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Abstract

In this paper we introduce the Lipschitz-Dunkl spaces associated with reflection group
Zg . We provide characterizations of these spaces involving Bochner-Riesz means and
we obtain an approximation result that involves partial Dunkl integrals.
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1 Introduction

The Dunkl theory is built around Dunkl operators. They are differential-difference oper-
ators, associated to a finite reflection group, introduced by C.F. Dunkl [3] in 1989. They
can be regarded as a generalization of the usual partial derivatives by additional reflection
terms. Dunkl operators lead to generalizations of various analytic structures like the Fourier
transform and the convolution product. By introducing Dunkl’s intertwining operator and
Dunkl kernel [4] and thereafter Dunkl transform [5], C.F. Dunkl built up a framework for
an harmonic analysis theory with reflection groups. During the last years, the Dunkl theory
have gained considerable interest in various fields of mathematics.
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This paper deals with Lipschitz-Dunkl spaces. Assuming that the reflection group in-
volving in definition of the Dunkl operator &S, we consider the function spad®g that
we call Lipschitz-Dunkl and which is the set of functiohs L?(RY) satisfying

sup ([|Z] Pltef = flle k) < oo,
zeRY\ {0}

wheret; is the Dunkl translation operator (see [16, 18]) &d 3 < 1.

We obtain a characterization of the spatBg that involves Bochner-Riesz means, (for
the definition of Bochner-Riesz means for the classical Fourier transform, one can see [15,
p.170])

2\ 0
Rr-c (1-B0) mrmEdxymmay. xer,
when0< f3 < 1.
Also, using Bochner-Riesz means, we establish a necessary condition for a fuhetion
L2(RY) to be inAD; . Finally we prove an approximation result for the functions belonging
to ADg, where0 < 3 < 1, involving the partial Dunkl integrals,
B
Z
s f(x) =k jer T T OBy )y, xe RY.
yl<
Similar results have been obtained by Betancor andigode-Mesa in [1] in the framework
of Hankel transfom. Their work was motivated by one of D.V. Giang [7], where Lipschitz
spaces, ofR , are studied through the classical Fourier transform and Hilbert transform.
The authors are supported by the DGRST research project 04/UR/15-02.

2 Dunkl harmonic analysis onRRY

Fora € RY\ {0}, we denote byy the reflection in the hyperplart, orthogonal tax :

2(a,Xx)
15

Oa(X) = X— a, xeRY.

A finite subset® of RY\ {0} is called a root system if it verifies :
(1) RNR.oa={-a,a}, forallaeXR.

(2) 04(R)=2R, forallaeXR.

Let R be aroot system. The subgrodp=W(R) of the orthogonal grou@®(d), which
is generated by the reflectiofigy | o € R} is called the reflecif)n group associated with
R .. It is shown in [6] thatW is finite. For a given € RY\ Hg, we consider the

BeR
following subsysten®, of X :

Ry ={BeR | {a,p)>0},
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that we call positive subsystem & . Notice that for eacl € R , eitherBe R, or —B €
R, . A functionk : & — C is called a multiplicity function or®_ if it is W—invariant.
This means that is constant on each orbit &f under the action oiV. In this paper, we
assume that the multiplicity functianis nonnegative. We associate withhe index

Y=V¥(R)= ) x(a)=0,

acR;

and the weight functiomy defined by

we(x) = [ He)* @, xer?.

0ER,

Notice that, since& isW—invariant, the definition of the weight functian does not depend
of the special choice ok, . On the other handy, is W—invariant and homogeneous of
degree?y.

