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Abstract

This article is devoted to subharmonic functionsu in the unit ball. It studies how
growth conditions onu impact on the Riesz measure associated tou. More precisely,
the growth hypotheses involve means ofu over spheres. The results lead to applica-
tions about holomorphic functions in the unit disk and about the repartition of their
zeros.
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1 Introduction

For functionsf holomorphic in the unit disk ofC, such that
R 1

0 T(r)(1− r)λ dr < +∞ with
λ > −1 andT(r) = 1

2π
R 2π

0 log+ | f (r eiθ)|dθ, it is already known from [2] and [9] that the
zeros{zn}n∈N of such functions satisfy:

∑
n∈N

(1−|zn|)λ+2 < +∞

(see Example 2.5). In this case,I(s) :=
R 1

s T(r)(1− r)λ dr obviously tends towards0 as
s→ 1. When such an additional information asI(s) = O((1−s)β) is available, the present
paper obtains forβ ∈]0,1+λ[ the convergence of

∑
n∈N

(1−|zn|)λ+2−β
(

log
1

1−|zn|
)−γ

∀γ > 1 which can not be deduced from the convergence of the previous series (see Re-
mark 2.9). Actually this result occurs as a special case (see Corollary 2.8) in a more general
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study devoted to subharmonic functions in the open Euclidean unit ball inRN. These func-
tions are subject to growth conditions controlling their behavior near the border of the unit
ball BN. In Sections 2, 3 and 4, these conditions are formulated through means over spheres
centered at the origin, whereas in Section 5 they involve means on spheres centered at the
point A = (1

2,0, ...,0) ∈ RN. The aim of the paper is to study how these growth conditions
on some subharmonic functionu influence the Riesz measureµ associated tou. For in-
stance, Theorem 2.2 provides a necessary and sufficient condition for the boundedness of
the means on spheres centered at the origin. This condition

Z

BN

(1−|ζ|)dµ(ζ) < +∞

(with |ζ| the Euclidean norm ofζ) is a generalization of the Blaschke condition known for
holomorphic functions (see Example 2.5). In Theorems 2.6 and 2.7, the spherical means of
u are controlled by integral conditions. These statements provide such results as:

Theorem 2.6 :
Z

BN

(1−|ζ|)ϕ(|ζ|α)dµ(ζ) < +∞ ∀α ∈]0,1[

Theorem 2.7 :
Z

BN

(1−|ζ|)β
(

log
1

1−|ζ|
)−γ

dµ(ζ) < +∞ ∀γ > 1

where the functionϕ and the parameterβ ≥ 0 stem from the growth condition onu (see
Section 2 for more details). In Sections 3 and 4, several counterexamples are built in order
to investigate the sharpness of the hypotheses and of the conclusions in Theorem 2.6.

At the end of Section 2, Corollary 2.10 and Example 2.11 recover and generalize a pre-
vious result of [1] about holomorphic functionsf in the unit disk: [1] obtained a substitute
of the Blaschke condition whenf has such a growth as:| f (z)| = O(log 1

1−|z|) as|z| → 1−

(for instance whenf belongs to the Bloch space).
Section 5 is devoted to a Blaschke–type result on the ballPN centered at the point

A′ = (2
3,0, ...,0) ∈ RN, with radius1

3. If some subharmonic functionu has bounded means
over spheres centered atA with radii r ∈ [0, 1

2[, then Theorem 5.3 shows that its Riesz
measureµ satisfies Z

PN

(1−|ζ|)dµ(ζ) < +∞.

For instance, this result holds for all subharmonic functionsu with such a growth as:u(x) =
O((1−|x|)−α) as|x| → 1− for some constantα ∈ [0, N−1

2 [ (Theorem 5.4). Forα≥ N−1
2 , it

does not compulsorily hold, as pointed out by Proposition 5.10. This is related to previous
results due to [6] and [4] about the positive zeros of holomorphic functions in the unit disk
(see Example 5.8).

2 Means over spheres centered at the origin

Definition 2.1. Given a functionu subharmonic inBN = {x∈ RN : |x| < 1} (with N ∈ N,
N≥ 2 and| . | the Euclidean norm inRN), let Mu andM +

u be defined on[0,1[ by:

Mu(r) =
1

σN

Z

SN

u(r η)dση and M +
u = Mu+ ,
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with dσ the area element on the unit sphereSN ⊂RN, σN =
R

SN
dσ andu+ the subharmonic

function defined byu+(x) = max(u(x),0) ∀x∈ BN. The functionu is said to satisfy theH
condition ifu is moreover harmonic in some neighborhood of the origin, withu(O) = 0.

For the notion of Riesz measure, we refer to [3] (p.104).

Theorem 2.2. Let µ denote the Riesz measure associated to a subharmonic functionu in
BN, satisfying theH condition. IfMu is bounded byK ≥ 0 on [0,1[, then

Z

BN

h(|ζ|)dµ(ζ)≤ K

where the functionh is defined by:h(s) = log 1
s if N = 2 or h(s) = 1

sN−2 −1 if N ≥ 3. The
converse also holds.

