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Abstract

In the present paper, we study the polynomial approximation of entire functions over
Jordan domains by using Faber polynomials. The coefficient characterizations of gen-
eralized order and generalized type of entire functions have been obtained in terms of
the approximation errors.
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1 Introduction

Let C be an analytic Jordan curve, D its interior and E be its exterior. Letϕ map E confor-
mally onto{w : |w|> 1} such thatϕ(∞) = ∞ andϕ′

(∞) > 0. Then for sufficiently large|z|,
ϕ(z) can be expressed as

w = ϕ(z) =
z
d

+c0 +
c1

z
+

c2

z2 + .... (1.1)

An arbitrary Jordan curve can be approximated from the inside as well as from the outside
by analytic Jordan curves. Since C is analytic,ϕ is holomorphic on C as well. The n th
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Faber polynomialFn(z) of C is the principal part of(ϕ(z))n at ∞, so that

Fn(z) =
zn

dn + ....

Faber [2] proved that asn→ ∞,
Fn(z)∼ (ϕ(z))n (1.2)

uniformly for z∈ E and

lim
n→∞

(
max
z∈C

|Fn(z)|
)1/n

= 1. (1.3)

A function f holomorphic in D can be represented by its Faber series

f (z) =
∞

∑
n=0

anFn(z) (1.4)

where

an =
1

2πi

Z

|w|=r
f (ϕ−1(w))w−(n+1)dw

andr < 1 is sufficiently close to 1 so thatϕ−1 is holomorphic and univalent in|w| ≥ r, the
series converging uniformly on compact subsets of D.

Let, for an entire functionf , M(r, f ) = max|z|=r | f (z)| be the maximum modulus of
f (z). The growth off (z) is measured in terms of its orderρ and typeτ defined as under

limsup
r→∞

log logM(r, f )
logr

= ρ, (1.5)

limsup
r→∞

logM(r, f )
rρ = τ, (1.6)

for 0 < ρ < ∞. Various workers have given different characterizations for entire functions
of fast growth(ρ = ∞).

M. N. Seremeta [4] defined the generalized order and generalized type with the help of
general functions as follows. LetLo denote the class of functions h satisfying the following
conditions
(i) h(x) is defined on[a,∞) and is positive, strictly increasing, differentiable and tends to∞
asx→ ∞,
(ii)

lim
x→∞

h{(1+1/ψ(x))x}
h(x)

= 1,

for every functionψ(x) such thatψ(x)→ ∞ asx→ ∞.
Let Λ denote the class of functions h satisfying condition (i) and

lim
x→∞

h(cx)
h(x)

= 1
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for everyc > 0, that is,h(x) is slowly increasing.
For the entire functionf (z) = ∑∞

n=0cnzn, and functionsα(x) ∈ Λ,β(x) ∈ Lo, Seremeta [4,
Th .1] proved that

ρ(α, β, f ) = limsup
r→∞

α[logM(r, f )]
β(logr)

= limsup
n→∞

α(n)
β
(−1

n ln |cn|
) . (1.7)

Further, forα(x) ∈ Lo,β−1(x) ∈ Lo,γ(x) ∈ Lo,

τ(α, β, f ) = limsup
r→∞

α[logM(r, f )]
β[(γ(r))ρ]

= limsup
n→∞

α( n
ρ)

β{[γ(e1/ρ|cn|−1/n)]ρ} . (1.8)

whereρ, 0 < ρ < ∞, is a fixed number.
Let Lp(D) denote the set of functions f holomorphic in D and such that

‖ f‖Lp(D) =
(

1
A

Z Z

D
| f (z)|pdxdy

)1/p

< ∞

where A is the area of D. Forf ∈ Lp(D), set

Ep
n = Ep

n ( f ;D) = min
πn
‖ f −πn‖Lp(D)

whereπn is an arbitrary polynomial of degree at most n.

Giroux [3] obtained the characterizations of order and type of entire functions in terms
of the coefficients of their Faber expansions over Jordan domains. He also obtained nec-
essary and sufficient conditions in terms of polynomial approximation errors.To the best of
our knowledge, coefficient characterization for generalized order and generalized type of
entire functions over Jordan domain have not been obtained so far.

In this paper, we have made an attempt to bridge this gap. First we obtain coefficient
characterization for generalized order and generalized type of entire functions over Jor-
dan domains. Next we obtain necessary and sufficient conditions of generalized order and
generalized type of entire functions in terms of approximation errors.