Further, we introduce the Mehta-type constanby

Z , -1
Go— ( &N /ZWK(x)dx>
Rd
_
2°r (v+3)
We denote byLf(RY), 1< p < 4o, the space of complex-valued functiohsmea-
surable orRY such that

In the case wherd = 1 anda = 1, we havecy =

[

4 1
p
| fllpx = Rd\f(x)|'DWK(x)dx < +oo, if p< oo,

and
[ f][e0,x = €SS SUPF (X)| < +00.
xeRd

£(RY) designates the space of infinitely differentiable function®8n

Definition 2.1. Let R be a root system. We fix a positive subsyst&n of ® and we
consider a multiplicity functiork on & . The Dunkl operatoryj; 1< j<d, on Rd
associated with the reflection groMp and the multiplicity functiork are the first-order
differential- difference operators given by

F) = f(0a(x))
(@,%)

of

ij(x)—aij

¥+ > k(@) . feE®Y), xeRY,

OER.
whereaj = (a,€j), (e1,e,...,€eq) being the canonical basis BF .

Notice that this definition does not depend on the special choi®e ofFurthermore, in
the casea = Othe operatorgj, 1< j <d, reduce to the corresponding partial derivatives.
Examples : 1) In R, any root system takes the for®) = {—a, a} wherea > 0. The
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corresponding reflection group % = {id, o} acting onR by o(x) = —x. Therefore, the
Dunkl operator orR associated with the multiplicity parameteis given by
_df f(x)— f(—x)
Tf(x) = 5((x)er#, fe E(R), xeR.
2)InRY, R = {+e;,+e,...,+e4} is a root system. The reflection group associated with
R isW = Zg and the Dunkl operators relatedWbare given, fox = (X1, Xp,...,Xd4) € RY,
by

0= g0+ 56 I cjca rerm),

wherex' = (Xq,...,X_1,—X,X1...,Xd) andky,Ka, ...,Kq are nonnegative real numbers.
According to [4], there exists a linear isomorphi¥iof the algebra of polynomials on
RY, ? = C[RY], determined uniquely by

: 0 .
Vk(Bn) = Pr, VK‘%:|d andeVK:VK&, ne NU{0}, 1<j<d,
j

where®, C P is the subspace of homogeneous polynomials of degree

It is known thatVi , which is called the Dunkl’s intertwining operator, is a positive operator
(see [12].) More precisely, M. &sler has proved in [12] the following integral representa-
tion of Vg :

Theorem 2.2. For eachx € RY, there exists a unique probability measuyieon the Borel

o—algebra ofRY such that
y

(P = _ POAI().  pe?. (2.1)

The representing measurgSare compactly supported and theirs supports vesifppu; C
{yeRY | |ly| <|x||}. Moreover, they satisfy

U (B) = K(r'B), M'Xl(x)(B)lei(W_l(B))a r>0, wew,
for each Borel seB C RY.

By means of the identity (2.1), the Dunkl’s intertwining operatpr may be extended
to £(RY). In fact, Vk establishes a topological isomorphism fraiR?) onto itself (see
[18, Theorem 3.1])

The Dunkl kernelE(x,y) on RY x RY has been introduced by C.F. Dunkl in [4] by
means of the Dunkl intertwiningy as follows

EK(Xay):VK (e<‘7y>> (X)v vaERd‘

Fory e RY, the functionx — E,(x,y) can be viewed as the unique solutionghof the
following initial problem

{TjU(x,y) = yjuxy), 1<j<d,

uO,y) = 1.
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Examples : 1) If d = 1 then, fory > 0O, the Dunkl kernel takes the form

Xy

EV(X7 y) = jy—% (|Xy) + m

Jyra(xy),  xYyeR,

where, fora > —1/2,

ja(2) =20'F(O(+1)J°'Zgz) = r(a_i_l)i (—1)n(%)2n

—=— zeC
L nlf(n+a+1)’ R

with Jy is the Bessel function of the first kind and oraefsee [19])

2) In the case of the reflection grolp = Zg , the multiplicity functionk is represented by
d positive real numbergi,Ko,...,Kq (Wwe suppose that > 0.) The expression of Dunkl
kernelE, and [20, Theorem 4.3] yield

@ (T (kmt3) %0 - m
EK(x,y)an;l1 (M A dt), x,yeR?.

Finally, by using [11, Lemma 2.1], we get

d
) = [ (-0 +

m=1

XmYm . . d
2Km_|_1].<m+§(|XmYm)> ) X,yeR".

