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CHAMPAGNE FLOWS AND WINDS IN H II REGIONS

S. Lizano,1 D. Galli,2 F. Shu,3 and J. Cantó4

RESUMEN

Discutimos la expansión de un núcleo molecular autogravitante singular inicialmente en equilibrio caracterizado
por una distribución de densidad como ley de potencia del radio, ρ ∝ r−n con 3/2 < n < 3. Este núcleo es
calentado fuera de equilibrio mecánico por la formación de una estrella masiva en su centro. Si la ionización y
calentamiento iniciales ocurren a t = 0, el flujo subsecuente para r � 100 AU, causado por la falta de balance
entre la autogravedad y la presión térmica, es autosimilar. Debido al empinado perfil de densidad, los gradientes
de presión producen un choque que viaja a través de la nube, acelerando el gas a velocidades supersónicas en
lo que ha sido llamada la “fase de champán”. La expansión de la región interna a t > 0 esta conectada a la
envolvente externa de la nube ionizada a través de este choque, cuya intensidad es una función creciente del
exponente n. Además, discutimos la evolución de los fuertes vientos de las estrellas masivas dentro de estos
flujos de champán.

ABSTRACT

We discuss the expansion of an initially self-gravitating, static, singular cloud core characterized by a power-
law density distribution, ρ ∝ r−n, with 3/2 < n < 3. This core is heated out of mechanical balance by
the formation of a massive star at its center. If the initial ionization and heating is approximated to occur
instantaneously at t = 0, the subsequent flow (for r � 100 AU) caused by the resulting imbalance between
self-gravity and thermal pressure is self-similar. Because of the steep density profile, pressure gradients produce
a shock front that travels into the cloud, accelerating the gas to supersonic velocities in what has been called
the “champagne phase”. The expansion of the inner region at t > 0 is connected to the outer envelope of the
now ionized cloud core through this shock whose strength is an increasing function of the exponent n. We also
discuss the evolution of the strong stellar winds of massive stars inside these champagne flows.

Key Words: HII REGIONS — STARS: FORMATION — STARS: MASS LOSS

1. INTRODUCTION

Recently, Shu et al. (2002; hereafter SLGCL)
found self-similar solutions for the expansion of
molecular cloud cores with power-law density dis-
tributions that are heated out of mechanical balance
by the formation of a massive star at the center. In
this paper we will discuss part of their results and
also the evolution of the powerful stellar winds in the
champagne flows.

For a spherically symmetric molecular cloud core,
initially at rest, the size rS of the region that can be
ionized is given by the standard formula (Strömgren
1939):

∫ rS

r0

nenp α2 4πr2 dr = Ṅ∗. (1)

Equation (1) assumes ionization equilibrium and the
“on-the-spot” approximation. In the above, ne is the

1Instituto de Astronomı́a, UNAM, Morelia, México.
2Osservatorio di Arcetri, Florence, Italy.
3National Tsing Hua University, Hsinchu, Taiwan.
1Instituto de Astronomı́a, UNAM, México D.F., México.

electron density, np is the ion density, α2 is the re-
combination coefficient to the second energy level of
hydrogen, Ṅ∗ is the rate of ionizing photons from
the star (assumed to be a constant) and r0 is the ra-
dius below which all of the gas in the original cloud
core may be considered to have fallen into the cen-
ter (perhaps via a disk) to make a star of mass M∗.
If the virial velocity (thermal, turbulent, or magne-
tohydrodynamic) supporting the original (neutral)
cloud core before star formation is denoted by a1,
order of magnitude arguments yield r0 ∼ r1, the
Bondi-Parker radius of this neutral gas,

r1 ≡
GM∗

2a2
1

. (2)

The square of the sound speed in the H II gas a2
2 is

generally appreciably larger than a2
1, thus, the equiv-

alent Bondi-Parker radius of the ionized gas,

r2 ≡
GM∗

2a2
2

, (3)

will be considerably smaller than r1.
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SELF-SIMILAR CHAMPAGNE FLOWS 167

For typical numbers, M∗ ' 25M�, a1 '

1 km s−1, a2 ' 10 km s−1, we have r1 ' 104 AU �

r2 ' 102 AU, with both r1 and r2 much bigger than
the physical radius of the star. Much interior to
r2, the ionized gas will empty into the star (or more
likely, into a disk if it has even a slight amount of an-
gular momentum), whereas much exterior to r2, the
gravitationally unbound H II gas will expand out-
ward, if it has not already reached pressure equilib-
rium with the surrounding cloud. Since r0 � r2, one
can ignore the gravitational field of the star on the
flow of the H II region beyond r0.

