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Abstract

In this paper, we investigate the existence of solutions for a class of first order boundary
value problems for impulsive differential inclusions. By using suitable fixed point
theorems, we study the case when the right hand side has convex as well as nonconvex
values.
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1 Introduction

In paper [17] Nieto by using fixed point theorems and lower and upper solutions methods,
studied the following impulsive boundary value problem with periodic boundary conditions





x′(t)+λx(t) = f (t,x(t)), t ∈ [0,T], t 6= tk,k = 1,2, . . . ,m,
∆x|t=tk := x(t+k )−x(t−k ) = Ik(x(t−k )), k = 1, . . . ,m,
x(0) = x(T)

(1.1)

whereλ 6= 0, 0 < t1 < .. . < tm < tm+1 = T, f andIk are continuous.
The results of [17] were extended to differential inclusions (ordinary or functional) in

[3], [4], [5] by using the concepts of lower and upper solutions combined with a fixed point
theorem for condensing maps.

In [16] Luo et al considered the following anti-periodic boundary value problem for
impulsive differential equations





x′(t) = f (t,x(t)), t ∈ [0,T], t 6= tk,k = 1,2, . . . ,m,
∆x|t=tk := x(t+k )−x(t−k ) = Ik(x(t−k )), k = 1, . . . ,m,
x(0) =−x(T)

(1.2)
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and proved existence results by using lower and upper solutions methods and monotone
iterative technique. The results of [16] were extended to impulsive functional differential
equations by Liu [15].

Recently in [11] Dyki studied the approximation of extremal solutions, by using mono-
tone iterative method, for the following boundary value problem for differential equations
with delayed arguments

{
x′(t) = f (t,x(t),x(α(t)), t ∈ J := [0,T]
x(0) = rx(T), r ∈ (0,1]

(1.3)

where f ∈C(J×R×R,R) andα ∈C(J,J) is such thatα(t)≤ t for all t ∈ J.
Motivated by the above results, we consider in this paper boundary value problems

(BVP for short) for first order impulsive differential inclusions with more general boundary
conditions, which include the above mentioned boundary conditions as special cases. More
precisely, in Section 3, we consider the first order impulsive BVP

x′(t)+λx(t) ∈ F(t,x(t)), a.e. t ∈ J′ := [0,T]\{t1, . . . , tm}, (1.4)

∆x|t=tk = Ik(x(t−k )), k = 1, . . . ,m, (1.5)

x(0) = rx(T), (1.6)

whereF : [0,T]×R→ P (R) is a compact valued multivalued map,P (R) is the family
of all subsets ofR, λ, r ∈ R, 0 < t1 < t2 < · · · < tm < T, Ik ∈ C(R,R) (k = 1,2, . . . ,m),
∆x|t=tk = x(t+k )− x(t−k ), x(t+k ) andx(t−k ) represent the right and left limits ofx(t) at t = tk
respectively,k = 1,2, . . . ,m.

Notice that the problem (1.4)-(1.6) whenr = 1 is reduced to an impulsive periodic
boundary value problem, (whenF is single valued is reduced to problem (1.1)), whenr =
−1 it reduced to an impulsive antiperiodic boundary value problem, (whenF is single
valued is reduced to problem (1.2)), whenr ∈ (0,1], Ik = 0,k= 1, . . . ,mandF single valued
is reduced to problem (1.3), while whenr = 0 it reduced to an initial value problem.

The aim of our paper is to present existence results for the problem (1.4)-(1.6), when the
right hand side is convex as well as nonconvex valued. The first result relies on the nonlinear
alternative of Leray-Schauder type. In the second result, we shall combine the nonlinear
alternative of Leray-Schauder type for single-valued maps with a selection theorem due to
Bressan and Colombo for lower semicontinuous multivalued maps with nonempty closed
and decomposable values, while in the third result, we shall use the fixed point theorem for
contraction multivalued maps due to Covitz and Nadler. The methods used are standard,
however their exposition in the framework of problem (1.4)-(1.6) is new. It is remarkable
also that the results of this paper are new, even for the special caseIk = 0, k = 1,2, . . . ,m.

The paper is organized as follows: in Section 2 we recall some preliminary facts that
we need in the sequel and in Section 3 we prove our main results.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multivalued
analysis which are used throughout this paper.
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C([0,T],R) is the Banach space of all continuous functions from[0,T] intoR with the
norm

‖x‖∞ = sup{|x(t)| : t ∈ [0,T]}.
L1([0,T],R) denotes the Banach space of measurable functionsx : [0,T] −→ R which are
Lebesgue integrable and normed by

‖x‖L1 =
Z T

0
|x(t)|dt for all x∈ L1([0,T],R).

