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Abstract

In this paper, we investigate the existence of solutions for a class of first order boundary
value problems for impulsive differential inclusions. By using suitable fixed point
theorems, we study the case when the right hand side has convex as well as nonconvex
values.
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1 Introduction

In paper [17] Nieto by using fixed point theorems and lower and upper solutions methods,
studied the following impulsive boundary value problem with periodic boundary conditions

X (t) +Ax(t) = f(t,x(t)), te[0T],t#t k=212....m
{ DXfr—y = X(65) —x(t ) = (Xt ), k=1,....m, (1.1)
X(0) = x(T)

whereA 20,0<t; < ... <tm <tm1 =T, f andly are continuous.

The results of [17] were extended to differential inclusions (ordinary or functional) in
[3], [4], [5] by using the concepts of lower and upper solutions combined with a fixed point
theorem for condensing maps.

In [16] Luo et al considered the following anti-periodic boundary value problem for
impulsive differential equations

X(t) = f(t,xt)), tel0,T],t#t,k=212,...,m
{ DXty = X(47) = X(t ) = lk(x(t ), k=1,....m, (1.2)
X(0) = —x(T)

*E-mail address: sntouyas@uoi.gr




38 Sotiris K. Ntouyas

and proved existence results by using lower and upper solutions methods and monotone
iterative technique. The results of [16] were extended to impulsive functional differential
equations by Liu [15].

Recently in [11] Dyki studied the approximation of extremal solutions, by using mono-
tone iterative method, for the following boundary value problem for differential equations
with delayed arguments

X (t) = f(t,x(t),x(a(t)), ted:=[0,T]
{ x(0) =rx(T), re(0,1] (1.3)

wheref € C(J x R x R,R) anda € C(J,J) is such thati(t) <t forallt € J.

Motivated by the above results, we consider in this paper boundary value problems
(BVP for short) for first order impulsive differential inclusions with more general boundary
conditions, which include the above mentioned boundary conditions as special cases. More
precisely, in Section 3, we consider the first order impulsive BVP

X (t)+Ax(t) € F(t,x(t)),a.e.t €I :=[0,T]\ {ts,...,tm}, (1.4)
Ax|t:tk = |k(X(t|Z)), k=1,...,m, (15)
X(0) =rx(T), (1.6)

whereF : [0,T] x R — P(R) is a compact valued multivalued map(R) is the family
of all subsets oR, A,re R, 0<ty <to < - <ty < T, Ik e C(R,R) (k=1,2,....m),
DX|i—y, = X(47) — x(t, ), x(t7) andx(t,) represent the right and left limits aft) att = t,
respectivelyk=1,2,....m.

Notice that the problem (1.4)-(1.6) when= 1 is reduced to an impulsive periodic
boundary value problem, (whdnis single valued is reduced to problem (1.1)), when
—1 it reduced to an impulsive antiperiodic boundary value problem, (Whés single
valued is reduced to problem (1.2)), whea (0,1}, Iy =0,k = 1,...,mandF single valued
is reduced to problem (1.3), while whenr= 0 it reduced to an initial value problem.

The aim of our paper is to present existence results for the problem (1.4)-(1.6), when the
right hand side is convex as well as nonconvex valued. The first result relies on the nonlinear
alternative of Leray-Schauder type. In the second result, we shall combine the nonlinear
alternative of Leray-Schauder type for single-valued maps with a selection theorem due to
Bressan and Colombo for lower semicontinuous multivalued maps with nonempty closed
and decomposable values, while in the third result, we shall use the fixed point theorem for
contraction multivalued maps due to Covitz and Nadler. The methods used are standard,
however their exposition in the framework of problem (1.4)-(1.6) is new. It is remarkable
also that the results of this paper are new, even for the specialicase k=1,2,...,m.

The paper is organized as follows: in Section 2 we recall some preliminary facts that
we need in the sequel and in Section 3 we prove our main results.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from multivalued
analysis which are used throughout this paper.
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C([0,T],R) is the Banach space of all continuous functions ffonT ] into R with the
norm
IX]leo = sUP{IX(t)] : t € [0,T]}.
L1([0,T],R) denotes the Banach space of measurable funckiof T] — R which are
Lebesgue integrable and normed by
z
[IX[|L2 = OT Ix(t)|dt forall xe L]0, T],R).

AC((0,1),R) is the space of differentiable functiors (0, 1) — R, whose first derivative,
X, is absolutely continuous.