Assume now that the molecular cloud core ini-
tially had a power-law distribution of gas density

ρ(r) = Kr−n. (4)

If n < 3/2, the ultraviolet radiation is trapped within
a finite radius rS, and the H II region is said to be
“ionization bounded” (see Osterbrock 1989). If n >
3/2, the H II region can be either ionization bounded
or “density bounded”. In the latter case, a finite
output of ultraviolet radiation can ionize an infinite
volume of gas beyond r0. The dividing line between
being ionization bounded and density bounded arises
when the density constant K equals a critical value
Kcr:

Kcr = 2µi mH

[

(2n − 3) r2n−3
0 Ṅ∗

4π α2

]1/2

, (5)

where µi is the mean weight per particle of the ion-
ized gas, mH is the hydrogen mass, and np = ne =
ρ/2µimH.

One can compare the value of Kcr with the value
K∗ implied by the assumption that the power law
(equation 4) initially extended inward from r0 as well
as outward, but that the part inward of r0 has fallen
into the center to make a star of mass M∗:

K∗ =
(3 − n)M∗

4π r3−n
0

. (6)

Taking the ratio of equations (6) and (5), we get

K∗

Kcr
=

[

(3 − n)M∗

2µi mH

] [

α2

(2n − 3) 4πr3
0 Ṅ∗

]1/2

. (7)

For M∗ ' 25M�, r0 ' 104 AU, Ṅ∗ ' 1049 s−1, α2 '

2.6×10−13 cm3 s
−1

, K∗/Kcr ' 23 (3−n)/(2n−3)1/2.
Since K∗ represents a rough estimate of K and

K∗ > Kcr, this calculation indicates that the H II

regions of 25 M� (and lower mass) stars are likely to
be ionization bounded, at least initially before any

expansion occurs. However, if we assume that Ṅ∗

scales roughly as M3
∗ (as indicated by the results of

Vacca et al. 1996), the expression on the right-hand
side scales as M−2

∗ , indicating that the H II regions of
the most massive O stars may be density bounded
from the start, especially if such stars are born in
regions with density gradients close to n = 3. They
will then develop champagne flows as follows.

When K ∼ K∗ < Kcr, the ionization front (IF)
created by the idealized instantaneous appearance
of a star at t = 0 rapidly moves to infinity and es-
tablishes an isothermal structure with T ' 104 K.
After the passage of the IF, the cloud remains out of
mechanical balance and the pressure gradients will
produce an expansion of the whole cloud. Due to
the density gradient the inner regions expand faster
than the outer regions and a shock travels through
the cloud, accelerating the gas to supersonic veloci-
ties. This is known as the “champagne phase” (e.g.,
Bodenheimer, Tenorio-Tagle, & Yorke 1979; Franco,
Tenorio-Tagle, & Bodenheimer 1990). High spatial
resolution infrared and radio recombination line ob-
servations toward several sources have found ion-
ized gas accelerating away from the central source
in the manner expected of champagne-flow models
(e.g., Garay, Lizano, & Gómez 1994; Keto et al.
1995; Lumsden & Hoare 1996; Lebrón, Rodŕıguez,
& Lizano 2001). Note that in several of the ob-
served compact H II regions (e.g., G 29.96−0.02,
G 32.80+0.19B, G 61.48+0.09B1) the inferred rate of
ionizing photons implies excitation by central stars
with masses M∗ > 30M�.

Density profiles in massive molecular cores have
also been extensively studied observationally (e.g.,
Garay & Rodŕıguez 1990; Caselli & Myers 1995; Van
der Tak et al. 2000; Hatchell et al. 2000; for a review
see Garay & Lizano 1999). Even though the envi-
ronment is possibly clumpy on scales of tenths of pc,
density profiles are well approximated by power laws
with 1 <

∼ n <
∼ 2. Theoretical models of the formation

of massive stars within dense and massive cores have
assumed power law exponents in this range (Osorio,
Lizano, & D’Alessio 1999; McKee & Tan 2002). Re-
cently, Franco et al. (2000) have argued that radio
continuum spectra of ultracompact H II regions in-
dicate initial density gradients with 2 <

∼ n <
∼ 3.