AC1((0,1),R) is the space of differentiable functionsx : (0,1)→ R, whose first derivative,
x′, is absolutely continuous.

For a normed space(X, | · |), letPcl(X) = {Y∈P (X) :Y closed}, Pb(X) = {Y∈P (X) :
Y bounded}, Pcp(X) = {Y ∈ P (X) : Y compact} andPcp,c(X) = {Y ∈ P (X) : Y compact
and convex}. A multivalued mapG : X→ P (X) is convex (closed) valued ifG(x) is convex
(closed) for allx∈ X. G is bounded on bounded sets ifG(B) = dx∈BG(x) is bounded inX
for all B∈Pb(X) (i.e. supx∈B{sup{|y| : y∈G(x)}}< ∞). G is called upper semi-continuous
(u.s.c.) onX if for eachx0 ∈ X, the setG(x0) is a nonempty closed subset ofX, and if for
each open setN of X containingG(x0), there exists an open neighborhoodN0 of x0 such that
G(N0) ⊆ N. G is said to be completely continuous ifG(B) is relatively compact for every
B ∈ Pb(X). If the multivalued mapG is completely continuous with nonempty compact
values, thenG is u.s.c. if and only ifG has a closed graph (i.e.xn −→ x∗, yn −→ y∗, yn ∈
G(xn) imply y∗ ∈ G(x∗)). G has a fixed point if there isx ∈ X such thatx ∈ G(x). The
fixed point set of the multivalued operatorG will be denoted byFixG. A multivalued map
G : [0,T]→ Pcl(R) is said to be measurable if for everyy∈ R, the function

t 7−→ d(y,G(t)) = inf{|y−z| : z∈G(t)}
is measurable. For more details on multivalued maps see the books of Aubin and Cellina
[1], Aubin and Frankowska [2], Deimling [9] and Hu and Papageorgiou [12].

Definition 2.1. A multivalued mapF : [0,T]×R→ P (R) is said to beL1-Carath́eodory if

(i) t 7−→ F(t,u) is measurable for eachu∈ R;

(ii) u 7−→ F(t,u) is upper semicontinuous for almost allt ∈ [0,T];

(iii) for eachq > 0, there existsϕq ∈ L1([0,T],R+) such that

‖F(t,u)‖= sup{|v| : v∈ F(t,u)} ≤ ϕq(t) for all ‖u‖∞ ≤ q and fora.e. t ∈ [0,T].

For eachx∈C([0,T],R), define the set of selections ofF by

SF,x = {v∈ L1([0,T],R) : v(t) ∈ F(t,x(t)) a.e. t ∈ [0,T]}.
Let E be a Banach space,X a nonempty closed subset ofE andG : X → P (E) a multi-

valued operator with nonempty closed values.G is lower semi-continuous (l.s.c.) if the set
{x∈ X : G(x)∩B 6= /0} is open for any open setB in E. Let A be a subset of[0,T]×R. A
is L⊗B measurable ifA belongs to theσ-algebra generated by all sets of the formJ ×D,
whereJ is Lebesgue measurable in[0,T] andD is Borel measurable inR. A subsetA of
L1([0,T],R) is decomposable if for allu,v ∈ A and J ⊂ [0,T] measurable, the function
uχJ +vχJ−J ∈ A, whereχJ stands for the characteristic function ofJ .
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Definition 2.2. Let Y be a separable metric space and letN : Y → P (L1([0,T],R)) be a
multivalued operator. We sayN has property (BC) if

1) N is lower semi-continuous (l.s.c.);

2) N has nonempty closed and decomposable values.

Let F : [0,T]×R→P (R) be a multivalued map with nonempty compact values. Assign
to F the multivalued operator

F : C([0,T],R)→ P (L1([0,T],R))

by letting

F (x) = {w∈ L1([0,T],R) : w(t) ∈ F(t,x(t)) for a.e. t ∈ [0,T]}.
The operatorF is called the Nymetzki operator associated withF.

Definition 2.3. Let F : [0,T]×R→ P (R) be a multivalued function with nonempty com-
pact values. We sayF is of lower semi-continuous type (l.s.c. type) if its associated Nymet-
zki operatorF is lower semi-continuous and has nonempty closed and decomposable val-
ues.