Remark2.3. From theH condition, there existsε(u) > 0 (written hereε for sake of brevity)
such thatµ(B(O,ε)) = 0with B(O,ε) = {x∈RN : |x| ≤ ε}. The subharmonicity ofu implies
Mu(r)≥ u(O) = 0.

Proof. TheH condition allows to apply the Jensen–Privalov formula (see [5] p.44 and [3]
p.29), whence:

Mu(r) = τN

Z r

0

ρ(t)
tN−1 dt ∀r ∈]0,1[,

whereτN = max(1,N−2) andρ is defined byρ(t) = µ(B(O, t)) ∀t ∈ [0,1[. The function
Mu being non–decreasing on[0,1[, its boundedness byK is equivalent to:lim

r→1−
Mu(r)≤ K.

Now

Mu(r) =
Z

|ζ|≤r
hr(ζ)dµ(ζ) =

Z

BN

hr(ζ)1lB(O,r)(ζ) dµ(ζ) ∀r ∈]0,1[ ∀s∈]0,1[

thanks to Lemma 2 of [8] (see also [7]), with1lB(O,r) the indicator function ofB(O, r) and
hr defined onRN \{O} by:

hr(ζ) = log
r
|ζ| if N = 2

hr(ζ) =
1

|ζ|N−2 −
1

rN−2 if N≥ 3.

Now lim
r→1−

hr(ζ)1lB(O,r)(ζ) = h(|ζ|) increasingly∀ζ 6= O. The monotonic convergence theo-

rem ([3] p.84) then applies:

lim
r→1−

Z

|ζ|≤r
hr(ζ)dµ(ζ) =

Z

BN

h(|ζ|)dµ(ζ).

Remark2.4. Sinceh(s)∼ τN(1−s) ass→ 1, the result may also be formulated as:
Z

BN

(1−|ζ|)dµ(ζ) < +∞.
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Example 2.5. In the caseN = 2 andu = log| f | where f is holomorphic in the unit diskD
of C, with boundedT(r) = 1

2π
R 2π

0 log+ | f (r eiθ)|dθ, the previous theorem thus includes the
known result:

∑
n∈N

(1−|zn|) < +∞ (see [9] p.202),

since the Riesz measure of such a functionu is given by: µ = ∑n∈N δzn (Dirac masses at
the pointszn: the zeros off in D, taking multiplicities into account). TheH condition is
fulfilled as soon asf does not vanish at the origin. Givenλ >−1, it was also known that

∑
n∈N

(1−|zn|)λ+2 < +∞ (see [2] p.339 and [9] p.204) (2.1)

provided that
R 1

0 T(r)(1− r)λ dr < +∞. This result too is contained (as a special case when
N = 2) in Theorem 7 of [8] established for subharmonic functionsu in BN, satisfying theH
condition, together with

R
BN

u+(x) [−ω′(|x|2)]dx< +∞ whereω is aC 1 decreasing function
on [0,1[ such thatlim

t→1−
ω(t) = 0. This theorem then asserts that:

Z

BN

h(|ζ|1−α)ω(|ζ|2α)dµ(ζ) < +∞ ∀α ∈]0,1[. (2.2)

It is applied here withω defined byω(t2) = (1− t)λ+1, thus2t ω′(t2) = −(λ +1)(1− t)λ.
Now Z

B2

u+(x) [−ω′(|x|2)]dx=
Z 1

0

(Z 2π

0
u+(r eiθ)dθ

)
[−ω′(r2)] r dr

henceT(r) is recognized whenu = log| f |. Then (2.2) becomes

(1−α) ∑
n∈N

log
1
|zn| (1−|zn|α)λ+1 < +∞.

Sincelog 1
t ∼ (1− t) and1− tα ∼ α(1− t) ast → 1, the result (2.1) follows.

More generally, we obtain:

Theorem 2.6. Givenµ the Riesz measure associated to a subharmonic functionu in BN,
satisfying theH condition. Letϕ denote aC 1 decreasing function on[0,1[ such that
lim

t→1−
ϕ(t) = 0. If

Z 1

0
M +

u (r) [−ϕ′(r)]dr < +∞

then Z

BN

(1−|ζ|)ϕ(|ζ|α)dµ(ζ) < +∞ ∀α ∈]0,1[.

Proof. Let ε := ε(u) as in Remark 2.3. Then the above integral becomes

Z

ε≤|ζ|<1
(1−|ζ|)ϕ(|ζ|α)dµ(ζ).
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Let ω be defined byω(r) = ϕ(
√

r) ∀r ∈ [ε2,1[ and continuated on[0,ε2[ in order to beC 1

decreasing on[0,1[, for instance:

ω(r) = ω(ε2)+(r− ε2)ω′(ε2) = ω(ε2)+(r− ε2) ϕ′(ε)
2ε ∀r ∈ [0,ε2[.

Hence
R 1

0 M +
u (r) [−r ω′(r2)]dr < +∞. SincerN−2 ≤ 1, we obtain:

Z 1

0
M +

u (r) [−ω′(r2)] rN−1dr < +∞

thus
R

BN
u+(x) [−ω′(|x|2)]dx< +∞ hence (2.2) from Theorem 7 of [8]. The result follows

from h(|ζ|1−α)∼ τN(1−|ζ|1−α)∼ τN(1−α)(1−|ζ|) as|ζ| → 1.