The purpose of this paper is to discuss the self-
similar “champagne phase” of the expansion of H II

regions found by SLGCL, for molecular cloud cores
with power-law density distributions with exponents
in the range 3/2 < n < 3. These self-similar models
have a shock propagating at constant velocity into
the ionized gas, accelerating the gas to supersonic
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168 LIZANO ET AL.

velocities. We will discuss the self-similar equations
and solutions in § 2 and § 3 respectively; in § 4 we
will consider the evolution of the stellar winds in-
side these champagne flows; finally, in § 5 we will
summarize the results.

2. GOVERNING EQUATIONS

Neglecting the self-gravity of the cloud core and
the gravity of the central massive star, the expan-
sion of champagne flows is governed by the continu-
ity equation,

∂ρ

∂t
+

1

r2

∂
(

r2ρu
)

∂r
= 0, (8)

where ρ is the gas density and u is the gas velocity,
and by the momentum equation,

∂u

∂t
+ u

∂u

∂r
= −

a2

ρ

∂ρ

∂r
, (9)

where an isothermal equation of state P = a2ρ was
assumed.

Following Shu (1977) we introduce the similarity
variable

x =
r

at
, (10)

and we define the reduced density

ρ(r, t) =
K

rn
R(x), (11)

and the reduced velocity

u(r, t) = av(x). (12)

Substituting these expressions in equations (8)
and (9), one obtains two coupled first order differen-
tial equations for the reduced density R and veloc-
ity v:

[

(v − x)2 − 1
]dR

dx
=

R

x

[

v(v − x)(n − 2) − n
]

, (13)

[

(v − x)2 − 1
]dv

dx
=

2v

x
− n. (14)

The heating of the cloud at t = 0 induces an imbal-
ance between the self-gravity and pressure that will
induce the propagation of a shock and an outward
subsonic flow of the entire system for t > 0. SLGCL
showed that the shock is isothermal, thus the jump
conditions are

(vu − xs)(vd − xs) = 1,
Rd

Ru
= (vu − xs)

2, (15)

where the subscript ‘u’ (‘d’) indicates the value of
the reduced velocity and density upstream (down-
stream) of the shock and xs is the position of the

shock in similarity coordinates. From equation (10)
the position and velocity of the shock in physical
space are rs = xsat and us ≡ drs/dt = axs.

For x → ∞ the boundary conditions are v → 0
and R → 1. Then, the asymptotic expansions for
x → ∞, are

v →
n

x
and R → 1 +

n(n − 1)

2x2
. (16)

At the origin, x → 0, v → nx/3 and R ∝ xn.
The latter boundary condition on R implies that as
r → 0 the density is uniform and is only a function
of time ρ ∝ t−n. This is the expected behavior of
the central zone of the H II region, where the sound
crossing time is smaller than the expansion time.

Equation (14) for the reduced velocity can be in-
tegrated numerically outward from x = 0 and in-
ward from large x. The position of the shock, xs, is
found where the jump conditions (equation 15) are
fulfilled. Once the reduced velocity v is known, the
density equation (13) can be integrated as

R(x) = Rb exp

{

∫ x

xb

v (v − x′) (n − 2) − n

x′
[

(v − x′)
2
− 1

] dx′

}

.

(17)
For the outer solution, xb = ∞ and Rb = 1. For the
inner solution, xb = xs and Rb = Rd, where Rd is
the downstream reduced density evaluated from the
jump condition (equation 15).

3. OUTFLOW SOLUTIONS FOR DIFFERENT
GRADIENTS

The upper panel of Figure 1 shows the reduced
velocity v for n = 2. The position of the shock front
is at xs = 2.56 and the upstream reduced velocity,
due to the cloud general expansion, is vu = 1.02. The
dotted line shows the locus of the critical line where
the LHS of equation (14) vanishes. The lower panel
of Fig. 1 shows the reduced density R. The dashed
line shows the function R = 3(x/xs)

2, which corre-
sponds to a region of uniform but steadily decreasing
density, given by spreading the original gaseous mass
interior to rs = xsat evenly over the enclosed spher-
ical volume. Except for a slight increase of R from
its average interior value of 3 to the post-shock value
Rd = 3.20 just downstream from the shock front at
x = xs, Fig. 1 shows that the high gaseous pressure
does a fairly good job of ironing out pressure differ-
ences in the interior volume.

