$\mathbf{C o m m m i c a t i o n s ~ i n ~} \mathbf{M a t a t e m a t e r l} \mathbf{A}_{\text {nalysis }}$

Volume 7, Number 1, pp. 55-60 (2009)
www.commun-math-anal.org

Factors for Absolute Nörlund Summability

HÜSEYIN BOR *
Department of Mathematics
Erciyes University
Kayseri, 38039, TURKEY

(Communicated by John M. Rassias)

Abstract

In this paper, a general theorem dealing with $\left|N, p_{n}\right|_{k}$ summability factors has been proved. This theorem also includes some known results.

AMS Subject Classification: 40D15, 40F05, 40G05, 40G99.
Keywords: Nörlund summability, infinite series, sequences, summability factors.

1 Introduction

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$ and $w_{n}=n a_{n}$. By u_{n}^{α} and t_{n}^{α} we denote the n-th Cesàro means of order α, with $\alpha>-1$, of the sequences $\left(s_{n}\right)$ and $\left(w_{n}\right)$, respectively. i.e,

$$
\begin{align*}
u_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v} \tag{1.1}\\
t_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \tag{1.2}
\end{align*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha}=O\left(n^{\alpha}\right), \quad \alpha>-1, \quad A_{0}^{\alpha}=1 \quad \text { and } \quad A_{-n}^{\alpha}=0 . \tag{1.3}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geq 1$, if (see [5],[7])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}<\infty \tag{1.4}
\end{equation*}
$$

If we take $\alpha=1$, then $|C, \alpha|_{k}$ summability reduces to $|C, 1|_{k}$ summability.
Let $\left(p_{n}\right)$ be a sequence of constants, real or complex, and let us write

$$
\begin{equation*}
P_{n}=p_{0}+p_{1}+p_{2}+\ldots+p_{n} \neq 0,(n \geq 0) \tag{1.5}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
\sigma_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \tag{1.6}
\end{equation*}
$$

\]

defines the sequence $\left(\sigma_{n}\right)$ of the Nörlund mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}\right)$. The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}\right|$, if (see [8])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\sigma_{n}-\sigma_{n-1}\right|<\infty \tag{1.7}
\end{equation*}
$$

and it is said to be summable $\left|N, p_{n}\right|_{k}, k \geq 1$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\sigma_{n}-\sigma_{n-1}\right|^{k}<\infty . \tag{1.8}
\end{equation*}
$$

In the special case when

$$
\begin{equation*}
p_{n}=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \Gamma(n+1)}, \alpha \geq 0 \tag{1.9}
\end{equation*}
$$

the Nörlund mean reduces to the (C, α) mean and $\left|N, p_{n}\right|_{k}$ summability becomes $|C, \alpha|_{k}$ summability. For $p_{n}=1$, we get the $(C, 1)$ mean and then $\left|N, p_{n}\right|_{k}$ summability becomes $|C, 1|_{k}$ summability. For any sequence $\left(\lambda_{n}\right)$, we write $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$.

2 The known results

Concerning the $|C, 1|$ and $\left|N, p_{n}\right|$ summabilities Kishore [6] has proved the following theorem.

Theorem 2.1. Let $p_{0}>0, p_{n} \geq 0$ and $\left(p_{n}\right)$ be a non-increasing sequence. If $\sum a_{n}$ is summable $|C, 1|$, then the series $\sum a_{n} P_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|$.
Varma [11] has also generalized Theorem 2.1 for $\left|N, p_{n}\right|_{k}$ summability.
Theorem 2.2. Let $p_{0}>0, p_{n} \geq 0$ and $\left(p_{n}\right)$ be a non-increasing sequence. If $\sum a_{n}$ is summable $|C, 1|_{k}$, then the series $\sum a_{n} P_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|_{k}, k \geq 1$.