Theorem 2.7. Let µ denote the Riesz measure associated to a subharmonic functionu in
BN, satisfying theH condition. If there exists constantsc > 0, C > 0, α ≥ β ≥ 0 and an
integrable functionω : [0,1[→ [0,+∞[ satisfyingc(1− t)α ≤ R 1

t ω(r)dr < +∞ ∀t ∈ [0,1[
and such that:

R 1
s M +

u (r)ω(r)dr ≤C(1−s)β ∀s∈ [0,1[ then

Z

BN

(1−|ζ|)α−β+1
(

log
1

1−|ζ|
)−γ

dµ(ζ) < +∞ ∀γ > 1.

When moreoverN≥ 3, the following also holds:

Z

BN

[
1

(1−|ζ|)N−2 −1

]−γ
dµ(ζ) < +∞ ∀γ >

α−β+1
N−2

.

Proof. The change of variablesdx= rN−1drdσ leads to:

1
σN

Z

s≤|x|<1
u+(x)ω(|x|)dx=

Z 1

s
M +

u (r)ω(r) rN−1dr ≤C(1−s)β ∀s∈ [0,1[

sincerN−1 ≤ 1. The result then follows from Theorem 8 of [8].

Corollary 2.8. Let f be an holomorphic function in the unit diskD ⊂ C, with f (0) = 1,
and such that

R 1
s T(r)(1− r)λ dr = O((1− s)β) ass→ 1, for some constantsλ > −1 and

β ∈]0,1+ λ], with T(r) defined as in Example 2.5. Then the zeros{zn}n∈N of f in D
(repeated according to their multiplicities) satisfy:

∑
n∈N

(1−|zn|)λ+2−β
(

log
1

1−|zn|
)−γ

< +∞ ∀γ > 1. (2.3)

Proof. The subharmonic functionu = log| f | fulfills the H condition. Withω defined on

[0,1[ by ω(r) = (1− r)λ, we have
R 1

t ω(r)dr = (1−t)λ+1

λ+1 thus Theorem 2.7 applies with
α = λ+1 andN = 2. The corollary follows sinceµ= ∑n∈N δzn.

Remark2.9. The well–known convergence of∑n∈N(1− |zn|)λ+2 (see Example 2.5) does
not imply the convergence of this new series (2.3). Choosingε ∈]0,β], we have

(
1

1−|zn|
)ε (

log
1

1−|zn|
)−γ

≥ 1
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for all sufficiently large integersn, thus(1− |zn|)λ+2 is smaller than the general term of
the series (2.3), because(1−|zn|)λ+2 ≤ (1−|zn|)λ+2−β+ε, sinceλ +2≥ λ+2−β+ ε and
1−|zn| ∈]0,1[.

Corollary 2.10. Let µ denote the Riesz measure associated to some subharmonic function
u in BN, fulfilling the H condition together with the following growth estimation:u(x) ≤
log log 1

1−|x| for all x∈ BN such that|x| ≥ 1−e−2. Then

Z

1−e−2≤|x|<1
(1−|ζ|)

(
log log

1
1−|ζ|

)−a

dµ(ζ) < +∞ ∀a > 1.

Proof. Givena> 1, letϕ denote aC 1 decreasing function on[0,1[ such thatϕ(t) = [ψ(t)]−a

for everyt ∈ J := [1−e−2,1[, whereψ(t) = log log 1
1−t . Sinceψ(t) > 0 ∀t ∈ J, we obtain

u+(x) ≤ ψ(|x|) for all x such that|x| ∈ J, henceM +
u (r) ≤ ψ(r) ∀r ∈ J. Besides that, we

haveϕ′(t) =−a[ψ(t)]−a−1ψ′(t) ∀t ∈ J, hence

Z

J
M +

u (r) [−ϕ′(r)]dr ≤ a
Z

J
[ψ(r)]−aψ′(r)dr = a

[
[ψ(r)]−a+1

−a+1

]→1

1− 1
e2

= a
a−1 [ψ(1− 1

e2 )]−a+1

since−a+1< 0 andψ(r)→+∞ asr → 1−. For the same reasonsϕ(t)→ 0 ast → 1− thus
Theorem 2.6 applies. Withα = 1/2, it provides:

R
BN

(1−|ζ|)ϕ(
√
|ζ|)dµ(ζ) < +∞. Now

ψ(
√

t) = log log1+
√

t
1−t = log

[
log(1+

√
t)+ log 1

1−t

]
= log

[(
log 1

1−t

)
j(t)

]
,

with j(t) = 1− log(1+
√

t)
log(1−t) . Thusψ(

√
t) = ψ(t)+ log j(t) and

[ψ(
√

t)]−a = [ψ(t)]−a
(

1+ log j(t)
ψ(t)

)−a
.

As t → 1−, we observe thatlog(1+
√

t)→ log2 andlog(1− t)→−∞, thus j(t)→ 1 and
log j(t)→ 0. Now ψ(t)→+∞ hence1+ log j(t)

ψ(t) → 1. Finally ϕ(
√

t)∼ [ψ(t)]−a ast → 1−

and the result follows.