2 Generalized Order and Generalized Type

In this section we obtain the growth characterizations in terms of the coefficients{an} of
the Faber series (1.4). We first prove

Theorem 2.1. Let α(x) ∈ Λ, β(x) ∈ L0. SetH(x;c) = β−1[c α(x)], then f is restriction to
the domain D of an entire function of finite generalized orderρ if and only if

limsup
n→∞

α(n)
β
(−1

n ln |an|
) = ρ, (2.1)

provideddH(x;c)/d lnx = O(1) asx→ ∞ for all c, 0 < c < ∞.
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Proof. Let f (z) = ∑∞
n=0anFn(z) be an entire function of finite generalized orderρ, where

an =
1

2πi

Z

|w|=R
f (ϕ−1(w)) w−(n+1)dw

with arbitrarily large R. From (1.1) , we have

lim
|w|→∞

ϕ−1(w)
w

= d.

Hence for sufficiently large|w|,
(d− ε)|w| ≤ |ϕ−1(w)| ≤ (d+ ε)|w|.

Therefore

| f (ϕ−1(w))| ≤ exp
{

α−1 [ρ β(ln(d+ ε)|w|)]}, ρ = ρ+ ε,

and from Cauchy’s inequality, we have

|an| ≤ R−nexp
{

α−1 [ρ β(ln(d+ ε)|w|R)]
}
.

for all R sufficiently large. To minimize the right member of this inequality, chooseR=
R(n) = 1

d+ε exp
{

H(n; 1
ρ)

}
. Substituting this value of R in the above inequality, we have

− ln |an| ≥ nH(n;
1
ρ
)−nln(d+ ε)−α−1

[
ρ β

(
H(n;

1
ρ
)
)]

⇒ −1
n

ln |an| ≥ H

(
n;

1
ρ

)
= β−1

[
1
ρ

α(n)
]

⇒ β
(
−1

n
ln |an|

)
≥ 1

ρ
α(n)

⇒ ρ+ ε ≥ α(n)
β
(−1

n ln |an|
) .

Now proceeding to limits and sinceε is arbitrary, we have

ρ ≥ limsup
n→∞

α(n)
β
(−1

n ln |an|
) . (2.2)

Conversely, let

limsup
n→∞

α(n)
β
(−1

n ln |an|
) = σ.

Supposeσ < ∞. Then for everyε > 0, there existsN(ε) such that∀ n ≥ N(ε), we have

α(n)
β
(−1

n ln |an|
) ≤ σ+ ε = σ,

⇒ |an| ≤ exp

{
−n H

(
n;

1
σ

)}
.
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Since f (z) = ∑∞
n=0an Fn(z), therefore

| f (z)| ≤
∞

∑
n=0

exp

{
−nH

(
n;

1
σ

)}
|Fn(z)|.

But from (1.2), we have for someK > 0, |Fn(z)| ≤ K|ϕ(z)|n ∀ z∈ E and from (1.1), for
all sufficiently large|z|, we have

|ϕ(z)| ≤ |z|
d− ε

. (2.3)

Therefore the above inequality reduces to

| f (z)| ≤ K
∞

∑
n=0

exp

{
−nH

(
n;

1
σ

)} ( |z|
d− ε

)n

. (2.4)

By considering the functionψ(x) =
(

R
d−ε

)x
exp

{
−xH

(
x; 1

ρ

)}
and proceeding on the lines

of proof of Theorem 1 of Seremeta [4, p 294], we obtain

M(R; f )(1+o(1)) ≤ exp{(G+o(1))α−1[σ β(lnR+G)]}

⇒ α[(G+o(1))−1 lnM(R; f )]
β(lnR+G)

≤ σ = σ+ ε.

Sinceα(x) ∈ Λ andβ(x) ∈ L0, on lettingR→ ∞ and sinceε is arbitrary, we get

limsup
R→∞

α(lnM(R; f ))
β(lnR)

≤ σ = limsup
n→∞

α(n)
β
(−1

n ln |an|
) . (2.5)

The above inequality holds obviously ofσ = ∞. From (2.2) and (2.5), we obtain the required
result (2.1). This completes the proof of Theorem 1.

Next we prove

Theorem 2.2. Let α(x), β−1(x), γ(x) ∈ L0; let ρ be a fixed number,0 < ρ < ∞. Set

H(x;σ,ρ) = γ−1
{[

β−1(σ α(x))
]1/ρ

}
, then f is the restriction to the domain D of an entire

function of generalized orderρ and finite generalized typeτ if and only if

limsup
n→∞

α
(

n
ρ

)

β
{[

γ
(
de1/ρ|an|−1/n

)]ρ
} = τ (2.6)

provided ifγ(x) ∈ Λ andα(x) ∈ Λ, dH(x;σ,ρ)/d lnx = O(1) asx→ ∞.