Recently Bor [2] has proved the following theorem on this subject.
Theorem 2.3. Let $\left(p_{n}\right)$ be as in Theorem 2.1. If

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{1}{v}\left|t_{v}\right|^{k}=O\left(X_{n}\right) \text { as } n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

where $\left(t_{n}\right)$ is the n-th $(C, 1)$ mean of the sequence $\left(n a_{n}\right),\left(X_{n}\right)$ is a positive non-decreasing sequence and $\left(\lambda_{n}\right)$ is a sequence such that

$$
\begin{gather*}
\sum_{n=1}^{\infty} n\left|\Delta^{2} \lambda_{n}\right| X_{n}<\infty, \tag{2.2}\\
\left|\lambda_{n}\right| X_{n}=O(1) \text { as } n \rightarrow \infty, \tag{2.3}
\end{gather*}
$$

then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|_{k}, k \geq 1$.

3 Main Result

The aim of this paper is to prove Theorem 2.3 in a more general form for $\left|N, p_{n}\right|_{k}$ summability. Now we shall prove the following theorem.

Theorem 3.1. Let $\left(p_{n}\right)$ be as in Theorem 2.1 and $\left(X_{n}\right)$ be a positive non - decreasing sequence. If the conditions (2.2)-(2.3) of Theorem 2.3 are satisfied and the sequence $\left(w_{n}^{\alpha}\right)$, defined by (see [10])

$$
\begin{gather*}
w_{n}^{\alpha}=\left|t_{n}^{\alpha}\right|, \quad \alpha=1 \tag{3.1}\\
w_{n}^{\alpha}=\max _{1 \leq v \leq n}\left|t_{v}^{\alpha}\right|, \quad 0<\alpha<1 \tag{3.2}
\end{gather*}
$$

satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{m} n^{-1}\left(w_{n}^{\alpha}\right)^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{3.3}
\end{equation*}
$$

then the series $\sum a_{n} P_{n} \lambda_{n}(n+1)^{-1}$ is summable $\left|N, p_{n}\right|_{k}, k \geq 1$ and $0<\alpha \leq 1$.
It should be remarked that if we take $\alpha=1$, then we get Theorem 2.3.
We need the following lemmas for the proof of our theorem.
Lemma 3.2. ([4]) If $0<\alpha \leq 1$ and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} a_{p}\right| . \tag{3.4}
\end{equation*}
$$

Lemma 3.3. ([2]) Under the conditions on $\left(X_{n}\right)$ and $\left(\lambda_{n}\right)$, as taken in the statement of Theorem 3.1, the following conditions hold:

$$
\begin{gather*}
n X_{n} \Delta \lambda_{n}=O(1) \text { as } n \rightarrow \infty, \tag{3.5}\\
\sum_{n=1}^{\infty} \Delta \lambda_{n} X_{n}<\infty . \tag{3.6}
\end{gather*}
$$

Lemma 3.4. ([9]) If $-1<\alpha \leq \beta, k>1$ and the series $\sum a_{n}$ is summable $|C, \alpha|_{k}$, then it is also summable $|C, \beta|_{k}$.

The case $\mathrm{k}=1$ of this Lemma is due to Kogbetliantz [7]. The case $k>1$ is a special case of a theorem of Flett ([5], Theorem 1).

4 Proof of Theorem 3.1.

In order to prove the theorem, we need to consider only the special case in which $\left(N, p_{n}\right)$ is (C, α), that is, we shall prove that $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha|_{k}$. Our theorem will then follow by mean of Lemma 3.4 (for $\beta=1$) and Theorem 2.2. Let $\left(T_{n}^{\alpha}\right)$ be the n -th (C, α), with $0<\alpha \leq 1$, mean of the sequence $\left(n a_{n} \lambda_{n}\right)$. Then, by (1.2), we have

$$
\begin{equation*}
T_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \lambda_{v} . \tag{4.1}
\end{equation*}
$$

By applying Abel's transformation, we find from (4.1) that

$$
T_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v},
$$

which, in view of Lemma 3.2, yields

$$
\begin{aligned}
\left|T_{n}^{\alpha}\right| & \leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| w_{n}^{\alpha} \\
& =T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha} .
\end{aligned}
$$