Example 2.11. When N = 2 and u = log| f |, with some functionf holomorphic in the
unit disk ofC, growing as: | f (z)| ≤ log 1

1−|z| for all z∈ C such that1− e−2 ≤ |z| < 1,
Corollary 2.10 thus contains the following result of [1] (p.120):

∑
n∈N

(1−|zn|)
(

log log
1

1−|zn|
)−a

< +∞ ∀a > 1

with {zn}n∈N the zeros off with moduli in [1−e−2,1[, multiplicities taken into account.

3 Sharpness of the condition in Theorem 2.6

In the situation whereϕ is moreover subject to the additional hypothesis:

∃b∈ N ∃C > 0 such that ϕ(t)≥C(1− t)b ∀t ∈ [0,1[ (3.1)
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we are going to build a subharmonic functionu, fulfilling the H condition, such that both

Z 1

0
M +

u (r) [−ϕ′(r)]dr = +∞ and
Z

BN

(1−|ζ|)ϕ(|ζ|a)dµ(ζ) = +∞

hold for somea∈]0,1[.

Proposition 3.1. Givenα ∈]0,1[ andβ ∈ N, let ck = 1
k ∏β+1

n=0 [n+(k+N−2)/α] ∀k∈ N∗.
Then the power seriesg(r) = ∑k≥6ck rk has its radius of convergence equal to1. Moreover
the following numerical series diverges∀ε ∈]0,1[:

∑
k≥6

ck

Z 1

ε
(1− rα)β+1 rk+N−3dr.

Proof. The radius of convergence is equal tolim
k→+∞

ck
ck+1

= 1.

Z 1

ε
(1− rα)β+1 rk+N−3dr =

Z 1

0
(1− rα)β+1 rk+N−3dr−

Z ε

0
(1− rα)β+1

︸ ︷︷ ︸
≤1

rk+N−3dr ≥

≥ 1
α

Z 1

0
(1− t)β+1 t

k+N−3
α t

1
α−1dt− εk+N−2

k+N−2
.

The power series∑k
ck

k+N−2 rk also has its radius of convergence equal to1, hence the con-

vergence of the series∑k ck
εk+N−2

k+N−2 asε∈]0,1[. Now it remains to establish the divergence of

∑k ck
R 1

0 (1− t)β+1 t
k+N−2

α −1dt. The last integral is related to the Beta and Gamma functions:

B(β+2, k+N−2
α ) =

Γ(β+2)Γ(k+N−2
α )

Γ(k+N−2
α +β+2)

.

According to formulaΓ(s+1) = sΓ(s) ∀s> 0, the denominator is equal to:kck Γ(k+N−2
α ).

Finally the last series is merely∑k
Γ(β+2)

k which obviously diverges.

Proposition 3.2. Givenε∈]0,1[, α∈]0,1[, β∈N andg as in Proposition 3.1, letG : [0,1[→
[0,+∞[ be theC 2 function defined by:G(r) = 0 ∀r ∈ [0,ε/2[, G′′(r) = g′′(r) ∀r ∈ [ε,1[ and
G′′(r) = (2r

ε −1)g′′(ε) ∀r ∈ [ε/2,ε[. ThusG′(r) ≥ g′(r) andG(r) ≥ g(r) ∀r ∈ [ε,1[. Then
the functionu defined byu(x) = G(|x|) ∀x∈ BN is subharmonic and≥ 0 in BN, fulfills the
H condition and its Riesz measureµ satisfies:

Z

BN

(1−|x|)(1−|x|α)β dµ(x) = +∞.

Remark3.3. More precisely:G′(r) = g′(r)+A andG(r) = g(r)+Ar +A0 ∀r ∈ [ε,1[, with
A = ε

4 g′′(ε)−g′(ε) andA0 = ε2

24 g′′(ε)−Aε−g(ε).

Proof. TheH condition is fulfilled since(∆u)(x) = 0 whenever|x|< ε
2. The affine contin-

uation ofG′′ on [ε/2,ε[ ensuresG′′ ≥ 0 which implies bothG′ ≥ 0 andG≥ 0 on [0,1[. With
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r = |x| 6= 0, [3] (p.26) leads to:(∆u)(x) = G′′(r)+ N−1
r G′(r) ≥ 0 and the subharmonicity

of u follows. Forr ∈ [ε/2,ε], we have

G′(r) = ε
4 g′′(ε)(2r

ε −1)2 and G(r) = ε2

24 g′′(ε)(2r
ε −1)3.

Hence

G′(ε) =
ε
4

g′′(ε) = ∑
k≥6

k
k−1

4
ck εk−1 ≥ ∑

k≥6

kck εk−1 = g′(ε)

G(ε) =
ε2

24
g′′(ε) = ∑

k≥6

k(k−1)
24

ck εk ≥ ∑
k≥6

ck εk = g(ε) sincek(k−1)≥ 30.

For all r ∈ [ε,1[, we haveG′(r) = G′(ε) +
R r

ε g′′(t)dt = G′(ε) + g′(r)− g′(ε) ≥ g′(r) and
G(r) = G(ε)+

R r
ε G′(t)dt ≥G(ε)+

R r
ε g′(t)dt = G(ε)+g(r)−g(ε)≥ g(r). Hence

(∆u)(x)≥ g′′(r)+
N−1

r
g′(r) = ∑

k≥6

k(k+N−2)ck rk−2 if r = |x| ∈ [ε,1[.