Let (X,d) be a metric space induced from the normed space(X, | · |). ConsiderHd :
P (X)×P (X)−→ R+∪{∞} given by

Hd(A,B) = max

{
sup
a∈A

d(a,B),sup
b∈B

d(A,b)
}

,

whered(A,b) = infa∈Ad(a,b), d(a,B) = infb∈Bd(a,b). Then (Pb,cl(X),Hd) is a metric
space and(Pcl(X),Hd) is a generalized metric space (see [13]).

Definition 2.4. A multivalued operatorN : X → Pcl(X) is called

a) γ-Lipschitz if and only if there existsγ > 0 such that

Hd(N(x),N(y))≤ γd(x,y), for eachx, y∈ X,

b) a contraction if and only if it isγ-Lipschitz withγ < 1.

The following lemmas will be used in the sequel.

Lemma 2.5. [14]. Let X be a Banach space. LetF : [0,T]×R −→ Pcp,c(X) be anL1-
Carath́eodory multivalued map and letΓ be a linear continuous mapping fromL1([0,T],X)
to C([0,T],X), then the operator

Γ◦SF : C([0,T],X) −→ Pcp,c(C([0,T],X)),
x 7−→ (Γ◦SF)(x) := Γ(SF,x)

is a closed graph operator inC([0,T],X)×C([0,T],X).

Lemma 2.6. [6]. Let Y be a separable metric space and letN : Y → P (L1([0,T],R)) be
a multivalued operator which has property (BC). ThenN has a continuous selection; i.e.,
there exists a continuous function (single-valued)g :Y→ L1([0,T],R) such thatg(x)∈N(x)
for everyx∈Y.

Lemma 2.7. [8] Let (X,d) be a complete metric space. IfN : X → Pcl(X) is a contraction,
thenFixN 6= /0.
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3 Main Results

In this section, we are concerned with the existence of solutions for the problem (1.4)-(1.6)
when the right hand side has convex as well as nonconvex values. Initially, we assume that
F is a compact and convex valued multivalued map.

In the following, we introduce first the Banach space

PC([0,T],R) = {x : [0,T]−→ R : x(t) is continuous everywhere except
for sometk at whichx(t−k ) andx(t+k ),k = 1, . . . ,m exist and
x(t−k ) = x(tk)}.

equipped with the norm
‖x‖∞ = sup{|x(t)| : t ∈ [0,T]},

and the space

PC1([0,T],R) = {x∈ PC([0,T],R) : x is differentiable a.e on(0,T),x′ ∈ L1([0,T],R)}.

It is clear thatPC1([0,T],R) is a Banach space with norm

‖x‖PC1 = max{‖x‖∞,‖x′‖∞},

where
‖x′‖∞ = sup{|x′(t)| : t ∈ [0,T]}.

Definition 3.1. A functionx∈ PC1([0,T],R) is said to be a solution of (1.4)–(1.6), if there
exists a functionv∈ L1([0,T],R) with v(t) ∈ F(t,x(t)), for a.e.t ∈ [0,T], such thatx′(t)+
λx(t) = v(t) a.e. onJ′, and fork = 1, . . . ,m the functionx satisfies the conditionx(t+k )−
x(t−k ) = Ik(x(t−k )), and the boundary conditionsx(0) = rx(T).

We need the following modified version of Lemma 2.1 from [17]. We omit the proof,
since it follows the steps of the proof in [17].

Lemma 3.2. Supposeσ : [0,T]→ R is continuous. Then the following problem

x′(t)+λx(t) = σ(t), a.e.t ∈ [0,T],

∆x|t=tk = Ik(x(t−k )), k = 1, . . . ,m,

x(0) = rx(T),

has a unique solutionx∈ PC1([0,T],R) with the representation

x(t) =
Z T

0
G(t,s)σ(s)ds+

m

∑
k=1

G(t, tk)Ik(x(t−k )),

whereG(t,s) is the Green function associated to the correspondinh homogeneous problem

x′(t)+λx(t) = 0, a.e.t ∈ [0,T],

x(0) = rx(T),
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given by

G(t,s) =





e−λ(t−s)

1− re−λT
, 0≤ s≤ t ≤ T,

re−λ(T+t−s)

1− re−λT
, 0≤ t ≤ s≤ T.