Proof. Proceeding as in the proof of Theorem 1, we have

(d− ε)|w| ≤ |ϕ−1(w)| ≤ (d+ ε)|w|.
Let f be an entire function of generalized typeτ having finite generalized orderρ. Then we
have

| f (ϕ−1(w))| ≤ exp
{

α−1{
τ β

[
(γ((d+ ε)|w|))ρ]}}

,
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and from Cauchy’s inequality, we have

|an| ≤ R−n exp
{

α−1{
τ β

[
(γ((d+ ε)|w|))ρ]}}

,

for all R sufficiently large. To minimize the right hand side of this inequality, chooseR=
R(n) = 1

(d+ε)H
(

n
ρ ; 1

τ ,ρ
)

. Substituting value of R in the above inequality, we have

|an| ≤
exp

(
n
ρ

)
[
(d+ ε) H

(
n
ρ ; 1

τ ,ρ
)]n

⇒ (d+ ε)e1/ρ|an|−1/n ≥ H

(
n
ρ

;
1
τ
,ρ

)
.

Now proceeding to limits and sinceε is arbitrary, we have

limsup
n→∞

α
(

n
ρ

)

β
{[

γ
(
de1/ρ|an|−1/n

)]ρ
} ≤ τ. (2.7)

Conversely let

limsup
n→∞

α
(

n
ρ

)

β
{[

γ
(
de1/ρ|an|−1/n

)]ρ
} = η.

Supposeη < ∞. Then for everyε > 0, there existsY(ε) such that for alln ≥ Y(ε), we have

α
(

n
ρ

)

β
{[

γ
(
de1/ρ|an|−1/n

)]ρ
} ≤ η+ ε = η.

=⇒ |an| ≤
dn exp

(
n
ρ

)
[
H

(
n
ρ ; 1

η ,ρ
)]n .

Since f (z) = ∑∞
n=0an Fn(z), therefore

| f (z)| ≤
∞

∑
n=0

dn exp
(

n
ρ

)
[
H

(
n
ρ ; 1

η ,ρ
)]n |Fn(z)|.

As in (2.4), we have on using the estimate ofFn(z),

| f (z)| ≤
∞

∑
n=0

dn exp
(

n
ρ

)
[
H

(
n
ρ ; 1

η ,ρ
)]n

(
d |z|
d− ε

)n

≤
∞

∑
n=0

dn exp
(

n
ρ

)
[
H

(
n
ρ ; 1

η ,ρ
)]n Rn.
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To estimate the summation of the left hand side of above inequality, we consider the

functionψ(x) =
(
R e1/ρ)x

[
H

(
n
ρ ; 1

η ,ρ
)]−x

. Then following the proof of Seremeta [4, Th

.2, Page 296], we obtain

M(R; f ) ≤ exp
{
(A ρ+ o(1)) α−1

{
η β

[(
γ

(
Re

1
ρ
))ρ]}}

.

By using the definition of the classLo andΛ, and proceeding to limits, we obtain

τ = limsup
R→ ∞

α [lnM(R; f )]
β
[
(γ(R))ρ] ≤ η. (2.8)

From (2.7) and (2.8), we get the required result. This completes the proof of Theorem
2.

3 Lp - Approximation

In this section we consider the approximations of an entire function over the domain D.
Consider the polynomials

pn(z) = λnzn + ...(λn > 0)

defined through

1
A

Z Z

D
pn(z) pm(z)dx dy = δn,m.

These polynomials were first considered by T. Carleman [1] who proved that

pn(z) ∼
(

(n+1)A
π

)1/2

ϕ
′
(z) (ϕ(z))n asn→ ∞ (3.1)

uniformly for z ∈ E where A andϕ(z) are as defined earlier. Any functionf ∈ L2(D) can
be expanded in terms of these polynomials in a series

f (z) =
∞

∑
n=0

bn pn(z) (3.2)

where

bn =
1
A

Z Z

D
f (z) pn(z)dx dy

and the series converges uniformly on compact subsets of D.
Parseval’s relation yields

E2
n =

(
∞

∑
k=n+1

|bk|2
)1/2

. (3.3)

We now prove
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Lemma 3.1. Let α(x) ∈ Λ, β(x) ∈ Lo, then

limsup
n→∞

α(n)
β
(−1

n ln |bn|
) = limsup

n→∞

α(n)
β
(−1

n lnE2
n

) (3.4)

Proof. From (3.3), we have

|bn+1| ≤ E2
n,

=⇒ 1
n

ln
1

|bn+1| ≥
1
n

ln
1

E2
n

Sinceβ ∈ Lo, we have

β
(
−1

n
ln |bn+1|

)
≥ β

(
−1

n
lnE2

n

)
.