Foranormed spad¥, |- |), letPg(X) ={Y € P(X) :Y closed, Py(X)={YeP(X):
Y bounded, P:p(X) = {Y € P(X) : Y compac} andPpc(X) = {Y € P(X) : Y compact
and convex. A multivalued mapG : X — 2(X) is convex (closed) valued @&(x) is convex
(closed) for allx € X. G is bounded on bounded set€3{B) = UxgG(X) is bounded inX
for all B € Py(X) (i.e. sugcp{sup{ly| :y e G(x)} } < »). Gis called upper semi-continuous
(u.s.c.) onX if for eachxg € X, the setG(xp) is a nonempty closed subsetXf and if for
each open séf of X containingG(xo), there exists an open neighborhddgof xy such that
G(No) € N. G is said to be completely continuousGf B) is relatively compact for every
B € By(X). If the multivalued mapG is completely continuous with nonempty compact
values, therG is u.s.c. if and only ifG has a closed graph (i.8q — X, Yn — Vs, Yn €
G(xn) imply y. € G(x.)). G has a fixed point if there i € X such thatx € G(x). The
fixed point set of the multivalued operai@rwill be denoted byFixG. A multivalued map
G:[0,T] — Py(R) is said to be measurable if for eveyy R, the function

t—d(y,G(t)) =inf{ly—2:ze G(t)}

is measurable. For more details on multivalued maps see the books of Aubin and Cellina
[1], Aubin and Frankowska [2], Deimling [9] and Hu and Papageorgiou [12].

Definition 2.1. A multivalued magF : [0,T] x R — P(R) is said to be_!-Caratteodory if
(i) t— F(t,u) is measurable for eaahe R;
(i) u— F(t,u) is upper semicontinuous for almost & [0, T];
(iii)y for eachq > O, there exist®q € L1([0, T],R;) such that
|F(t,u)|| =sup{|v| :ve F(t,u)} <dq(t) forall|jull. <qgand foraete [0,T].
For eachx € C([0, T],R), define the set of selections Bfby
Sx={ve LY[0,T],R) : v(t) € F(t,x(t)) aet € [0, T]}.

Let E be a Banach spack,a nonempty closed subset®BfandG : X — P(E) a multi-
valued operator with nonempty closed valuéds lower semi-continuous (I.s.c.) if the set
{xe X :G(x)NB # 0} is open for any open saB in E. LetAbe a subsetdD, T| xR. A
is L ® B measurable i belongs to the-algebra generated by all sets of the fofm D,
where 7 is Lebesgue measurable [y T] andD is Borel measurable iiR. A subsetA of
L1([0,T],R) is decomposable if for all,v € A and 7 C [0,T] measurable, the function
uxs +Vvxi—s € A, whereyx stands for the characteristic function ff
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Definition 2.2. Let Y be a separable metric space andNetY — P(L'([0,T],R)) be a
multivalued operator. We say has property (BC) if

1) Nis lower semi-continuous (l.s.c.);

2) N has nonempty closed and decomposable values.

LetF : [0, T] xR — P(R) be a multivalued map with nonempty compact values. Assign
to F the multivalued operator

F :C([0,T],R) — P(LY([0,T],R))
by letting
F(x) ={we LY[0,T],R) : w(t) € F(t,x(t)) foraete[0,T]}.
The operatoff is called the Nymetzki operator associated vith

Definition 2.3. LetF : [0, T] x R — P(R) be a multivalued function with nonempty com-
pact values. We sdy is of lower semi-continuous type (l.s.c. type) if its associated Nymet-
zki operator¥ is lower semi-continuous and has nonempty closed and decomposable val-
ues.

Let (X,d) be a metric space induced from the normed sgace- |). ConsiderHy :
P(X) x P(X) — Ry U{eo} given by

Ho(A.B) = max{ supd(a,B).supd(A.b) |
acA beB
whered(A,b) = infacad(a,b), d(a,B) = infpegd(a,b). Then (P, (X),Hq) is a metric
space andP. (X),Hq) is a generalized metric space (see [13]).
Definition 2.4. A multivalued operatoN : X — Py (X) is called
a) y-Lipschitz if and only if there existg > 0 such that

Ha(N(x),N(y)) <yd(x,y), foreachx, ye X,

b) a contraction if and only if it ig-Lipschitz withy < 1.
The following lemmas will be used in the sequel.

Lemma 2.5. [14]. Let X be a Banach space. L&: [0,T] x R — Pepc(X) be anL!-
Caratheodory multivalued map and IEtbe a linear continuous mapping froi ([0, T], X)
to C([0, T], X), then the operator

MoS :C([0,T],X) — Pepc(C([0,T], X)),
X — (Mo S )(X) =T (Sx)
is a closed graph operator i6([0, T], X) x C([0, T], X).
Lemma 2.6. [6]. Let Y be a separable metric space and ket Y — 2(L([0,T],R)) be
a multivalued operator which has property (BC). ThHéras a continuous selection; i.e.,

there exists a continuous function (single-valugdy — L*([0, T],R) such thag(x) € N(x)
for everyx Y.