It is easy to prove the following properties of the Green’s function:

(I) G(t,s)≥ 0 for any(t,s) ∈ [0,T]× [0,T],

(II) G(t,s)≤G0 :=
1

|1− re−λT | for any(t,s) ∈ [0,T]× [0,T],

Theorem 3.3. Suppose that:

(H1) the functionF : [0,T]×R→ Pcp,c(R) is L1-Carath́eodory;

(H2) there exist a continuous non-decreasing functionψ : [0,∞)−→ (0,∞) and a function
p∈ L1([0,T],R+) such that

‖F(t,u)‖P := sup{|v| : v∈ F(t,u)} ≤ p(t)ψ(‖u‖∞)

for each(t,u) ∈ [0,T]×R;

(H3) there exists a continuous non-decreasing functionΩ : [0,∞)−→ [0,∞) such that

|Ik(u)| ≤Ω(‖u‖∞)

for each(t,u) ∈ [0,T]×R, k = 1,2, . . . ,m;

(H4) there exists a numberM > 0 such that

M
1

|1− re−λT | [ψ(M)‖p‖L1 +mΩ(M)]
> 1.

Then the BVP (1.4)–(1.6) has at least one solution.

Proof. Consider the operator

N(x) :=





h∈C([0,T],R) :

h(t) =
{ R T

0 G(t,s)v(s)ds+
m
∑

k=1
G(t, tk)Ik(x(t−k )), v∈ SF,x



 .

We shall show thatN satisfies the assumptions of the nonlinear alternative of Leray-
Schauder type. The proof will be given in several steps.

Step 1: N(x) is convex for eachx∈C([0,T],R).

Indeed, ifh1, h2 belong toN(x), then there existv1,v2∈SF,x such that for eacht ∈ [0,T]
we have

hi(t) =
Z T

0
G(t,s)vi(s)ds+

m

∑
k=1

G(t, tk)Ik(x(t−k )), (i = 1,2).
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Let 0≤ d≤ 1. Then, for eacht ∈ [0,T], we have

(dh1 +(1−d)h2)(t) =
Z T

0
G(t,s)[dv1(s)+(1−d)v2(s)]ds+

m

∑
k=1

G(t, tk)Ik(x(t−k )).

SinceSF,x is convex (becauseF has convex values), then

dh1 +(1−d)h2 ∈ N(x).

Step 2: N maps bounded sets into bounded sets inC([0,T],R).

Let Bq = {x∈C([0,T],R) : ‖x‖∞ ≤ q} be a bounded set inC([0,T],R) andx∈Bq. Then
for eachh∈ N(x), there existsv∈ SF,x such that

h(t) =
Z T

0
G(t,s)v(s)ds+

m

∑
k=1

G(t, tk)Ik(x(t−k )).

Then we have

|h(t)| ≤
Z T

0
|G(t,s)||v(s)|ds+

m

∑
k=1

|G(t, tk)||Ik(x(t−k ))|

≤ 1

|1− re−λT |

[Z T

0
|v(s)|ds+mΩ(q)

]

≤ 1

|1− re−λT |

[Z T

0
ϕq(s)ds+mΩ(q)

]
.

Thus

‖h‖∞ ≤ 1

|1− re−λT |

[Z T

0
ϕq(s)ds+mΩ(q)

]
.

Step 3: N maps bounded sets into equicontinuous sets ofC([0,T],R).

Let r1, r2 ∈ [0,T], r1 < r2 and Bq be a bounded set ofC([0,T],R) as in Step 2 and
x∈ Bq. For eachh∈ N(x)

|h(r2)−h(r1)| ≤
Z T

0
|G(r2,s)−G(r1,s)||v(s)|ds

+
m

∑
k=1

|G(r2, tk)−G(r1, tk)||Ik(x(t−k ))|

≤
Z T

0
|G(r2,s)−G(r1,s)|ϕq(s)ds

+
m

∑
k=1

|G(r2, tk)−G(r1, tk)||Ik(x(t−k ))|.

The right hand side tends to zero asr2− r1→ 0. As a consequence of Steps 1 to 3 together
with the Arzeĺa-Ascoli Theorem, we can conclude thatN : C([0,T],R)−→ P (C([0,T],R))
is completely continuous.
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Step 4: N has a closed graph.

Let xn → x∗, hn ∈ N(xn) and hn → h∗. We need to show thath∗ ∈ N(x∗).
hn ∈ N(xn) means that there existsvn ∈ SF,xn such that, for eacht ∈ [0,T],

hn(t) =
Z T

0
G(t,s)vn(s)ds+

m

∑
k=1

G(t, tk)Ik(xn(t−k )).