Sinceα ∈ Λ, proceeding to limits, we have

limsup
n→∞

α(n)
β
(−1

n ln |bn|
) ≤ limsup

n→∞

α(n)
β
(−1

n lnE2
n

) . (3.5)

Conversely, let

limsup
n→∞

α(n)
β
(−1

n ln |bn|
) = ρ.

Supposeρ < ∞. Then for everyε > 0, there existsG(ε), such that for alln≥G(ε), we have

α(n)
β
(−1

n ln |bn|
) ≤ ρ+ ε = ρ

=⇒ |bn| ≤ G exp

{
−n β−1

[
1
ρ

α(n)
]}

≤ G exp

{
−n H(n;

1
ρ
)
}

.

Therefore

(
E2

n

)2 ≤ G
∞

∑
k=n+1

exp

{
−2kH(k;

1
ρ
)
}

≤ G exp

{
−2(n+1)H(n+1;

1
ρ
)
} (

1− 1

e2 H(n+1;1
ρ )

)

≤ Gexp

{
−2(n+1)H(n+1;

1
ρ
)
}

=⇒ ln
1

E2
n
≥ (n+1) H(n+1;

1
ρ
)
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or β
(
− 1

n+1
lnE2

n

)
≥ 1

ρ
α(n+1).

Now proceeding to limits, we obtain

limsup
n→∞

α(n)
β
(−1

n lnE2
n

) ≤ ρ = limsup
n→∞

α(n)
β
(−1

n ln |bn|
) . (3.6)

From (3.5) and (3.6), we get the required result. This completes the proof of Lemma 1.

Now we prove

Lemma 3.2.Letα(x) ,β−1(x) ,γ(x)∈Lo; let ρ be a fixed number,0< ρ < ∞. SetH(x;σ,ρ) =
γ−1

{[
β−1(σ α(x))

]1/ρ
}

, then

limsup
n→∞

α
(

n
ρ

)

β
{[

γ
(
de1/ρ|bn|−1/n

)]ρ
} = limsup

n→∞

α
(

n
ρ

)

β
{[

γ
(
de1/ρ(E2

n)−1/n
)]ρ

} (3.7)

Proof. From (3.3), we have

|bn+1| ≤ E2
n,

e1/ρ |bn+1|−1/n ≥ e1/ρ (E2
n)
−1/n

.

Sinceγ ∈ Lo, we have

γ
[
d e1/ρ |bn+1|−1/n

]
≥ γ

[
d e1/ρ (E2

n)
−1/n

]

=⇒ β
{(

γ
[
d e1/ρ |bn+1|−1/n

])ρ}
≥ β

{(
γ
[
d e1/ρ (E2

n)
−1/n

])ρ}
.

Hence

α
(

n+1
ρ

)

β
{(

γ
[
d e1/ρ |bn+1|−1/n

])ρ
} ≤

α
(

n+1
ρ

)

β
{(

γ
[
d e1/ρ (E2

n)−1/n
])ρ} .

By applying limits, sinceα ∈ Lo, we obtain

limsup
n→∞

α
(

n
ρ

)

β
{[

γ
(
de1/ρ|bn|−1/n

)]ρ
} ≤ limsup

n→∞

α
(

n
ρ

)

β
{[

γ
(
de1/ρ(E2

n)−1/n
)]ρ

} . (3.8)

Conversely, let

limsup
n→∞

α
(

n
ρ

)

β
{[

γ
(
de1/ρ|bn|−1/n

)]ρ
} = τ.
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Supposeτ < ∞. Then for everyε > 0, there existsV(ε), such that for alln≥V(ε), we have

γ−1

[{
β−1

[
1

τ+ ε
α
(

n
ρ

)]}1/ρ
]
≤ d e1/ρ |bn|−1/n

implying

|bn| ≤ dn en/ρ
[
H

(
n
ρ

;
1
τ

, ρ
)]−n

.