Lemma 2.7. [8] Let (X,d) be a complete metric space.Nf: X — P (X) is a contraction,
thenFixN # 0.
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3 Main Results

In this section, we are concerned with the existence of solutions for the problem (1.4)-(1.6)
when the right hand side has convex as well as nonconvex values. Initially, we assume that
F is a compact and convex valued multivalued map.

In the following, we introduce first the Banach space

PC([0,T],R) ={x:[0,T] — R:x(t) is continuous everywhere except
for somety at whichx(t,) andx(t’),k=1,...,m existand
X(t ) = x(t) }-

equipped with the norm
[IX[|eo = sup{[x(t)| : t € [0, T]},

and the space
PCL([0,T],R) = {x € PC([0,T],R) : xis differentiable a.e on(0,T),x € L*([0,T],R)}.
It is clear thatPC!([0, T],R) is a Banach space with norm
Xllpcr = max{|[X||e, [X']|e}

where
[1X[|eo = sUp{[X'(t)| : t € [0, T]}.

Definition 3.1. A functionx € PCY([0, T],R) is said to be a solution of (1.4)—(1.6), if there
exists a functiorv € L1([0, T],R) with v(t) € F(t,x(t)), for a.e.t € [0, T], such thax/(t) +
AX(t) = v(t) a.e. ond’, and fork = 1,...,mthe functionx satisfies the conditior(t,") —
X(t, ) = lk(x(t, )), and the boundary conditiox$0) = rx(T).

We need the following modified version of Lemma 2.1 from [17]. We omit the proof,
since it follows the steps of the proof in [17].

Lemma 3.2. Suppos® : [0, T] — R is continuous. Then the following problem
X (t) +Ax(t) = o(t), a.e.t € [0,T],

My, = IW(X(t;), k=1,...,m

X(0) = rx(T),
has a unique solutior € PCY(]0, T],R) with the representation
Z T m
X(t) = . G(t,s)o(s)ds+ Z G(t,t) lk(X(t, ),
K=1

whereG(t,s) is the Green function associated to the correspondinh homogeneous problem
X (t)+Ax(t) =0, a.e.t € [0, T],

X(0) = rx(T),
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given by
e Mt-9)
1 o AT 0 S S S t S T7
G(t,s) = 1-re-
’ re—MT+t-s9)
———, 0<t<s<T.
1—re AT

It is easy to prove the following properties of the Green’s function:

() G(t,s)>0forany(t,s) €[0,T]x[0,T],

(1) G(t,s) <Gp:= forany(t,s) € [0,T] x [0, T],

|1—reAT|
Theorem 3.3. Suppose that:
(H1) the functionF : [0, T] x R — Pgpc(R) is LI-Caratheodory;

(H2) there exist a continuous non-decreasing functjpr0,«) — (0, ) and a function
p e LY([0,T],R,) such that

IF(t,u)]l2 :=sup{|v| : ve F(t,u)} < p(t)(]|ull»)
for each(t,u) € [0,T] x R;
(H3) there exists a continuous non-decreasing funcfar0, o) — [0, ) such that
k(W) < Q([lufl)
foreach(t,u) € [0,T] xR, k=1,2,...,m;

(H4) there exists a numbé > 0 such that
M

[WM)[[pllLr +mQ(M)]

> 1

1
|1—reAT|
Then the BVP (1.4)—(1.6) has at least one solution.

Proof. Consider the operator

he C([0,T],R):
N(x) :{ h(t) :{ T G(t,s)v(s)ds—l—kglG(t,tkﬂk(X(tk ), VE Sx }

We shall show thaN satisfies the assumptions of the nonlinear alternative of Leray-
Schauder type. The proof will be given in several steps.

Step 1:N(x) is convex for eaclk € C([0,T],R).

Indeed, ifhy, hy belong toN(x), then there existy, v» € St such that for eache [0, T]
we have Z .

ht)= G(t,s)vi(s)ds+kie(t,tknk(x(tk—)),(i:l,z).
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Let0<d < 1 Then, for each € [0, T], we have
Z m
(dhy+ (1—d)hy)(t) = OT G(t,s)[dvi(s) + (1 —d)vz(s)]ds+ Z G(t, ) he(X(t, ).
K=1

SinceSe is convex (becaudge has convex values), then

dhy + (1 —d)hy € N(x).