Below, let us collect some known properties of Dunkl kernel which we can find in many
references, for instance, [4, 12, 14, 16, 17].

Properties : (i) The Dunkl kernel has the Bochner-type representation
Z
Ex2) = _eY?7dif(y), xeR?, zecC’,
R

where are the representing measures from Theorem 2.2.
(i) Forallx,ycRY,  |Ec(x,iy)| < 1.
(i) Forall x,ye C%,  Ex(x,y) = Ex(V,X).
(iv) Forallx,ye CdandA € C, Ex(AXy) = Ex(X,Ay). _

The functionE (x,iy) plays the role of the exponential functiel?¥) in the classical
Fourier analysis. In fact, C.F. Dunkl [5] has introduced the Dunkl transform, in terms of
Dunkl kernel, by

Z
FE0 = FExywy)dy,  feL(RY, xeR.

Further results concerning the Dunkl transform were later provided by M.F.E. de Jeu in [9].
The results listed in the below theorem are proved in [5, 9]

Theorem 2.3. (i) The Schwartz spac&(RY) is invariant under¥y .
(ii) (Inversion formula) For allf € LL(RY) such that7 f belongs td_%(RY), we have
z
g =cc  FfOE(iy,w(y)dy, — aexeRe. (2.2)
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(iii) (Plancherel’'s theorem) The normalized Dunkl transfomtfx can be uniquely
extended to an isometric isomorphism Igf(RY). In particular, we have the following
Plancherel's formula

z z
TP wdx=cg RSP wy)dy,  fe LR, (2.3)

K. Triméche has introduced in [18] the Dunkl translation operators by defining them,

onE(RY), by

Ly =VEeW[(V) Hx+y)],  feERY), xyeRY,

here the superscript denotes the relevant variable. These operators satisfy for(RY)
andx,y € RY, the following properties

Tof =1, Tj(xf) =1(Tjf) and twf(y) =1f(x), 1<j<d.
It is obvious from the definition that we have for aly € R andz ¢ C9

W (Ex(-,2) (Y) = Ex(X, 2)E«(Y,2) .

Further properties of the Dunkl translation are in the below proposition which is shown in
[18]

Proposition 2.4. Assume that belongs taS(RY) . Then we have
Fe(txf)(Y) = Ec(ix,Y) Acf (), xyeR?. (2.4)

Moreover, 7
Wh(y)=¢2  Ff (8)Ex(ix, &)Ex(iy, &)W (§)dE. (2.5)

Rd
As the Dunkl transform is an isometry bf(RY) onto itself and the functiof, (ix, y)
is bounded, we can define the Dunkl translation operatotsg GR?) by the relation (2.4) of
the above proposition (see S. Thangavelu and Y. Xu [16].) On the other hand, by combining
the relation (2.4) with Plancherel formula we deduce that x € RY, is bounded as an
operator orL2(RY) into itself. Forp different from 2 thelL.P boundedness di is still an
open problem. At the moment an explicit formula f@f is unknown in general. However,
a such formula is known when the reflection group/is= zg (see [11] and [16]) and when
f is radial (see [13].)
In the case whed = 1, M. Rosler has shown in [11] that the Dunkl translation operators
Tx, X € R possess an integral representation
Z

wf(y) = R f(t)de,y(t)> feZ(R), (2.6)

wherevy y is a finite signed measure @, with uniformly bounded total variation norm
and supported if—[x| — |y|, —[[X| = [y[[JU[I[x| = I¥l], [x| + V] -

Animmediate consequence of the explicit formula (2.6) idthboundedness of the Dunkl
translation operator oR . S. Thangavelu and Y. Xu have shown in [16] that the explicit
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formula (2.6) extends to the case where the reflection gro\ap:iszg . They have proved,
in this case, that the operatgy, x € RY, is bounded oiLf(RY%), 1< p < +o, and we
have

Itxfllpx <3| fllpx, xeRY, feLl(RY). (2.7)

The Dunkl convolution producty of two functionsf andg in L2(RY), (see [16]), is
given by 7

Frg0) = wl(-Y)gWwe()dy,  xeR.