Therefore

(
E2

n

)2 ≤
∞

∑
k=n+1

d2k e2k/ρ
[
H

(
k
ρ

;
1
τ

, ρ
)]−2k

≤

 d e1/ρ

H
(

n+1
ρ ; 1

τ , ρ
)




2(n+1)

1−


 d e1/ρ

H
(

n+1
ρ ; 1

τ , ρ
)




2



−1

≤ O(1)


 d e1/ρ

H
(

n+1
ρ ; 1

τ , ρ
)




2(n+1)

for n > 2de1/ρ. Thus

d e1/ρ (
E2

n

)−1/(n+1) ≥ H

(
n+1

ρ
;

1
τ

, ρ
)

≥ γ−1

{[
β−1

(
1
τ

α
(

n+1
ρ

))]1/ρ
}

β
[{

γ
[
d e1/ρ (

E2
n

)−1/(n+1)
]}1/ρ

]
≥ 1

τ
α
(

n+1
ρ

)

and

τ+ ε ≥
α
(

n+1
ρ

)

β
[{

γ
[
d e1/ρ (E2

n)−1/(n+1)
]}1/ρ

] .

Sinceα(x) ,β−1(x) andγ(x) ∈ Lo, proceeding to limits, we have

limsup
n→∞

α
(

n
ρ

)

β
{[

γ
(
de1/ρ|bn|−1/n

)]ρ
} ≥ limsup

n→∞

α
(

n
ρ

)

β
{[

γ
(
de1/ρ(E2

n)−1/n
)]ρ

} . (3.9)

From (3.8) and (3.9), we get the required result (3.7). This completes the proof of Lemma
2.
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Now we prove

Theorem 3.3. Let 2 ≤ p ≤ ∞. α(x) ∈ Λ, β(x) ∈ Lo. SetH(x;c) = β−1[c α(x)], then f is
restriction to the domain D of an entire function of finite generalized orderρ if and only if

limsup
n→∞

α(n)
β
(−1

n ln(Ep
n )

) = ρ, (3.10)

provideddH(x;c)/d lnx = O(1) asx→ ∞ for all c, 0 < c < ∞.

Proof. We prove the theorem in two steps. First we consider the case forp = 2. Assume f
is of finite generalized orderρ. Then from (2.1), we have

|an| ≤ e−n H(n; 1
ρ ).

Now by considering the orthonormality of the polynomialspn(z), we have

bn =
1
A

∞

∑
k=n+1

ak

Z Z

D
Fk(z) pn(z)dx dy.

Hence

|bn| ≤
∞

∑
k=n+1

|ak| max
z∈C

|Fk(z)|.

Since from (1.3), we have
max
z∈C

|Fk(z)| ≤ L (1+ ε)k, (3.11)

therefore, we have

|bn| ≤ L
∞

∑
k=n+1

e−k H(k; 1
ρ ) (1+ ε)k

≤ L e−(n+1) H((n+1); 1
ρ ) (1+ ε)(n+1)

[
1− 1+ ε

e

]

≤ O(1) L e−(n+1) H((n+1); 1
ρ )

sinceH(x; 1
ρ) is an increasing function→ ∞ asx→ ∞. Hence

ln
1
|bn| ≥ (n+1) H((n+1);

1
ρ
)

so that

− 1
n+1

ln |bn| ≥ β−1
[

1
ρ

α(n+1)
]

or β
(
− 1

n+1
ln |bn|

)
≥ 1

ρ
α(n+1)
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and

ρ+ ε ≥ α(n+1)
β
(− 1

n+1 ln |bn|
) .

Sinceβ ∈ Lo, proceeding to limits, we get

limsup
n→∞

α(n)
β
(−1

n ln |bn|
) ≤ ρ. (3.12)

Conversely, let

limsup
n→∞

α(n)
β
(−1

n ln |bn|
) = σ.

Supposeσ < ∞. Then for eachε > 0, there existsZ(ε) such that for alln ≥ Z(ε), we have

|bn| ≤ e−n H(n; 1
σ).

By Carleman’s result, asn→ ∞, we have

pn(z) ∼
(

(n+1)A
π

)1/2

ϕ
′
(z) (ϕ(z))n

uniformly for z∈ E. Therefore for allz∈ E, we have

|pn(z)| ≤ L
′
(n+1)1/2 |ϕ′

(z)| |ϕ(z)|n,

|ϕ′
(z)| ≤ T ∀ z∈ E,

and |ϕ(z)| ≤ |z|
d− ε

for all z with sufficiently large modulus. Therefore

| f (z)| ≤ L
∞

∑
n=0

e−n H(n; 1
σ) (n+1)1/2

( |z|
d− ε

)n

.

