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Abstract

In this paper, a general theorem dealing with| N, pn |k summability factors has been
proved. This theorem also includes some known results.
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1 Introduction

Let ∑an be a given infinite series with the sequence of partial sums(sn) andwn = nan. By
uα

n andtα
n we denote then-th Ces̀aro means of orderα, with α >−1, of the sequences(sn)

and(wn), respectively. i.e,

uα
n =

1
Aα

n

n

∑
v=0

Aα−1
n−v sv, (1.1)

tα
n =

1
Aα

n

n

∑
v=1

Aα−1
n−v vav, (1.2)

where
Aα

n = O(nα), α >−1, Aα
0 = 1 and Aα

−n = 0. (1.3)

The series∑an is said to be summable|C,α |k, k≥ 1, if (see [5],[7])

∞

∑
n=1

nk−1 | uα
n −uα

n−1 |k=
∞

∑
n=1

1
n
| tα

n |k< ∞. (1.4)

If we takeα = 1, then|C,α |k summability reduces to|C,1 |k summability.
Let (pn) be a sequence of constants, real or complex, and let us write

Pn = p0 + p1 + p2 + ...+ pn 6= 0, (n≥ 0). (1.5)
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σn =
1
Pn

n

∑
v=0

pn−vsv (1.6)

defines the sequence(σn) of the Nörlund mean of the sequence(sn), generated by the
sequence of coefficients(pn). The series∑an is said to be summable| N, pn |, if (see [8])

∞

∑
n=1

| σn−σn−1 |< ∞, (1.7)

and it is said to be summable| N, pn |k, k≥ 1, if (see [3])
∞

∑
n=1

nk−1 | σn−σn−1 |k < ∞. (1.8)

In the special case when

pn =
Γ(n+α)

Γ(α)Γ(n+1)
, α≥ 0 (1.9)

the Nörlund mean reduces to the(C,α) mean and| N, pn |k summability becomes|C,α |k
summability. Forpn = 1, we get the(C,1) mean and then| N, pn |k summability becomes
|C,1 |k summability. For any sequence(λn), we write∆λn = λn−λn+1.

2 The known results

Concerning the|C,1 | and|N, pn | summabilities Kishore [6] has proved the following the-
orem.

Theorem 2.1. Let p0 > 0, pn ≥ 0 and (pn) be a non-increasing sequence. If∑an is
summable|C,1 |, then the series∑anPn(n+1)−1 is summable| N, pn |.
Varma [11] has also generalized Theorem 2.1 for| N, pn |k summability.

Theorem 2.2. Let p0 > 0, pn ≥ 0 and (pn) be a non-increasing sequence. If∑an is
summable|C,1 |k, then the series∑anPn(n+1)−1 is summable| N, pn |k, k≥ 1.

Recently Bor [2] has proved the following theorem on this subject.

Theorem 2.3. Let (pn) be as in Theorem 2.1. If
n

∑
v=1

1
v
| tv |k= O(Xn) as n→ ∞, (2.1)

where(tn) is the n-th (C,1) mean of the sequence(nan) , (Xn) is a positive non-decreasing
sequence and(λn) is a sequence such that

∞

∑
n=1

n | ∆2λn | Xn < ∞, (2.2)

| λn | Xn = O(1) as n→ ∞, (2.3)

then the series∑anPnλn(n+1)−1 is summable| N, pn |k, k≥ 1.
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3 Main Result

The aim of this paper is to prove Theorem 2.3 in a more general form for| N, pn |k summa-
bility. Now we shall prove the following theorem.

Theorem 3.1. Let (pn) be as in Theorem 2.1 and(Xn) be a positive non - decreasing
sequence. If the conditions (2.2)-(2.3) of Theorem 2.3 are satisfied and the sequence(wα

n),
defined by (see [10])

wα
n =| tα

n |, α = 1 (3.1)

wα
n = max

1≤v≤n
| tα

v |, 0 < α < 1 (3.2)

satisfies the condition

m

∑
n=1

n−1(wα
n)k = O(Xm) as m→ ∞, (3.3)

then the series∑anPnλn(n+1)−1 is summable| N, pn |k, k≥ 1 and0 < α≤ 1.

It should be remarked that if we takeα = 1 , then we get Theorem 2.3.
We need the following lemmas for the proof of our theorem.