Now dµ= 1
ϑN

∆udx= 1
ϑN

∆urN−1drdσ with ϑN = τNσN (see [5] p.43), thus:
Z

BN

(1−|x|)(1−|x|α)β dµ(x)≥
Z

ε≤|x|<1
(1−|x|α)β+1dµ(x) (since|x|α ≥ |x| )

≥ 1
τN

Z 1

ε
(1− rα)β+1

(
∑
k≥6

k(k+N−2)ck rk−2

)
rN−1dr ≥

≥ 1
τN

∑
k≥6

ck

Z 1

ε
(1− rα)β+1 rk+N−3dr

sincek(k+N−2)≥ 1. The result follows from Proposition 3.1.

Proposition 3.4. Let ϕ denote aC 1 decreasing function on[0,1[ such thatϕ(t) → 0 as
t → 1− and fulfilling moreover condition (3.1). Givenε ∈]0,1[, α ∈]0,1[, let u be defined
as in Proposition 3.2 withβ = b from (3.1). Then

R 1
0 M +

u (r) [−ϕ′(r)]dr = +∞.

Remark3.5. From (3.1) and Proposition 3.2, we already know that the Riesz measureµ of
this functionu satisfies:

R
BN

(1−|x|)ϕ(|x|α)dµ(x) = +∞.

Proof. Here we haveu+ = u henceM +
u (r) = G(r) ∀r ∈ [0,1[ thus

Z 1

0
M +

u (r) [−ϕ′(r)]dr ≥
Z 1

ε
M +

u (r) [−ϕ′(r)]dr ≥
Z 1

ε
g(r) [−ϕ′(r)]dr = ∑

k≥6

ck Ik

with g andck (resp.G) as in Proposition 3.1 (resp. 3.2) and

Ik =
Z 1

ε
rk [−ϕ′(r)]dr =

[
−rk ϕ(r)

]→1

ε
+k

Z 1

ε
rk−1 ϕ(r)dr.

Now ϕ(ε)≥ 0 and lim
r→1−

ϕ(r) = 0, thus

Ik ≥ kC
Z 1

ε
rk−1(1− r)β dr ≥C

Z 1

ε
rk+N−3(1− rα)β+1dr

becausek+N−3≥ k−1 andr ∈ [0,1[ hencerk−1≥ rk+N−3. Similarly rα ≥ r thus1− r ≥
1− rα. Finally (1− rα)β ≥ (1− rα)β+1 because1− rα ≤ 1, the conclusion follows through
Proposition 3.1 as in the previous proof.
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4 Sharpness of the conclusion in Theorem 2.6

When there exist constantsb > 0, C > 0 andC′ > 0 such that theC 1 decreasing function
ϕ : [0,1[→ [0,+∞[ satisfies:

C(1− t)b ≤ ϕ(t)≤C′ (1− t)b ∀t ∈ [0,1[ (4.1)

we are going to build here (givenε ∈]0,min(1,b)[) a subharmonic functionu such that

Z 1

0
M +

u (r) [−ϕ′(r)]dr < +∞ (4.2)

but
Z

BN

(1−|ζ|)1−ε ϕ(|ζ|α)dµ(ζ) = +∞ ∀α ∈]0,1[ (4.3)

whereµ denotes the Riesz measure associated tou.

Lemma 4.1. Withϕ andb as in (4.1), letε > 0 andg be defined byg(r) = (1− r)−b+ε−1.
Then

R 1
0 g(r) [−ϕ′(r)]dr < +∞ and

R 1
0 (1− r)1−ε ϕ(rα)g′′(r)dr = +∞ ∀α > 0.

Proof. Sinceg(r)ϕ(r)≤C′(1− r)ε theng(r)ϕ(r)→ 0 asr → 1−. Moreoverg(0) = 0, thus
the following holds:

Z 1

0
g(r) [−ϕ′(r)]dr =

[
−g(r)ϕ(r)

]→1

0︸ ︷︷ ︸
=0

+
Z 1

0
g′(r)ϕ(r)dr ≤C′

Z 1

0

b− ε
(1− r)b+1−ε (1− r)bdr

and
R→1

0
dr

(1−r)1−ε converges. Besides that

Z 1

0
(1− r)1−ε ϕ(rα)g′′(r)dr ≥C(b− ε)(b+1− ε)

Z 1

0
(1− r)1−ε (1− rα)b dr

(1− r)b+2−ε .

Now (1− rα)b ∼ [α(1− r)]b asr → 1−. Hence the divergence of the above integral sinceR→1
0 (1− r)1−ε+b dr

(1−r)b+2−ε =
R→1

0
dr

(1−r) .

Proposition 4.2. With ϕ andb as in (4.1), letε ∈]0,min(1,b)[ andg as in Lemma 4.1. Let
u be the function given byu(x) = G(|x|) ∀x ∈ BN with G defined from this new function
g on the same pattern as in Proposition 3.2. Thenu is subharmonic inBN, fulfills theH
condition as well as (4.2) and (4.3).