We must show that there existsh∗ ∈ SF,x∗ such that, for eacht ∈ [0,T],

h∗(t) =
Z T

0
G(t,s)v∗(s)ds+

m

∑
k=1

G(t, tk)Ik(x∗(t−k )).

Clearly we have
‖hn−h∗‖∞ −→ 0 asn→ ∞.

Consider the continuous linear operator

Γ : L1([0,T],R)→C([0,T],R)

defined by

v 7−→ (Γv)(t) =
Z T

0
G(t,s)v(s)ds.

From Lemma 2.5, it follows thatΓ◦SF is a closed graph operator. Moreover, we have

hn(t) ∈ Γ(SF,xn).

Sincexn → x∗, it follows from Lemma 2.5 that

h∗(t) =
Z T

0
G(t,s)v∗(s)ds+

m

∑
k=1

G(t, tk)Ik(x∗(t−k ))

for somev∗ ∈ SF,x∗ .

Step 5: A priori bounds on solutions.

Letxbe a possible solution of the problem (1.4)–(1.6). Then, there existsv∈L1([0,T],R)
with v∈ SF,x such that, for eacht ∈ [0,T], andθ ∈ (0,1),

x(t) = θ
Z T

0
G(t,s)v(s)ds+θ

m

∑
k=1

G(t, tk)Ik(x(t−k )).

This implies by (H2) and (H3) that, for eacht ∈ [0,T], we have

|x(t)| ≤ 1

|1− re−λT |

[Z T

0
p(s)ψ(‖x‖∞)ds+

m

∑
k=1

Ω(|x(tk)|)
]

≤ 1

|1− re−λT |

[
ψ(‖x‖∞)

Z T

0
p(s)ds+mΩ(‖x‖∞)

]
.
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Consequently
‖x‖∞

1

|1− re−λT | [ψ(‖x‖∞)‖p‖L1 +mΩ(‖x‖∞)]
≤ 1.

Then by (H4), there existsM such that‖x‖∞ 6= M.

Let
U = {x∈C([0,T],R) : ‖x‖∞ < M +1}.

The operatorN : U → P (C([0,T],R)) is upper semicontinuous and completely continuous.
From the choice ofU , there is nox ∈ ∂U such thatx ∈ θN(x) for someθ ∈ (0,1). As a
consequence of the nonlinear alternative of Leray-Schauder type [10], we deduce thatN
has a fixed pointx in U which is a solution of the problem (1.4)–(1.6). This completes the
proof.

Next, we study the case whereF is not necessarily convex valued. Our approach here
is based on the nonlinear alternative of Leray Schauder type combined with the selection
theorem of Bresssan and Colombo for lower semi-continuous maps with decomposable
values.

Theorem 3.4. Suppose that:

(H5) F : [0,T]×R−→ P (R) is a nonempty compact-valued multivalued map such that:
a) (t,u) 7→ F(t,u) is L⊗B measurable;
b) u 7→ F(t,u) is lower semi-continuous for eacht ∈ [0,T].

(H6) for eachρ > 0, there existsϕρ ∈ L1([0,T],R+) such that

‖F(t,u)‖= sup{|v| : v∈ F(t,u)} ≤ ϕρ(t) for all ‖u‖∞ ≤ ρand fora.e. t ∈ [0,T].

In addition assume that (H2), (H3) and (H4) hold. Then the BVP (1.4)–(1.6) has at least
one solution.

Proof. Note that (H5) and (H6) imply thatF is of l.s.c. type. Then from Lemma 2.6, there
exists a continuous functionf : C([0,T],R)→ L1([0,T],R) such thatf (x) ∈ F (x) for all
x∈C([0,T],R).

Consider the problem

x′(t)+λx(t) = f (x(t)), a.e.t ∈ J′ := [0,T]\{t1, . . . , tm}, (3.1)

∆x|t=tk = Ik(x(t−k )), k = 1, . . . ,m, (3.2)

x(0) = rx(T). (3.3)

It is clear that ifx∈ PC1([0,T],R)∩AC2(J′,R) is a solution of (3.1)–(3.3), thenx is a
solution to the problem (1.4)–(1.6). Transform the problem (3.1)–(3.3) into a fixed point
theorem. Consider the operatorN̄ defined by

(N̄x)(t) :=
Z T

0
G(t,s) f (x(s))ds+

m

∑
k=1

G(t, tk)Ik(x(t−k )), t ∈ J.
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We can easily show that̄N is continuous and completely continuous. The remainder of the
proof is similar to that of Theorem 3.3.