For f andg belonging inD(RY) the following equalities of the Dunkl convolution
productx, are shown in [18]

frg=0g*x f and F(f*g) = (KF)(HQ). (2.8)
Lemma 2.5. Let f € L2(RY) andg € LL(RY). Then
Fe (FHc Q) (X) = Fe F (X) Fg(X) aexeR?. (2.9)

Proof. For everyf € D(RY) andg € LL(RY), the identity (2.9) holds.
Fix g€ LE(RY). For everyf € L2(RY), fxcge L2(RY) and we have

15 (Fxc @) ll2.6 = | Fxcdllzx < llgllekllFllzx, feLZRY.
On the other handfcg € L2 (RY) then we have also

1Fcf Fegllzx < gl Fllz,  feLERY).

Therefore, for everg € LL(RY) each term of the identity (2.9) define a bounded operator
from L2(RY) into itself. SinceD(RY) is a dense subset bf(RY) we get the identity (2.9)
for every f € L2(RY) andg € LL(RY). O

Lemma 2.6. Let f € Lt(RY) andg € LF(RY), 1< p < +o. Then we have
T(f Q) =Tyfaeg= fAcTvg, veR". (2.10)

Proof. SinceD(RY) is a dense subset bf (RY) (1 < g < +) itis sufficient to prove (2.10)
when f andg are in D(RY). By using the relations (2.5), (2.4) and the second equality
of (2.8) , we can write

z

W@ =6 Ficf (€)F(1a) (E)Ex (i, Ewk(E)dE,  xve R,

Next invoking the Fubini’'s theorem and again the relation (2.5), we deduce that we have
z
Tv(f*¢ ) (X) = » W92 T f (—2) Wk (2)dz= f o Tug(X), Xx,veRY,

With the help of the commutativity of the convolution operatprwe complete the proof.
O
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The Dunkl translation operator, (x € RY), can be extended to all radial functions
in LY(RY) provided thatl < p < 2. In this sense, the following proposition collects some
results demonstrated by Thangavelu and Xu in [16]

Proposition 2.7. (i) Let f be a radial function irL{(RY), 1< p < 2. Foreachx € R, the
following inequality holds
[Txfllp.c < [ fllp.x- (2.11)

(i) If f is a bounded radial function belonging t¢(RY) then the convolution product
f x¢ g can be defined for alj € LY(RY), 1< p< +o, and we have

I1fxxQllp.x < Ifllell9lp.k- (2.12)

At the end of this section we recall a result which was shown by the first author (see
[10, Lemma 2.3])

Proposition 2.8. Let f be a radial function inL}(RY) such that the functiof, given by
F(Ix|) = f(x), xe€RY, is differentiable orR* . Assume that the functigndefined by
g(x) =F/'(||x]), x€RY, belongs td_}(RY). Then, for allue §-1,

[Twf = fllic <tlglok,  t>0.

3 Lipschitz-Dunkl spaces associated with the reflection group
z4

Throughout this section, we assume that the reflection grow szg. Furthermore,

we represent b a positive constant whose value can vary from one line to another. We
introduce new function spaces that we call Lipschitz-Dunkl spaces as follow8.<E8r<

1, the Lipschitz-Dunkl spacaDy is the set of functions € Ly (R?) verifying

sup (I[z| Pfltef = flle k) < +oo.
2eRY\ {0}

Remark3.1 If f € ADg then we have

Z
sup[t‘3 ITeuf — flleo do(u)} < o0,
t>0 g1

§-1 being the unit sphere dR? with the normalized surface measufe.