Proof. Sinceε≤ b, we haveg≥ 0, g′ ≥ 0 andg′′ ≥ 0 on [0,1[. That is whyG can be built
such thatG′′ ≥ 0, G′ ≥ 0 andG≥ 0 on [0,1[. The subharmonicity ofu, theH condition and
the Riesz measureµ of u are obtained in the same way as in Proposition 3.2. Nowu+ = u
sinceG≥ 0. Together with Remark 3.3, it leads to:

Z 1

0
M +

u (r) [−ϕ′(r)]dr =
Z 1

0
G(r) [−ϕ′(r)]dr =

=
Z ε

0
G(r) [−ϕ′(r)]dr +

Z 1

ε
(Ar +A0) [−ϕ′(r)]dr +

Z 1

ε
g(r) [−ϕ′(r)]dr.
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The first and second above integrals are finite and the third integral converges according to
Lemma 4.1. Besides that, givenα > 0 and noting that(∆u)(x)≥G′′(r), we obtain

Z

BN

(1−|x|)1−ε ϕ(|x|α)dµ(x)≥ 1
τN

Z 1

0
(1− r)1−ε ϕ(rα)G′′(r) rN−1dr ≥

≥ εN−1

τN

Z 1

ε
(1− r)1−ε ϕ(rα)g′′(r)dr.

Lemma 4.1 provides the divergence of this integral.

5 Means over spheres centered at the point(1
2,0, ...,0)

Definition 5.1. Let B∗N = B(A, 1
2) = {x∈RN : |x−A|< 1

2} with A = (1
2,0, ...,0) ∈RN and

PN = {x = (x1,x2, ...,xN) ∈ RN : 1
4 (1+ 3|x|2) < x1} = B(A′, 1

3) with A′ = (2
3,0, ...,0). A

subharmonic functionu in B∗N is said to fulfill theH ∗ condition if u is harmonic in some
neighborhood of the pointA, with u(A) = 0. Let M ∗

u be defined on[0, 1
2[ by:

M ∗
u (r) =

1
σN

Z

SN

u(A+ r η)dση.

Lemma 5.2. The following statements hold:

(i) 1
3 < |x|< 1 ∀x∈ PN (ii) |x−A|< |x|

2 ∀x∈ PN

(iii) PN ⊂ B∗N (iv) 1−|x|< 2(1
2−|x−A|) ∀x∈ PN

Proof. From 0 > 1+ 3|x|2− 4x1 ≥ 1+ 3|x|2− 4|x| = (3|x| − 1)(|x| − 1), it follows that
3|x| > 1 and|x| < 1, since the converse inequalities3|x| < 1 and|x| > 1 are incompatible.
Hence(i). Now

|x−A|2 = (x1− 1
2)2 +

N

∑
j=2

x2
j = |x|2−x1 + 1

4 < 1
4 |x|2 < 1

4.

Hence(ii) and(iii) . The last inequality follows from1−|x|= 2(1
2− |x|

2 ) and(ii) .

Theorem 5.3. Let µ denote the Riesz measure associated to a subharmonic functionu in
B∗N which fulfills theH ∗ condition.

(i) If
Z

B∗N
(1−|ζ|)dµ(ζ) < +∞, then sup

0≤r< 1
2

M ∗
u (r) < +∞.

(ii) If sup
0≤r< 1

2

M ∗
u (r) < +∞, then

Z

PN

(1−|ζ|)dµ(ζ) < +∞.

Proof. It works as in the proof of Theorem 2.2. Here Jensen–Privalov formula is applied
on balls centered atA, with ρ(t) = µ(B(A, t)) ∀t ∈ [0, 1

2[. Thus

M ∗
u (r) =

Z

|ζ−A|≤r
hr(ζ−A)dµ(ζ) → 2N−2

Z

B∗N
h(2|ζ−A|)dµ(ζ) asr → (1

2)−.



Spherical Means of Subharmonic Functions 71

According to Remark 2.4, the boundedness ofM ∗
u on [0, 1

2[ is equivalent to
Z

B∗N
(1

2−|ζ−A|)dµ(ζ) < +∞.

Now |ζ−A| ≥ |ζ|− |A| = |ζ|− 1
2 thus0 < 1

2−|ζ−A| ≤ 1
2− (|ζ|− 1

2) ∀ζ ∈ B∗N, hence(i).
According to Lemma 5.2, we have0 < 1

2(1−|ζ|)≤ 1
2−|ζ−A| ∀ζ ∈ PN, hence(ii) .

Theorem 5.4. Letu be a subharmonic function inBN fulfilling both theH ∗ condition and

∃α ∈ [0, N−1
2 [ such that u(x)≤

(
1

1−|x|
)α

∀x∈ BN.

Then its Riesz measureµ satisfies
Z

PN

(1−|ζ|)dµ(ζ) < +∞.

Remark5.5. The previous statement remains valid if the growth condition is formulated
as: u(x) ≤C(1−|x|)−α ∀x∈ BN for some constantC > 0. Actually it is enough to apply
Theorem 5.4 to the functionuC whose Riesz measure is merelyµ

C .