Lemma 3.2. ([4]) If 0 < α≤ 1 and1≤ v≤ n, then

|
v

∑
p=0

Aα−1
n−pap |≤ max

1≤m≤v
|

m

∑
p=0

Aα−1
m−pap | . (3.4)

Lemma 3.3. ([2]) Under the conditions on(Xn) and (λn), as taken in the statement of
Theorem 3.1, the following conditions hold :

nXn∆λn = O(1) as n→ ∞, (3.5)

∞

∑
n=1

∆λnXn < ∞. (3.6)

Lemma 3.4. ([9]) If −1 < α≤ β,k > 1 and the series∑an is summable|C,α |k, then it is
also summable|C,β |k.

The case k =1 of this Lemma is due to Kogbetliantz [7]. The casek > 1 is a special case of
a theorem of Flett ([5], Theorem 1).
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4 Proof of Theorem 3.1.

In order to prove the theorem, we need to consider only the special case in which(N, pn)
is (C,α), that is, we shall prove that∑anλn is summable|C,α |k. Our theorem will then
follow by mean of Lemma 3.4 ( forβ = 1) and Theorem 2.2. Let(Tα

n ) be the n-th(C,α),
with 0 < α≤ 1, mean of the sequence(nanλn). Then, by (1.2), we have

Tα
n =

1
Aα

n

n

∑
v=1

Aα−1
n−v vavλv. (4.1)

By applying Abel’s transformation, we find from (4.1) that

Tα
n =

1
Aα

n

n−1

∑
v=1

∆λv

v

∑
p=1

Aα−1
n−p pap +

λn

Aα
n

n

∑
v=1

Aα−1
n−v vav,

which, in view of Lemma 3.2, yields

| Tα
n | ≤ 1

Aα
n

n−1

∑
v=1

| ∆λv ||
v

∑
p=1

Aα−1
n−p pap |+ | λn |

Aα
n
|

n

∑
v=1

Aα−1
n−v vav |

≤ 1
Aα

n

n−1

∑
v=1

Aα
v wα

v | ∆λv |+ | λn | wα
n

= Tα
n,1 +Tα

n,2 .

Since,

| Tα
n,1 +Tα

n,2 |k≤ 2k(| Tα
n,1 |k + | Tα

n,2 |k),

in order to complete the proof of the Theorem, by (1.4) it is sufficient to show that

∞

∑
n=1

n−1 | Tα
n,r |k< ∞ f or r = 1,2.
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Wheneverk > 1, we can apply Ḧolder’s inequality with indicesk andk′, where1
k + 1

k′ = 1,
we get that

m+1

∑
n=2

n−1 | Tα
n,1 |k ≤

m+1

∑
n=2

n−1(Aα
n)−k{

n−1

∑
v=1

Aα
v wα

v | ∆λv |}k

= O(1)
m+1

∑
n=2

n−1n−αk{
n−1

∑
v=1

vαk(wα
v )k | ∆λv |}×{

n−1

∑
v=1

| ∆λv |}k−1

= O(1)
m

∑
v=1

vαk(wα
v )k | ∆λv |

m+1

∑
n=v+1

1
nαk+1

= O(1)
m

∑
v=1

vαk(wα
v )k | ∆λv |

Z ∞

v

dx
xαk+1

= O(1)
m

∑
v=1

v | ∆λv | v−1(wα
v )k

= O(1)
m−1

∑
v=1

∆(v | ∆λv |)
v

∑
r=1

r−1(wα
r )k

+ O(1)m | ∆λm |
m

∑
v=1

v−1(wα
v )k

= O(1)
m−1

∑
v=1

| ∆(v | ∆λv |) | Xv +O(1)m | ∆λm | Xm

= O(1)
m−1

∑
v=1

| (v+1) | ∆2λv | − | ∆λv || Xv +O(1)m | ∆λm | Xm

= O(1)
m−1

∑
v=1

v | ∆2λv | Xv +O(1)
m−1

∑
v=1

| ∆λv | Xv +O(1)m | ∆λm | Xm

= O(1) as m→ ∞,

by virtue of the hypotheses of the Theorem and Lemma 3.3. Again, we have that

m

∑
n=1

n−1 | Tα
n,2 |k = O(1)

m

∑
n=1

| λn | n−1(wα
n)k

= O(1)
m−1

∑
n=1

∆ | λn |
n

∑
v=1

v−1(wα
v )k +O(1) | λm |

m

∑
n=1

n−1(wα
n)k

= O(1)
m−1

∑
n=1

| ∆λn | Xn +O(1) | λm | Xm = O(1) as m→ ∞,

by virtue of the hypotheses of the Theorem and Lemma 3.3. Therefore, we get that

m

∑
n=1

n−1 | Tα
n,r |k= O(1) as m→ ∞, f or r = 1,2.

This completes the proof of the Theorem.
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