Since,

$$
\left|T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}\right|^{k} \leq 2^{k}\left(\left|T_{n, 1}^{\alpha}\right|^{k}+\left|T_{n, 2}^{\alpha}\right|^{k}\right),
$$

in order to complete the proof of the Theorem, by (1.4) it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{-1}\left|T_{n, r}^{\alpha}\right|^{k}<\infty \quad \text { for } \quad r=1,2
$$

Whenever $k>1$, we can apply Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{-1}\left|T_{n, 1}^{\alpha}\right|^{k} & \leq \sum_{n=2}^{m+1} n^{-1}\left(A_{n}^{\alpha}\right)^{-k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha} w_{v}^{\alpha}\left|\Delta \lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} n^{-1} n^{-\alpha k}\left\{\sum_{v=1}^{n-1} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right|\right\} \times\left\{\sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right| \sum_{n=v+1}^{m+1} \frac{1}{n^{\alpha k+1}} \\
& =O(1) \sum_{v=1}^{m} v^{\alpha k}\left(w_{v}^{\alpha}\right)^{k}\left|\Delta \lambda_{v}\right| \int_{v}^{\infty} \frac{d x}{x^{\alpha k+1}} \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right| v^{-1}\left(w_{v}^{\alpha}\right)^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v} r^{-1}\left(w_{r}^{\alpha}\right)^{k} \\
& +O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m} v^{-1}\left(w_{v}^{\alpha}\right)^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|\Delta \lambda_{v}\right|\right)\right| X_{v}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1}|(v+1)| \Delta^{2} \lambda_{v}\left|-\left|\Delta \lambda_{v}\right|\right| X_{v}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta^{2} \lambda_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =O(1) a s m_{1} \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the Theorem and Lemma 3.3. Again, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} n^{-1}\left|T_{n, 2}^{\alpha}\right|^{k} & =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| n^{-1}\left(w_{n}^{\alpha}\right)^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} v^{-1}\left(w_{v}^{\alpha}\right)^{k}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} n^{-1}\left(w_{n}^{\alpha}\right)^{k} \\
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of the Theorem and Lemma 3.3. Therefore, we get that

$$
\sum_{n=1}^{m} n^{-1}\left|T_{n, r}^{\alpha}\right|^{k}=O(1) \quad \text { as } \quad m \rightarrow \infty, \quad \text { for } \quad r=1,2
$$

This completes the proof of the Theorem.

References

[1] H. Bor, Absolute Nörlund summability factors. Utilitas Math. 40 (1991), pp 231-236.
[2] H. Bor On a summability factor theorem. Commun. Math. Anal. 1 (2006), pp 46-51.
[3] D. Borwein and F. P. Cass, Strong Nörlund summability. Math. Zeith. 103 (1968), pp 94-111.
[4] L. S. Bosanquet, A mean value theorem.J. London Math. Soc. 16 (1941), pp 146-148.
[5] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley.Proc. London Math. Soc. 7 (1957), pp 113-141.
[6] N. Kishore, On the absolute Nörlund summability factors.Riv. Mat. Univ. Parma 6 (1965), pp 129-134.
[7] E. Kogbentliantz, Sur lés series absolument sommables par la méthode des moyennes arithmétiques. Bull. Sci. Math. 49 (1925), pp 234-256.
[8] F. M. Mears, Some multiplication theorems for the Nörlund mean. Bull. Amer. Math. Soc. 41 (1935), pp 875-880.
[9] M. R. Mehdi, Linear transformations between the Banach spaces L^{p} and l^{p} with applications to absolute summability. PhD.Thesis, University College and Birkbeck College , London (1959).
[10] T. Pati, The summability factors of infinite series. Duke Math. J. 21 (1954), pp 271284.
[11] R. S. Varma, On the absolute Nörlund summability factors. Riv. Mat.Univ. Parma 4 3(1977), pp 27-33.

[^0]: *E-mail address: bor@erciyes.edu.tr ; hbor@gmail.com