LetT >0 andd > 0. We define the Bochner-Riesz meaa$f of a functionf €
Li(RY) b
«(RY) by

Z 2\ 0
Rio-¢ (1) mimexnmmay, xez.
Ivl<T T
The results of the two below lemmas were proved in [10, proposition 3.1, Lemma 3.1
and Lemma 3.2]
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Lemma 3.2. Let f € LE(RY). If &> y+ %% then forT > 0, the Bochner-Riesz mean bf
is given by the following convolution relation

0% f = Dy g f, (3.1)
where ayid
«lF(0+1)T .
Or sx) = —LOEDTTE S (TIxl), xeRre, (3.2)
2l (y+5+8+1) "2
and z

d<1>Ti5(x)w.<(x)dx:l, T>0.
Rd T

Lemma 3.3. Letd > 31, 1< p< oo andf € L{(RY). We have,

Zmr g 5 d
f(x)Log2= oorf(X) —03f(X)| =—, a.exeR".
0

Theorem 3.4. Let f € L2(RY), 8> %1 and 0< B < 1 such that

y+ 952 <8-B—3. Thenf € ADg if and only if TB|[o}f — f|e

is bounded or{0, +).

Proof. Assume thaf € ADg. According to Lemma 3.2, we can write

Z
of f(x) — f(x) = oo PT W [T ) = )] w(y)dy, - x€ RY,
where®y 5 is given by the relation (3.2) .
It follows that, for allx € RY,
0% f(x)— f(x) =
Z.w 2

CcT¥+d O* < Srl[TtLJf(x)— f(X)]WK(u)dcr(u)> jy+%+6(t-|—)t2y+d_1 dt.

By taking into account thaty is bounded or$® 1 we deduce that

Z
]o?f(x)—f(x)\ <crvd tﬁ‘ngw(tT)‘tz\’*d*ldt, xeRY,

Next a change of variable leads
Z o
‘0? f(x) — f(x)‘ <cT )ngw(t) ‘ {B2rrd-1gt  x e RY,

On the other hang, 4 5 andty+2+5+3 Jy+4.+5 are bounded of0, +). Therefore,
z

Z 1 +o0
TPlo3 f — fllox <C [ tPravid-lgpy  (BHE-3vBgp|
’ 0 1

HenceTP||o9 f — |« « is bounded orf0, +o) .



30 L. Kamoun and S. Negzaoui

Conversely suppose thaf| a3 f — || « is bounded or{0, +) . According to (3.1),
(2.11) and the Elder inequality , we get for all > 0,

16% Flleo.x < ([P 5ll2. || Fll2.x -
Hence,

£l < 0T — Fllo i+ 102 f Lo, < CT P 4[| @y gl | f

‘Z,K-
This means that € LY (RY) . We define the operatdron L2(RY) as follows
AF WX =TwfX)—f(X), t>0, ues ! xeRd.

Under the conditio® > d—gl we obtain from Lemma 3.3 and the relation (2.10), for almost
everywherexe RY, t > 0andue 1,
y4

+o00
A(f,t,u)(x) Log2 = NS f —0$f,t,u)(x)q|_—-r. (3.3)
0
It follows from (2.7) that
A0S f — 0% f,t,U)|[wk <4[05F -0 flwk, t>0andT>0. (3.4)

Choose an even smooth functigon R such thag(t) = 1if |t| < 1andg(t) =0if |t| > 2.
Designate byG andH the functions given bys(x) = g(||x||) andH (x) = ¢, 2AG(x), x €
RY. For everye > 0 andx € RY, we putHg(x) = e¥*9H (ex). It is clear thatF (He) (X) =
G (%), €>0andx e R%. In particular, if|x|| < € then % (He) (X) = 1. By combining
Lemma 2.5 with relations (2.4), (2.10) and (3.1) we can write, foffalt 0, t > 0 and
uc g1,

A(03r f — 09 f,t,u) = (TuHar — Har) ¢ (037 f — 0 ).

