(
1
T

Z 2T

T

∣∣∣sν( f −σδ
T f )(x)

∣∣∣
p

dν
)1/p

≤
(

1
T

Z 2T

0

∣∣∣sν( f −σδ
T f )(x)

∣∣∣
p

dν
)1/p

≤ C‖σδ
T f − f‖∞ ,κ .

Therefore, Theorem 3.4 yields

(
1
T

Z 2T

T
|sν f (x)− f (x)|p dν

)1/p

≤CT−β , T > 0, x∈ Rd .

It follows that we have, for everyn∈ N , x∈ Rd andT > 0,

1
T

Z T/2n

T/2n+1
|sν f (x)− f (x)|p dν≤CT−pβ 2(pβ−1)(n+1) .

Consequently, we obtain for everyx∈ Rd andT > 0,

1
T

Z T

0
|sν f (x)− f (x)|p dν≤C

2(pβ−1)

1−2(pβ−1) T−pβ .

This completes the proof.
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