Figure 2 show the analogous reduced velocity v
and density R for n = 2.99. The dotted line in the
upper panel corresponds to the critical line. In this
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SELF-SIMILAR CHAMPAGNE FLOWS 169

Fig. 1. Top panel: reduced velocity v for the exponent
n = 2. The dotted line is the critical line v = x − 1.
The shock front is at xs = 2.56. The pre-shock velocity
is v1 = 1.02. Bottom panel: reduced density R. The
dashed curve corresponds to R = 3(x/xs)

2 and shows
the deviation from uniform density.

Fig. 2. Top panel: reduced velocity v for the exponent
n = 2.99. The dotted line is the critical line v = x − 1.
The shock front is at xs = 19.25. The pre-shock velocity
is only v1 = 0.16. Bottom panel: reduced density R. The
dashed line corresponds to R = 300(x/xs)

2.99 and shows
the deviation from uniform density.

Fig. 3. Results of the models as a function of n. The
solid line shows the position of the shock xs, the up-
per and lower broken lines show the post-shock and pre-
shock reduced velocities (vd, vu) respectively, and the
long-dashed line shows the ratio of the post-shock and
pre-shock reduced densities, Rd/Ru.

case the shock front is at xs = 19.25. This num-
ber is also the velocity of the shock wave relative to
the isothermal sound speed of the H II region. In
contrast, the pre-shock velocity of the gas (relative
to the origin) is only vu = 0.16, because at a given
spatial position there is less time for the cloud to
expand before the shock arrives. The reduced den-
sity R in the lower panel has a correspondingly large
post-shock density increase. The dashed line shows
the function

R =

(

3

3 − n

) (

x

xs

)n

, (18)

with n = 2.99, given by spreading the original
gaseous mass interior to rs = xsat evenly over the
enclosed spherical volume. Fig. 2 shows that the
shock dynamics raises the immediate downstream
value from the average expectation 3/(3 − n) = 300
at x = xs to the actual postshock value Rd = 368.

Figure 3 summarizes the results for the self-
similar models with different power-law density ex-
ponents n. The solid line shows the position of the
shock xs; the upper and lower dotted lines show the
post-shock and pre-shock reduced velocities (vd, vu)
respectively; and the long-dashed line shows the ra-
tio of the post-shock and pre-shock reduced densities
Rd/Ru. One can see that xs increases as n → 3.
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170 LIZANO ET AL.

For the case n = 3, equations (13) and (14) have
the analytic solution R = Cx3 and v = x, where C is
an arbitrary constant. The jump conditions (equa-
tion 15) imply that xs → ∞ as vd → x. Thus, in
spatial coordinates the shock front, rs = xsat, and
the shock velocity, us = axs, go to infinity. SLGCL
showed that the shock velocity diverges as n → 3 be-
cause the model includes the origin, where the pres-
sure driving the shock diverges. If one integrates
instead from the radius of influence r0, for n < 3
the shock speed tends to the constant speed of the
self-similar models. On the other hand, for the case
n ≥ 3, the shock accelerates to ∞ as rs → ∞. As
the velocity increases, the assumptions of the model
will, of course, eventually break down.

4. STELLAR WINDS INSIDE CHAMPAGNE
FLOWS

Massive stars are expected to turn on powerful
winds very early in their lives. As shown above, the
density of the champagne flow tends to become uni-
form in the center (equation 18). Thus, following
Garay et al. (1994) who studied the evolution of stel-
lar winds inside champagne flows, we assume that
the stellar wind evolves into a medium of uniform
density given

ρ(t) =

∫ rs

0

4πr2ρ(r, t) dr
∫ rs

0

4πr2 dr

=

(

3

3 − n

)

ρ[rs(t)], (19)

where rs(t) = xsat is the instantaneous position of
the shock front and n < 3. In this case, the equations
of mass conservation, momentum, and energy of the
snow-plow phase (Castor, McCray, & Weaver 1975)
allow power-law solutions for the radius of the swept-
up shell, rw, driven by a hot bubble of shocked stellar
wind. In our notation

rw =

[

125(3 − n)(9 − 2n)