Step 2 N maps bounded sets into bounded seG(ii®, T|,R).

LetBy= {x€C([0, T],R) : [|X]| < g} be a bounded set®([0, T],R) andx € By. Then
for eachh € N(x), there existy € S such that

z m
h(t) = OT G(t,s)v(s)ds+ z G(t, ti) l(X(t))-
=]
Then we have
Zq m
lht)] < . IG(LS)IIV(S)!dS+kzllG(tjtk)lllk(X(tD)l
1 AT
< | o MOldsEma)

1 T

m [ o ¢Q(S)ds+mQ(Q)} .

Thus 7
1 T
Nl < eyt |, $u(SKds+ (@)

Step 3 N maps bounded sets into equicontinuous se® [, T],R).

Letry,ro € [0,T], ry <rp andBqy be a bounded set @&([0, T],R) as in Step 2 and
X € Bq. For eacth € N(x)

h(r)—h(ry)| < ZOT G(r2,9) — G(r1,9)| V() ds
+k§1\6<rz,tk>—G<r1,tk>wk<x<tk->>r

< ZOT G(r2.5) — Glr1,9)d()ds
+ki|e<rz,tk>—G<r1,tk>||lk<x<tk—>>r.

The right hand side tends to zeroras-r; — 0. As a consequence of Steps 1 to 3 together
with the Arzeb-Ascoli Theorem, we can conclude thdt C([0, T],R) — P(C([0, T],R))
is completely continuous.
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Step 4 N has a closed graph.
Let X, — X., hn € N(X,) and h, — h,. We need to show thdtt. € N(x,).
hn € N(x,) means that there exists € S x, such that, for eache [0, T],
hn(t) = . G(t,s9)vn(s)ds+ H G(t,t)lk(Xn(ty ))-
K=1
We must show that there exidis € S, such that, for eache [0, T],
Z7

ht)= G(t,s)v*(s)derkiG(t,tk)lk(x*(tk)).

Clearly we have
I — h,||e — O asn — oo,

Consider the continuous linear operator
r:LY([0,T],R) —C([0,T],R)

defined by 7
T

vi—s (TV)(t) = . G(t,s)v(s)ds

From Lemma 2.5, it follows thdi o S is a closed graph operator. Moreover, we have

hn(t) € T(Sex,)-

Sincex, — X, it follows from Lemma 2.5 that
Z7

h.(t) = . G(t,s)v*(s)ds—l—kglG(t,tk)lk(x*(tk_))

for somev, € S ..
Step 5: A priori bounds on solutions.

Letx be a possible solution of the problem (1.4)—(1.6). Then, there axists ([0, T],R)
with v € Scx such that, for eache [0,T], and6 € (0,1),
X(t)=06  G(t,s)v(s)ds+6 Z G(t, t) e (X(t ).
0 K=1

This implies by (H2) and (H3) that, for eatke [0, T], we have

1 Z7 m
X)) < Tore | [ . D(S)lIJ(HXHoo)dSJrkle(IX(tk)D]
1 Z7

< e WKL) | P ma(x)]
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Consequently

X -
: <1
[ W) [Pl -+ ()]

Then by (H4), there existdl such thaf|x||. # M.

Let
U = {xe C([0,T],R) : |[X]lo < M+ 1}.

The operatoN : U — P(C([0,T|,R)) is upper semicontinuous and completely continuous.
From the choice ob, there is nox € dU such thatx € BN(x) for some6 € (0,1). As a
consequence of the nonlinear alternative of Leray-Schauder type [10], we dedubk that
has a fixed poink in U which is a solution of the problem (1.4)—(1.6). This completes the
proof. O

Next, we study the case whefeis not necessarily convex valued. Our approach here
is based on the nonlinear alternative of Leray Schauder type combined with the selection
theorem of Bresssan and Colombo for lower semi-continuous maps with decomposable
values.

Theorem 3.4. Suppose that:

(H5) F:[0,T] xR — 2 (R) is a nonempty compact-valued multivalued map such that:
a) (t,u) — F(t,u) is L ® B measurable;
b) u— F(t,u) is lower semi-continuous for eatke [0, T].

(H6) for eachp > 0, there exists, € L1([0,T],R.) such that

|F(t,u)|| =sup{|v| :ve F(t,u)} < ¢p(t) forall [julle < pand fora.et € [0,T].

In addition assume that (H2), (H3) and (H4) hold. Then the BVP (1.4)—(1.6) has at least
one solution.