The proof of Theorem 5.4 will require the following lemma:

Lemma 5.6. There existsC > 0 such that t2

1−|z| ≤ C for all z = 1
2 + r eit (∀t ∈ [−π,π],

∀r ∈ [1
4, 1

2[). For information:C = 16
1− π2

12

.

Proof. As |z|2 = (1
2 + r cost)2 +(r sint)2 = 1

4 + r2 + r cost, there existsθ ∈]0,1[ such that

1−|z|2 = 3
4− r2− r[1− t2

2 + t4

4! cos(θt)] = 1− (1
2 + r)2

︸ ︷︷ ︸
≥0

+ r t 2

2 [1− t2

12 cos(θt)].

Now t2

12 cos(θt)≤ t2

12≤ π2

12 < 1, thus2(1−|z|)≥ (1+ |z|)(1−|z|) = 1−|z|2≥ t2

8 (1− π2

12).

In Lemma 5.6, the exponent oft2 can not be removed, as pointed out by the following:

Lemma 5.7. There does NOT exist any constantD > 0 such that |t|
1−|z| ≤ D for all z =

1
2 + reit (∀t ∈ [−π,π], ∀r ∈ [1

4, 1
2[).

Proof. Let us assume on the contrary that such a constantD would exist. We would then
obtain: |t|

1−|z|2 ≤ D
1+|z| ≤ D. With the notationλ = min( 1

D , 1
4), this would lead to:

1
4 + r2 + r cost = |z|2 ≤ 1−λ|t| ∀t ∈ [−π,π] ∀r ∈ [1

4, 1
2[.

Givenr ∈ [1
4, 1

2[, let fr be the function defined on[0,π] by fr(t) =−3
4 +r2+r cost +λt. Now

f ′r (t) =−r sint +λ vanishes at the pointt = arcsinλ
r ∈ [0, π

2 ], well-defined sinceλr ∈ [0,1].
The maximum attained byfr is

Mr = fr(arcsinλ
r ) =−3

4 + r2 + r
√

1− λ2

r2 +λarcsinλ
r .

We should haveMr ≤ 0 for all r ∈ [1
4, 1

2[. Lettingr → (1
2)−, it would provide the inequality:

−1
2 + 1

2

√
1−4λ2 + λarcsin(2λ) ≤ 0. But arcsinx≥ x+ x3

6 and
√

x≥ x ∀x∈ [0,1]. Hence

2λarcsin(2λ)+
√

1−4λ2≥ (2λ)2+ (2λ)4

6 +1−4λ2 = 1+ 8λ4

3 > 1, the contradiction follows.
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Proof. We are now ready to prove Theorem 5.4. SinceM ∗
u is non–decreasing on[0, 1

2[, it
is enough, according to Theorem 5.3(ii) , to prove that

sup
1
4≤r< 1

2

M ∗
u (r) < +∞.

Let x= A+ r η with η = (η1,η2, ...,ηN)∈SN. Polar coordinates inRN provide:η1 = cosθ1

anddσ = (sinθ1)N−2(sinθ2)N−3 . . .(sinθN−2)dθ1dθ2 . . .dθN−1 whereθN−1 ∈ [0,2π[ and
θ1, θ2, . . . , θN−2 ∈ [0,π[ (see [10] p.15). Thus|x|2 = (1

2 + r η1)2 + r2(η2
2 + ... + η2

N) =
1
4 + r η1 + r2|η|2 = 1

4 + r cosθ1 + r2 = |z|2 with z= 1
2 + r eiθ1. If N > 2 thenθ1 ∈ [0,π[ thus

u(A+ r η)≤
(

1
1−|z|

)α
≤

(
C

θ2
1

)α

according to Lemma 5.6. Now(sinθ2)N−3(sinθ3)N−4 . . .(sinθN−2)dθ2dθ3 . . .dθN−1 is the
area element onSN−1. Hence

σN M ∗
u (r)≤Cα

Z

SN

dσ
(θ1)2α = Cα σN−1

Z π

→0

(sinθ1)N−2

(θ1)2α dθ1.

This integral behaves as:
Z π

→0

(θ1)N−2

(θ1)2α dθ1 =
Z π

→0

dθ1

(θ1)2α−N+2

which converges since2α−N+2 < 1. In the caseN = 2, we haveθ1 ∈ [0,2π[ and

σN M ∗
u (r)≤

Z 2π

0

dθ1

(1−|z|)α .

As in the previous case
Z π

0

dθ1

(1−|z|)α ≤Cα
Z π

→0

dθ1

(θ1)2α < +∞ since2α < 1.

Whenθ1 ∈ [π,2π[, thenz= 1
2 + reit with t = θ1−2π ∈ [−π,0[ and Lemma 5.6 leads to

Z 2π

π

dθ1

(1−|z|)α =
Z 0

−π

dt
(1−|z|)α ≤Cα

Z →0

−π

dt
t2α < +∞.

Example 5.8. With N = 2, α ∈ [0, 1
2[, u = log| f |, f an holomorphic function inD and

{zn}n∈N the zeros off in D repeated according to their multiplicities, Theorem 5.4 thus
leads to ∑

n:zn∈PN

(1−|zn|) < +∞ when f has such a growth as:

∃C > 0 log| f (z)| ≤C

(
1

1−|z|
)α

∀z∈ D.