Therefore, we get from relation (2.12)
1A(0Sr f — 09 f.t,U)lleo,k < TeuHer —Hor)ll1x 037 f = 0% f o, (3.5)

whereT >0, t > 0andue $-1. The functionH,t verifies the hypotheses of Proposi-
tion 2.8. Then, a same manner as in [8, Corollary 2.2] and the relation (3.5) yield

A0S f — 02 f,t,u)[|w.x < CET[057 f — 0% flle .k, (3.6)

wheret >0, ue $1andT > 0.
By using the relations (3.3), (3.4) and (3.6), we obtaintfor0 andu e S*1,

Z 1p VAT dT
1020 — 02 f]JudT + ||oSTfo?f|rm,K}-
0 1/t T

||Ttuf - f||oo7|( S C{t

Thus, by taking into account of the boundednes3 &fo® f — ||, « on (0,+) we get,
forallt >0anduc §1,

Z 14 z

/ oo
[Teuf — | §C{t TPdT+ T—B—ldT} <cCt?.
0

1/t

This means that € ADg . O
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=
Theorem 3.5. Let f be a function iM\D; ~ LZ2(RY) andd > y+ 951 . Then asT — +oo
- - d+1
S o(T 1) if 8>y+ 5=
|07 f = fllok = _ - ™
O(TZv+d=20) jf y4+ 9L <<y 94t

Proof. LetT € (1,+). From the well known asymptotic behavior of the first kind Bessel
function we can assert thétr 5 € L2(RY). Then we get, fok € RY,

o f(x)— f(x) =
Z .o /Z
cT2v+d < o [0 - f(x)]WK(u)dc(u)> ngM(Tt)t?Wd*ldt,
0 _
whereC does not depend oh. We put

Z 1 2

I, = T2+ ( [Teuf(X) — f(x)}w,du)dc(u)) jy+g+5(Tt)tZV+d71dt’
0 g1 2
Z. zZ

=720 (0~ T (o)) iy oTOE ek

and
VANV
lg= T2/ ( [Tt 00 - f(x)]wK<u>do<u>) Iy g1 5(TOE 2t
- ~

Since‘ jy+%+5(z)‘ <1, z>0andw is bounded or$"~1, we can write

Z 7
] <CTHH g = = (3.7)
0

=0

Moreover, since%ﬂ”%*aj 4. x(2) is a bounded function of0, +«) we get
Y+5+8
d 1 Z1 d 1 1
I <CTYF 2702 V% zdt=C <T2V+d—25 - ) : (3.8)
1T T

By virtue of the relation (2.7) and again according to the boundedness of the function

z%+y+%+6jy+%+5(z), we obtain wheneves > y+ 91,
Z .,
lgf SCTWHE-8-3  r+a-d-fqr=CTord-2-1, (3.9)
T
From relations (3.7), (3.8) and (3.9) we obtain the announced result. O

ForT > 0, we introduce the partial Dunkl integrsl as an operator ob2(R9) by
z

s f(x) =cZ y T A O)E (Y Wi(y)dy, f e LZ(RY), xeRY.
y|I<
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Proposition 3.6. Let f € L2(RY). We have
z
5T =l (-y)Proywey)dy xR (3.10)

Proof. Let T > 0andf € L2(RY), we have
z
ST = G AT Eclixywie(y)dy, xRS

wherey; is the indicator function of the bafly c RY | [ly| <T}.
On the other hang, is radial. So, according to [14, Proposition 2.4] and the Sonine’s
formula[19,812.11 (1)], we can assert that

T (GG Xr) = P 0.

But @1 o € LZ(RY) andcy % is an isometric isomorphism drf(RY) then by taking into
account of the relation (2.4) we get
Z
s f(x) =& nd T (x ) (¥) T (Pr,0) (V) Wk (Y)dy, X € RY.

Next, by using Plancherel’s theorem we obtain the relation (3.10). O

d-1 o
Lemma 3.7. Letd > y+ 5 and f be a function inL2(RY). Then we have, for every
0< T <v, the equality

sy(02f)=0df. (3.11)
Proof. we can deduce the equality (3.11) from equalities (3.10), (3.1) and the Sonine’s
formula [19,812.11 (1)]. O
2/md d |1 1
Lemma3.8. LetT >0andf € L (R%) . For1 < p < +o such thaty < 1— 2 275
we have
1 Z 1/p
(3, Sf00P@)  <Clflox. xe® (3.12)
0

whereC does not depend oh nor Xx.