Now considern β−1
[

1
σ α(n)

]− 1
2 ln(n+1) = g(n).

Hence

β−1
[

1
σ

α(n)
]

=
g(n)

n

[
1+

1
2

ln(n+1)
g(n)

]

or
1
σ

α(n) = β
[

1
n

g(n)
{

1+
1
2

ln(n+1)
g(n)

}]
.
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Sinceβ ∈ Lo, we have

1
σ

α(n) ' β
[

1
n

g(n)
]

or α(n) = (σ+ ε) β
[

1
n

g(n)
]
+o(β(n))

implying

g(n) = nβ−1
[

1
σ+2ε

α(n)
]
.

Therefore

| f (z)| ≤ L
∞

∑
n=0

e−n H(n; 1
σ)

( |z|
d− ε

)n

.

Consider the functionχ(x) =
(

R
d−ε

)x
exp

[−x H
(
x; 1

σ+2ε
)]

. Take its logarithmic derivative
and set it equal to zero. Then we have

χ′
(x)

χ(x)
= ln

(
R

d− ε

)
− H

(
x;

1
σ+2ε

)
− d H

(
x; 1

σ+2ε
)

d lnx
= 0.

By assumption of the theorem there existsK
′
> 0 such that forx ≥ x1

∣∣∣∣∣
d H

(
x; 1

σ+2ε
)

d lnx

∣∣∣∣∣ ≤ K
′
.

Let K1(R) = E
[
α−1

{
(σ+2ε) β(lnR+K

′
)
}]

+1 andk0 = max
(

K
′
(ε),E[x1]+1

)
. For

R> R1(k0), ψ′
(k0)/ψ(k0) > 0, andψ′

(K1(R))/ψ(K1(R)) < 0.
Let x∗(R) be the point where the functionψ attains its maximum such thatψ(x∗(R)) =

maxk0 ≤ x≤ K1(R) ψ(x), thenk0 < x∗(R) < K1(R) andx∗(R) = α−1((σ+2ε) β(lnR−a(R))),
where

−K
′

< a(R) =
d H

(
x; 1

σ+2ε
)

d lnx
|x=x∗(R) < K

′
.

Further

max
k0 ≤ k≤ K1(R)

(|bk| Rk) ≤ max
k0 ≤ x≤ K1(R)

ψ(x) =
Rα−1{(σ+2ε) β(lnR−ln(d−ε)−a(R))}

eα−1{(σ+2ε) β(lnR−ln(d−ε)−a(R))} [lnR−ln(d−ε)−a(R)]

= exp
{

K
′
α−1 [(σ+2ε) β(lnR− ln(d− ε)−a(R))]

}

≤ exp
{

K
′
α−1 [(σ+2ε) β(Y)]

}
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whereβ(Y) = β(lnR− ln(d− ε)+K
′
). Therefore forR> R1(k0), we have

M(R; f ) ≤
∞

∑
k=0

|bk|Rk =
k0

∑
k=0

|bk|Rk +
k1(R)

∑
k=k0+1

|bk|Rk +
∞

∑
k=k1(R)+1

|bk|Rk

≤ O(Rk0)+1+k1(R) max
k0 ≤ k≤ K1(R)

(|bk| Rk).

Hence

M(R; f ) (1+o(1)) ≤ (
α−1 [(σ+2ε) β(Y)]+1

)
exp

{
K
′
α−1 [(σ+2ε) β(Y)]

}

≤ exp
{
(K

′
+o(1)) α−1 [(σ+2ε) β(Y)]

}
.

Then, we have

α
[
(K

′
+o(1))−1 lnM(R; f )

]

β(Y)
≤ σ+2ε.

Sinceα(x) ∈ Λ andβ(x) ∈ Lo, proceeding to limits asR→ ∞, we obtain

ρ = limsup
R→∞

α(lnM(R; f ))
β(lnR)

≤ σ. (3.13)

Combining (3.12) and (3.13),we obtain

limsup
n→∞

α(n)
β
(−1

n ln |bn|
) = ρ.

The result now follows on using Lemma 1 for the case ofp = 2.