We present now a result for the problem (1.4)-(1.6) with a nonconvex valued right hand
side. Our considerations are based on the fixed point theorem for multivalued map given by
Covitz and Nadler [8].

Theorem 3.5. Suppose that:

(H7) F : [0,T]×R−→Pcp(R) has the property thatF(·,u) : [0,T]→Pcp(R) is measurable
for eachu∈ R;

(H8) Hd(F(t,u),F(t,u)) ≤ l(t)|u− u| for almost all t ∈ [0,T] and u, u ∈ R wherel ∈
L1([0,T],R) andd(0,F(t,0))≤ l(t) for almost allt ∈ [0,T];

(H9) there exist constantsck such that

|Ik(x)− Ik(x̄)| ≤ ck|x− x̄|, k = 1,2, . . . ,m, ∀x, x̄∈ R.

If
1

|1− re−λT |

[
‖l‖L1 +

m

∑
k=1

ck

]
< 1,

then the BVP (1.4)-(1.6) has at least one solution.

Remark3.6. For eachx ∈ C([0,T],R), the setSF,x is nonempty since by (H6),F has a
measurable selection (see [7], Theorem III.6).

Proof. We shall show thatN satisfies the assumptions of Lemma 2.7. The proof will be
given in two steps.

Step 1: N(x) ∈ Pcl(C([0,T],R)) for eachx∈C([0,T],R).

Indeed, let(xn)n≥0 ∈N(x) such thatxn−→ x̃ in C([0,T],R). Then,x̃∈C([0,T],R) and
there existsvn ∈ SF,x such that, for eacht ∈ [0,T],

xn(t) =
Z T

0
G(t,s)vn(s)ds+

m

∑
k=1

G(t, tk)Ik(xn(t−k )).

Using the fact thatF has compact values and from (H8), we may pass to a subsequence if
necessary to get thatvn converges tov in L1([0,T],R) and hencev∈ SF,x. Then, for each
t ∈ [0,T],

xn(t)−→ x̃(t) =
Z T

0
G(t,s)v(s)ds+

m

∑
k=1

G(t, tk)Ik(x̃(t−k )).

So,x̃∈ N(x).

Step 2: There existsγ < 1 such that

Hd(N(x),N(x))≤ γ‖x−x‖∞ for eachx,x∈C([0,T],R).
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Let x,x∈C([0,T],R) andh1∈N(x). Then, there existsv1(t)∈ F(t,x(t)) such that for each
t ∈ [0,T]

h1(t) =
Z T

0
G(t,s)v1(s)ds+

m

∑
k=1

G(t, tk)Ik(x(t−k )).

From (H9) it follows that

Hd(F(t,x(t)),F(t,x(t)))≤ l(t)|x(t)−x(t)|.

Hence, there existsw∈ F(t,x(t)) such that

|v1(t)−w| ≤ l(t)|x(t)−x(t)|, t ∈ [0,T].

ConsiderU : [0,T]→ P (R) given by

U(t) = {w∈ R : |v1(t)−w| ≤ l(t)|x(t)−x(t)|}.

Since the multivalued operatorV(t) = U(t)∩F(t,x(t)) is measurable (see Proposition III.4
in [7]), there exists a functionv2(t) which is a measurable selection forV. So, v2(t) ∈
F(t,x(t)), and for eacht ∈ [0,T],

|v1(t)−v2(t)| ≤ l(t)|x(t)−x(t)|.

Let us define for eacht ∈ [0,T]

h2(t) =
Z T

0
G(t,s)v2(s)ds+

m

∑
k=1

G(t, tk)Ik(x̄(t−k )).

We have

|h1(t)−h2(t)| ≤
Z T

0
|G(t,s)||v1(s)−v2(s)|ds+

m

∑
k=1

|G(t, tk)|ck|x(s)− x̄(s)|

≤ 1

|1− re−λT |
Z T

0
l(s)‖x−x‖ds+

m

∑
k=1

ck
1

|1− re−λT |‖x− x̄‖.

Thus

‖h1−h2‖∞ ≤ 1

|1− re−λT |

[
‖l‖L1 +

m

∑
k=1

ck

]
‖x−x‖∞.

By an analogous relation, obtained by interchanging the roles ofx andx, it follows that

Hd(N(x),N(x))≤ 1

|1− re−λT |

[
‖l‖L1 +

m

∑
k=1

ck

]
‖x−x‖∞.

So,N is a contraction and thus, by Lemma 2.7,N has a fixed pointx which is solution to
(1.4)–(1.6). The proof is complete.
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