Proof. Forv > 0 andx € RY, the partial Dunkl integras, f (x) can be written,

z Z

te : 2y+d-1
Sd_lef (tu)WK(u)Jy+% (tv)t¥Y 4 *dtdo(u).

2y g+ o

s f(x

By taking into account thalwg(z) is a bounded function ofD, +) and using relation
(2.7) we get

12114yt

z p
i 2y+d-1 2yp+d
T o < Sd_1Txf(tu)w.<(u)dcr(u)> Jyeg (V)L y+d-14¢| y2vp+dpgy

0
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z
ClfIS « T T /vy P@y+d) 0
< : — = .
< (§)T av=Clf.

1 1 . . .
Assume now thap > 2 and takeg such that- + — = 1. Using the behavior asymptotic of
Bessel function (see [19] or [2] ), we get

()2, 4 (tv) = \/i cos<tv -2 <y+ g) ’;) +R(tv)

Ritv) <A if t<

[N

where

B
R < — if t>=
(tv) < v >

<|p

A andB being two positive constants. So, we obtain

1272 4o /2 ;
= 2y+d ; 2y+d—1
T o |t ( Sdlrxf(tu)WK(u)dcr(u)>v Jyrg ()t dt’ dv
14T
<3, (@OP+]e(V)"+]es(v)[?) dv
where
Z 0 2
- R (L d\T
@L(v) o ( Sle—Xf(tu)WK(LDdo-(u))V 2 Y2 cos(tv 2 (y+2 5 ) dt.
g l/V d—1 d—3
T \ -t
and Z., 2 )
v)=B Ty f (tu)wi( +957 ¢
=8 (Tt o) v

Sinceco(tv — 7 — (y+ §)3) = cos(tv)cos  + (y+ 5)3) + sin(tv)sin(F(v+ 5)3) , by
virtue of Hausdorff-Young inequality, we obtain
T\
dt)
P

t(v+9%)a dt) T ClI I8

Z Z 02

too d-3
T f(tu)wi (Ut 727 do(u)

Qu(v)|Pdv < CTO+ 7P ( .

=~

0 1T

00

Z
<C 2, TP
’ 1T

Furthermore, we have
1271 Z

C \Y d-1
2 P < S, T Yt <o

and 7 T c 7 -
[@s(v)[Pav < Z [IF]]E, . dv =CJf[5.

==

0
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Hence the relationship (3.12) holds.

L. 11
Assume now that < p < 2. Letq the real number verlfyln% +a =1. Then,q> 2 and
the Holder inequality yields

127 1/p 127 1/q
(3, sfora)  <(F stwia)
T o T o

It follows that the relationship (3.12) holds. O

T 1 1 1
Theorem3.9.LetO<B<landf eADg LZ(RY).If1<p< = andy< 1—d—'—’,

B 2
1ZT 0 1/p
— f—f
<T 0 S | dv)

Proof. Choosed > max(y+ d—gl +B, d—gl) . According to Lemma 3.7, we are able to write
for everyT > 0 andx € RY,

then

<CT P, Te(0+w).

0, K

12 o1

1/p
<T . sy f(X) — f(x)]pdv)

1% 21 s s b\ P
:(T st-ot o+t 0 fx) dv)
1421 5 P 1/p 5
< <T st -adn) dv> 1103 F — Flen
By virtue of Lemma 3.8, it follows

<_%ZT2T ‘sv(f —o?.f)(x))pd\;)l/p

IN

<_:I|_-ZOZT ‘s,(f —()'-?-f)(x)‘pd\))l/p

IN

Therefore, Theorem 3.4 yields

1% 21 1/p

(T \s,f(x)—f(x)\pdv) <CTP® T>0, xeR?.
T

It follows that we have, for everge N, x € RY andT > 0,

T st f(x)|Pdv < CTPR2RPLnD.
T /20

Consequently, we obtain for evexye RY andT > 0,
Z
1°T 2(pB-1)
- _ p =
T |sy F(X) — f(x)|" dv SCl—Z(Pﬁfl)

This completes the proof.

TPB,
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