Proof. Note that (H5) and (H6) imply tha& is of |.s.c. type. Then from Lemma 2.6, there
exists a continuous functioh: C([0,T],R) — L([0,T],R) such thatf (x) € F (x) for all
xe€ C([0, T],R).

Consider the problem

X (1) +Ax(t) = f(x(t)), a.et € d :=[0,T]\ {ts,...,tm}, (3.1)
AXle—y, = (Xt )), k=1,...,m, (3.2)
X(0) =rx(T). (3.3)

It is clear that ifx € PC'([0, T],R) N AC?(J',R) is a solution of (3.1)—(3.3), thexis a
solution to the problem (1.4)—(1.6). Transform the problem (3.1)—(3.3) into a fixed point
theorem. Consider the operatdrdefined by

Z g

(Nx)(t) := . G(t,s) f(x(s))ds+ kiG(t,tk)lk(x(tk‘)), ted.
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We can easily show that is continuous and completely continuous. The remainder of the
proof is similar to that of Theorem 3.3. O

We present now a result for the problem (1.4)-(1.6) with a nonconvex valued right hand
side. Our considerations are based on the fixed point theorem for multivalued map given by
Covitz and Nadler [8].

Theorem 3.5. Suppose that:

(H7) F:[0, T] xR — Pp(R) has the property thef (-, u) : [0, T] — Pcp(R) is measurable
for eachu € R;

(H8) Hy(F(t,u),F(t,0)) <I(t)jlu—1| for almost allt € [0,T] andu, U € R wherel €
LY([0,T],R) andd(0,F(t,0)) < I(t) for aimost allt € [0, T];

(H9) there exist constantg such that

“k(x)_lk()z)‘gckp(_ﬂ? k:1727"'7m7 VX7)?€R'

1 m
T |+ ) o
[1—re | kzl

then the BVP (1.4)-(1.6) has at least one solution.

<1,

Remark3.6. For eachx € C([0,T],R), the setS-x is nonempty since by (H6% has a
measurable selection (see [7], Theorem I11.6).

Proof. We shall show thaN satisfies the assumptions of Lemma 2.7. The proof will be
given in two steps.

Step I N(x) € Py(C([0,T],R)) for eachx € C([0,T],R).

Indeed, let(xn)n>0 € N(X) such that, — Xin C([0,T],R). Then X C([0,T],R) and
there exists, € S such that, for eache [0,T],
Xn(t) = . G(t,s)vn(s)ds+ Z G(t,ti) l(Xn(ty ).
K=1
Using the fact thaF has compact values and from (H8), we may pass to a subsequence if

necessary to get thag converges tw in L1([0, T],R) and hencev € S=x. Then, for each

te[oT], ,
)

X(t) —K(t)= G(t,s)v(s)ds+k§ G(t, t) k(K1)
=1

So,X e N(x).
Step 2 There existy < 1 such that

Ha(N(x),N(X)) < y|[X—X]|| for eachx,x € C([0,T],R).
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Letx,x € C([0,T],R) andh; € N(x). Then, there exist& (t) € F(t,x(t)) such that for each

te[0,T] ;
.

m(t)= G(t,s)vl(s)ds+k§ G(t, i) l(X(t, ).
=1

From (H9) it follows that

Hence, there exists € F(t,X(t)) such that
Va(t) —w| < T()[x(t) = X(t)], t € [0,T].
ConsidelU : [0,T] — P(R) given by
U(t) ={weR:|vi(t) —w| <I(t)[x(t) —x(t)[}.
Since the multivalued operatui(t) = U (t) NF(t,X(t)) is measurable (see Proposition I11.4
in [7]), there exists a functiony(t) which is a measurable selection fdr So, va(t) €

F(t,X(t)), and for each € [0, T],

[Va(t) —va(t)] < T(t)[x(t) —X(t)].

Let us define for eache [0, T]

z m
ha(t) = OT G(t,s)vo(s)ds+ z G(t, ti) (Xt ).
K=1
We have
Zq m
lha(t) —ho(t)] < . G(t,5)[[va(s) — va(s)[ds+ D [G(t,t)|cu|x(s) — X(s)]
K=1
1 4T 1

m
< — [(s)|Ix—X|lds+ § cxk———=||X—X]|.
< e o NOIX XISt S G X

Thus

1
hi —holle < ———
I —halle < T_re ]

m
e+ Y ck] X=Xl
K=1
By an analogous relation, obtained by interchanging the rolgsoflx, it follows that

1

Ha(N(x),N(X)) < T—re ™|

m
M+ > Ck] X = X[[eo-
k=1

So, N is a contraction and thus, by Lemma 2\ has a fixed poink which is solution to
(1.4)—(1.6). The proof is complete. O]
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