Now we consider the casep > 2. Since, we have

E2
n ≤ Ep

n ≤ E∞
n (3.14)

for 2≤ p≤ ∞, it is sufficient to consider the casep = ∞. Suppose f is an entire function of
generalized type having finite generalized orderρ. Then

E∞
n ≤ max

z∈C

∣∣∣∣∣ f (z)−
n

∑
k=0

ak Fk(z)

∣∣∣∣∣

≤
∞

∑
k=n+1

|ak| max
z∈C

|Fk(z)|.

Since by Theorem 1, we have

|an| ≤ e−n H(n; 1
ρ ).
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and since we have

max
z∈C

|Fk(z)| ≤ K(1+ ε)k,

therefore the above inequality becomes

E∞
n ≤ K

∞

∑
k=n+1

e−n H(n; 1
ρ ) (1+ ε)k

≤ K e−(n+1) H(n+1;1
ρ ) (1+ ε)(n+1)

[
1− (1+ ε)

e

]−1

≤ O(1) K e−(n+1) H(n+1;1
ρ ) (1+ ε)(n+1)

=⇒ ln
1

E∞
n
≥ (n+1) H((n+1);

1
ρ
)

or β
(
− 1

n+1
lnE∞

n

)
≥ 1

ρ
α(n+1).

Sinceα ∈ Lo, proceeding to limits, we get

limsup
n→∞

α(n)
β
(−1

n lnE∞
n

) ≤ ρ.

In view of inequalities (3.19) and the fact that (3.10) holds forp = 2, this last inequality is
an equality. This completes the proof of Theorem 3.

Next we prove

Theorem 3.4.Let2≤ p≤∞. α(x), β−1(x), γ(x)∈ Lo; andρ be a fixed number,0< ρ < ∞.

SetH(x;σ,ρ) = γ−1
{[

β−1(σ α(x))
]1/ρ

}
, then f is restriction to the domain D of an entire

function of generalized orderρ and finite generalized typeτ if and only if

limsup
n→∞

α
(

n
ρ

)

β
{[

γ
(
de1/ρ(Ep

n )−1/n
)]ρ

} = τ (3.15)

provided ifγ(x) ∈ Λ andα(x) ∈ Λ, dH(x;σ,ρ)/d lnx = O(1) asx→ ∞.

Proof. We prove the result in two steps. First we consider the case whenp = 2. Assume f
is an entire function of generalized typeτ having finite generalized orderρ. From equation
(2.6), we have

|an| ≤ dn en/ρ
[
H

(
n
ρ

;
1
τ

, ρ
)]−n

,

whereτ = τ+ ε. As before we mentioned in the proof of Theorem 3, we obtain

|bn| ≤
∞

∑
k=n+1

|ak| max
z∈C

|Fk(z)|.
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Since from (1.3), we have

max
z∈C

|Fk(z)| ≤ L
′
(1+ ε)k.

Therefore, we have

|bn| ≤ L
′ ∞

∑
k=n+1

dk ek/ρ
[
H

(
k
ρ

;
1
τ

, ρ
)]−k

(1+ ε)k

≤ L
′
d(n+1) e

n+1
ρ

[
H

(
n+1

ρ
;

1
τ

, ρ
)]−(n+1)

(1+ ε)(n+1)


1− (1+ ε) e1/ρ

d
[
H

(
n+1

ρ ; 1
τ , ρ

)]



≤ O(1) L
′
d(n+1) e

n+1
ρ

[
H

(
n+1

ρ
;

1
τ

, ρ
)]−(n+1)

(1+ ε)(n+1)

=⇒ |bn|1/(n+1) ≤ d e1/ρ (1+ ε)[
H

(
n+1

ρ ; 1
τ , ρ

)]

or
d e1/ρ (1+ ε)
|bn|1/(n+1) ≥

[
H

(
n+1

ρ
;

1
τ

, ρ
)]

or β
{[

γ
(

d e1/ρ (1+ ε) |bn|−1/(n+1)
)]ρ}

≥ 1
τ

α
(

n+1
ρ

)
.

Sinceα(x), β−1(x), γ(x) ∈ Lo, proceeding to limits, sinceε is arbitrary, we obtain

τ ≥ limsup
n→∞

α
(

n
ρ

)

β
{[

γ
(
d e1/ρ |bn|−1/n

)]ρ
} . (3.16)

Conversely, let

limsup
n→∞

α
(

n
ρ

)

β
{[

γ
(
d e1/ρ |bn|−1/n

)]ρ
} = σ.