3(3 + n)2(7 − n)(11 + 2n)

]1/5

×

[

Lw(xsa)n

2πK

]1/5

t(3+n)/5,

(20)

where Lw = 1
2Ṁwu2

w is the wind luminosity, Ṁw is
the wind mass-loss rate, and uw is the stellar wind
speed, assumed constant. Comparing this expres-
sion for the wind radius with the value of the shock
radius rs = xsat, we see that for n ≤ 2 the stellar
wind can remain confined inside the champagne flow
(champagne-dominated flow), whereas for n > 2 it
accelerates and eventually overtakes the champagne
flow (wind-dominated flow).

In the particular case n = 2 both rs and rw in-
crease linearly with time. In terms of the self-similar
variable equation (10), one can then write

rw(t) = xw a t, (21)

where xw is given by equation (20) for n = 2,

xw =

[

Lw x2
s

18π a3 K

]1/5

. (22)

For a stellar wind with Lw ' 1036 erg s−1, and for
typical density parameters of massive cores, K '

1016 g cm−1, and a ' 10 km s−1, one obtains xw =
1.62. Since xs = 2.56, the stellar wind (moving at
uw ' 16 km s−1) remains inside the champagne flow
induced by the passage of the shock (moving at us '

26 km s−1).
One can refine this estimate by relaxing the as-

sumption of uniform density (equation 19), and using
instead the actual density profile R(x) established in
the cloud by the passage of the shock. In this case
the snow-plow phase equations give, for n = 2, a
transcendental equation for xw

xw =

[

Lw

6π a3 K R(xw)

]1/3

. (23)

For the values of the physical parameters given above
one obtains xw = 1.74, in good agreement with
the previous estimate. The condition to have a
champagne-dominated flow as opposed to a stellar-
wind-dominated flow is given by the requirement
xw = xs, i.e.,

Lw

6π K a3
< R(xs)x3

s ' 54, (24)

where xs = 2.56 and R(xs) = 3.20 (see Fig. 3). For
the range of parameters (Lw,K) that can keep the
stellar wind confined inside the champagne flow, the
exact solution, equation (23), for n = 2 and the solu-
tion, equation (22), obtained using the mean density
differ by less than 10% . We are therefore confident
that equation (20) can be used to estimate the evo-
lution of winds inside champagne flows of different
power-law exponents n. In particular, a wind domi-
nated H II region like Orion possibly had an original
density distribution with a density slope steeper than
n = 2, as expected at the edges of molecular clouds.

5. SUMMARY

We have discussed the self-similar models of
champagne flows found by SLGCL. These models
show that when a molecular core is ionized and
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heated out of equilibrium, steep density gradients
characteristic of star-forming regions produce shocks
that travel at constant velocity and accelerate the
ionized gas to supersonic speeds. We showed here
that is it possible to take into account the evolu-
tion of the stellar wind driven bubble of hot shocked
gas inside the champagne flow. For cloud core den-
sity power-law exponent n ≤ 2, the swept-up wind
shell can be confined inside the champagne flow. For
n > 2, the wind shell accelerates and eventually over-
takes the champagne shock.

One problem found by SLGCL is that, due to the
supersonic expansion of champagne flows, the emis-
sion measure decreases rapidly and in a short time
the source fades away from observational classifica-
tion as a compact H II region. These latter sources
have values of the emission measure (EM) in the
range 106 cm−6 pc <

∼ EM <
∼ 108 cm−6 pc (e.g., Garay

et al. 1994). The stellar winds discussed here would
only exacerbate the situation. They proposed that a
continuous source of ionized mass is required to keep
up the density of the expanding champagne flow.
Photoevaporation of circumstellar disks (Hollenbach
et al. 1994; Richling & Yorke 1997) or mass load-
ing by the photoevaporation and/or hydrodynamic
ablation of remnant neutral globules surrounding
the central star (e.g., Lizano et al. 1996; Redman,
Williams, & Dyson 1996) are natural solutions to
maintain the high observed emission measures in
champagne flows and, in general, in ultracompact
H II regions.
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Apartado Postal 3-72, 58090 Morelia, Michoacán, México (s.lizano@astrosmo.unam.mx).
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