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Abstract

An asymptotic formula is given to theq-Theta function

Θq(x) :=
∞

∑
k=−∞

qk2
xk

asq→ 1−, wherex > 0 is fixed.
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1 Introduction

For0 < q < 1 andx∈ C, theq-Theta function is defined by [2]

Θq(x) :=
∞

∑
k=−∞

qk2
xk. (1.1)

It satisfies the Jacobi triple product identity [1, Theorem 12.3.2]

Θq(x) =
∞

∏
k=0

(1−q2k+2)(1+q2k+1x)(1+q2k+1/x). (1.2)
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Theq-Theta function can be written in terms of the Jacobi Theta functions [5, Chapter 21].
For example, by choosing anyz∈ C such thatx = e2iz, we have

Θq(x) = ϑ3(z,q). (1.3)

For more properties of theq-Theta function and the Jacobi Theta functions, please refer to
[5, Chapter 21] and references therein.

Note that the definition (1.1) and the Jacobi triple product (1.2) of theq-Theta function
are also valid forq∈C with |q|< 1. However, as in the theory ofq-orthogonal polynomials
(or basic hypergeometric orthogonal polynomials), we will always assume0 < q < 1; see
[1] and [3]. With the aid of theq-Theta function, Ismail and Zhang [2] derive several
asymptotic formulas for three classes ofq-orthogonal polynomials. Their results have been
improved by Wang and Wong in [4], where again, theq-Theta function plays a significant
role. Therefore, it will be useful to investigate asymptotic behavior of theq-Theta function
in a stand-alone manner. This paper is dedicated to give an asymptotic formula for theq-
Theta function asq→ 1− with fixed x > 0. As far as we are aware, this result has not been
obtained previously.

2 Main Results

Our main theorem is stated below.

Theorem 2.1. Asq→ 1−, we have

Θq(x)∼
√

π
− lnq

exp{ (lnx)2

−4lnq
} (2.1)

for x > 0. Here the symbol “∼” means asymptotically equal, that is, we writeAq ∼ Bq if
lim

q→1−
Aq/Bq = 1.

For preparation, we study the sum

I(λ,a) :=
∞

∑
k=0

e−k2/λ+ak (2.2)

for a∈ R andλ > 0. It is easily seen from (1.1) and (2.2) that

Θq(x) = I(−1/ lnq, lnx)+ I(−1/ lnq,− lnx)−1. (2.3)

Lemma 2.2. Asλ→+∞,

I(λ,0) :=
∞

∑
k=0

e−k2/λ ∼
√

πλ/2. (2.4)

If the integer-valued functionN = N(λ) ∈ N satisfies

lim
λ→+∞

N/λ = c
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for some positive constantc > 0, we have

N

∑
k=0

e−k2/λ ∼
√

πλ/2 (2.5)

asλ→+∞.

Proof. Consider the auxiliary integral

Ĩ(λ) :=
Z ∞

0
e−t2/λdt =

∞

∑
k=0

Z k+1

k
e−t2/λdt.

Sincee−(k+1)2/λ ≤ e−t2/λ ≤ e−k2/λ for k≤ t ≤ k+1, it follows that
∞

∑
k=1

e−k2/λ ≤ Ĩ(λ)≤
∞

∑
k=0

e−k2/λ.

On account of (2.2), we havẽI(λ)≤ I(λ,0)≤ Ĩ(λ)+1. Multiply this by λ−1/2 and then let
λ→+∞. Formula (2.4) follows from the fact̃I(λ) =

√
πλ/2.

To prove (2.5), we shall estimate the sum

∞

∑
k=N+1

e−k2/λ =
∞

∑
k=1

e−(k+N)2/λ ≤
∞

∑
k=0

e−N2/λ−2Nk/λ =
e−N2/λ

1−e−2N/λ .

As λ → +∞, the right-hand side of the last inequality vanishes sinceN/λ → c > 0 by
assumption. This implies

lim
λ→+∞

∞

∑
k=N+1

e−k2/λ = 0.