In particular

∑
n:zn∈[0,1[

(1−|zn|) < +∞,

previously proved forα ∈ [0,1[ by [6] (p.225) and [4] where it is also shown that this
Blaschke–type result on[0,1[ does not remain valid forα≥ 1.
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Remark5.9. Theorem 5.4 does not hold any longer withα≥ N−1
2 , as shown by the follow-

ing counterexample:

Proposition 5.10. Givenα≥ N−1
2 , let kα = α(α+1)

2α+2 andG : [0,1[→ [0,+∞[ be theC 2 func-

tion defined by:G(r) = 0 ∀r ∈ [0, 2
3], G′′(r) = kα (1− r)−(α+2) ∀r ∈ [5

6,1[ and G′′(r) =
4G′′(5

6)(3r
2 −1) ∀r ∈ [2

3, 5
6]. Then the functionu defined byu(x) = G(|x|) ∀x∈BN is subhar-

monic inBN, fulfills theH ∗ condition and grows as:u(x)≤ (1−|x|)−α ∀x∈ BN. Moreover
the Riesz measureµ associated tou satisfies

Z

PN

(1−|ζ|)dµ(ζ) = +∞.

Proof. We first notice thatG′′(r) ≤ α(α + 1)(1− r)−α−2 ∀r ∈ [0,1[. On [5
6,1[, it follows

from 2α+2 ≥ 1 hencekα ≤ α(α +1). On [2
3, 5

6], we haveG′′(r) ≤ G′′(5
6) = α(α+1)

2α+2 6α+2 =
α(α+1)3α+2 = α(α+1)(1− 2

3)−α−2≤ α(α+1)(1− r)−α−2, this function being increas-
ing, as well asG′′. We next obtain:G′(r) = G′(r)−G′(0)≤ R r

0 α(α+1)(1− t)−(α+2)dt =
α

[
(1− t)−(α+1)

]r

0 = α(1− r)−(α+1)−α ≤ α(1− r)−(α+1) for every r ∈ [0,1[. Similarly

G(r) =
R r

0 G′(t)dt ≤ R r
0 α(1− t)−(α+1)dt = (1− r)−α−1≤ (1− r)−α ∀r ∈ [0,1[.

The affine continuation ofG′′ on [2
3, 5

6] impliesG′′ ≥ 0, G′ ≥ 0 andG≥ 0 on [0,1[. The
H ∗ condition and the subharmonicity ofu are obvious, moreover(∆u)(x) ≥ G′′(r) with
r = |x| from [3] (p.26) anddµ is given by [5] (p.43) as in the proof of Proposition 3.2.
Hence Z

PN

(1−|x|)dµ(x)≥ 1
ϑN

Z

PN

(1−|x|)G′′(|x|)dx.

Givenr ∈]1
3,1[, let Ar = arccos1+3r2

4r . For(x1,x2, ...,xN) ∈ PN with |x|= r andx1 = r cosθ1

(polar coordinates as in [10] p.15), we have1
4(1+ 3r2) < r cosθ1. Henceθ1 ∈ [0,Ar [ if

N > 2 or θ1 ∈ Ir := [0,Ar [∪]2π−Ar ,2π[ if N = 2, with (x2, ...,xN) ∈ (r sinθ1)SN−1. Now

(cosAr)−1 = (3r−1)(r−1)
4r ∼ r−1

2 asr → 1.

SimultaneouslyAr → 0, thus(cosAr)−1∼ −A2
r

2 , henceAr ∼
√

1− r andsinAr ∼
√

1− r.
In the caseN = 2, we obtain

Z

P2

(1−|x|)dµ(x)≥ 1
ϑ2

Z 1

1/3

Z

θ∈Ir
(1− r)G′′(r)dθ rdr ≥

≥ 1
2π

Z 1

5/6
(1− r)kα (1− r)−(α+2) 2Ar r dr ≥ 5kα

6π

Z →1

5/6
(1− r)−(α+1) Ar dr.

This integral behaves as
Z →1

5/6
(1− r)−α−1

√
1− r dr =

Z →1

5/6

dr

(1− r)α+ 1
2

which diverges sinceα+ 1
2 ≥ 1. WhenN > 2, we use the same notations for polar coordi-

nates as in the previous proof. Thus
Z

PN

(1−|x|)dµ(x)≥ 1
ϑN

Z 1

1/3

Z Ar

0
(1− r)G′′(r)σN−1(sinθ1)N−2dθ1 rN−1dr ≥
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≥ σN−1

3N−1 ϑN

Z 1

5/6
(1−r)G′′(r)

(Z Ar

0
cosθ1(sinθ1)N−2dθ1

)
dr =

=
σN−1

3N−1 ϑN

Z 1

5/6
(1−r)kα (1−r)−(α+2)

[
(sinθ1)N−1

N−1

]Ar

0
dr =

=
kα σN−1

(N−1)3N−1 ϑN

Z →1

5/6
(1− r)−α−1(sinAr)N−1dr.

This integral behaves as

Z →1

5/6
(1− r)−α−1(1− r)

N−1
2 dr =

Z →1

5/6

dr

(1− r)1+α−N−1
2

which diverges since1+α− N−1
2 ≥ 1.
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