Therefore, formula (2.5) follows from (2.4).

Lemma 2.3. For a < 0, we have

I(λ,a) :=
∞

∑
k=0

e−k2/λ+ak∼ (1−ea)−1 (2.6)

asλ→+∞.

Proof. Sincek2/λ≤ 1/
√

λ for 0≤ k≤ bλ1/4c, we have

I(λ,a) =
∞

∑
k=0

e−k2/λ+ak≥
bλ1/4c
∑
k=0

e−1/
√

λ+ak =
e−1/

√
λ(1−ea(bλ1/4c+1))

1−ea .

By letting λ→+∞, we obtain from the assumptiona < 0 that

liminf
λ→+∞

I(λ,a)≥ (1−ea)−1.

Moreover, it is easily seen that

I(λ,a) =
∞

∑
k=0

e−k2/λ+ak≤
∞

∑
k=0

eak = (1−ea)−1.

Coupling the last two inequalities yields our desired result.
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Lemma 2.4. For a > 0, we have

I(λ,a) :=
∞

∑
k=0

e−k2/λ+ak∼
√

πλeλa2/4 (2.7)

asλ→+∞.

Proof. Consider the sum

e−λa2/4I(λ,a) =
∞

∑
k=0

e−(k−λa/2)2/λ =
m

∑
k=0

+
∞

∑
k=m+1

=: I1 + I2, (2.8)

wherem := bλa/2c. We intend to showI1 ∼
√

πλ/2 andI2 ∼
√

πλ/2 asλ→+∞.
Firstly, it follows fromm≤ λa/2≤m+1 that

I1 :=
m

∑
k=0

e−(k−λa/2)2/λ ≤
m

∑
k=0

e−(m−k)2/λ =
m

∑
k=0

e−k2/λ,

and

I1 ≥
m

∑
k=0

e−(m+1−k)2/λ =
m+1

∑
k=0

e−k2/λ−1.

Sincem/λ→ a/2 > 0 asλ→+∞, we obtain from (2.5) and the last two inequalities that

lim
λ→+∞

I1/
√

λ =
√

π/2. (2.9)

Secondly, sincem≤ λa/2≤m+1, we have

I2 :=
∞

∑
k=m+1

e−(k−λa/2)2/λ ≤
∞

∑
k=m+1

e−(k−m−1)2/λ =
∞

∑
k=0

e−k2/λ,

and

I2 ≥
∞

∑
k=m+1

e−(k−m)2/λ =
∞

∑
k=0

e−k2/λ−1.

applying (2.4) to the last two inequalities gives

lim
λ→+∞

I2/
√

λ =
√

π/2. (2.10)

Finally, a combination of (2.8)-(2.10) yields (2.7) immediately.

Proof of Theorem 2.1.Forx = 1, we obtain from (2.3) that

Θq(1) = 2I(−1/ lnq,0)−1.

Coupling this and (2.4) gives

lim
q→1−

Θq(1)
√
− lnq =

√
π. (2.11)
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Forx > 1, it follows from (2.6) that

lim
q→1−

[I(−1/ lnq,− lnx)−1]
√
− lnqexp{(lnx)2

4lnq
}= 0.

On the other hand, from (2.7) we have

lim
q→1−

I(−1/ lnq, lnx)
√
− lnqexp{(lnx)2

4lnq
}=

√
π.

Therefore, applying the last two equations to (2.3) yields

lim
q→1−

Θq(x)
√
− lnqexp{(lnx)2

4lnq
}=

√
π. (2.12)

Similarly, for 0 < x < 1, a combination of (2.3), (2.6) and (2.7) implies

lim
q→1−

Θq(x)
√
− lnqexp{(lnx)2

4lnq
}=

√
π. (2.13)

Thus, formula (2.1) follows from (2.11)-(2.13). This ends the proof of Theorem 2.1.
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