Supposeσ < ∞. Then for eachε > 0, there existsL(ε) such that for alln ≥ L(ε), we have

|bn| ≤ dn en/ρ
[
H

(
n
ρ

;
1
σ

, ρ
)]−n

,

whereσ = σ+ ε. As in the proof of Theorem 1, we obtain

| f (z)| ≤ L
∞

∑
n=0

dn en/ρ
[
H

(
n
ρ

;
1
σ

, ρ
)]−n

(n+1)1/2
( |z|

d− ε

)n

.
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Consider

(n+1)ρ/2n

[
H

(
n
ρ ; 1

σ , ρ
)]ρ = g(n/ρ)

Then

(
g(n/ρ)

e

)−1/ρ
=

[
H

(
n
ρ ; 1

σ , ρ
)]

(n+1)1/2n

and

n1/2n (1+1/n)1/2n
(

g(n/ρ)
e

)−1/ρ
= γ−1

{[
β−1

(
1
σ

α(
n
ρ
)
)]1/ρ

}
.

As n→ ∞, we have

γ

[
(1+o(1))

(
g(n/ρ)

e

)−1/ρ
]

=
[

β−1
(

1
σ

α(
n
ρ
)
)]1/ρ

.

Sinceγ(x) ∈ Lo, by using the property ofLo class, we have

' γ

[(
g(n/ρ)

e

)−1/ρ
]

=
[

β−1
(

1
σ

α(
n
ρ
)
)]1/ρ

implying

α(
n
ρ
) = (σ+ ε)

{(
β

[
γ
(

g(n/ρ)
e

)−1/ρ
]ρ)}

+o(γ(υ))

g(n/ρ) =
[
H

(
n
ρ

;
1

σ+ ε
, ρ

)]−ρ
.

Therefore, using above approximation ofg(n/ρ), we get

| f (z)| ≤ L
∞

∑
n=0

en/ρ
[
H

(
n
ρ

;
1

σ+ ε
, ρ

)]−n (
d |z|
d− ε

)n

.

Consider the functionζ(x) = (Re1/ρ)x
[
H

(
x
ρ ; 1

σ+ε , ρ
)]−x

. Set its logarithmic derivative

equal to zero. Then

ζ′(x)
ζ(x)

= lnR+
1
ρ
− ln

(
H

(
x
ρ

;
1

σ+ ε
, ρ

))
−

d ln
(

H
(

x
ρ ; 1

σ+ε , ρ
))

d lnx
= 0.
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If α(x),γ(x) ∈Λ, then by hypothesis of theorem, there existsA> 0, such that forx> x1, we
have

∣∣∣∣∣∣
d ln

(
H

(
x
ρ ; 1

σ+ε , ρ
))

d lnx

∣∣∣∣∣∣
< A.

By replacingσ by σ + ε, the rest of the minimization process follows from the proof of
converse part of Seremeta [4, Th .2, Page 296]. Then we get,

M(R; f ) ≤ exp
{

(Aρ+o(1)) α−1
{
(σ+ ε) β

[(
γ
(

R e
1
ρ +A

))ρ]}}
.

Sinceα(x), γ(x) ∈ Lo, proceeding to limits, we obtain

τ = limsup
R→∞

α(lnM(R; f ))
β[(γ(R))ρ]

≤ σ. (3.17)

Combining (3.16) and (3.17), we obtain

limsup
n→∞

α
(

n
ρ

)

β
{[

γ
(
de1/ρ|bn|−1/n

)]ρ
} = τ. (3.18)

The result now follows on using Lemma 2 for the case ofp = 2.

Now we consider the other casep > 2. Since, we have

E2
n ≤ Ep

n ≤ E∞
n (3.19)

for 2≤ p≤ ∞, it is sufficient to consider the casep = ∞. Suppose f is an entire function of
generalized type having finite generalized orderρ. Then

E∞
n ≤ max

z∈C

∣∣∣∣∣ f (z)−
n

∑
k=0

ak Fk(z)

∣∣∣∣∣

≤
∞

∑
k=n+1

|ak| max
z∈C

|Fk(z)|.

Since by Theorem 2, we have

|an| ≤ K dn en/ρ
[
H

(
n
ρ

;
1
τ

, ρ
)]−n

,

and since we have

max
z∈C

|Fk(z)| ≤ K(1+ ε)k,



Approximation of Entire Functions over Jordan Domains 93

therefore the above inequality becomes

E∞
n ≤ K

∞

∑
k=n+1

dk ek/ρ
[
H

(
k
ρ

;
1
τ

, ρ
)]−k

(1+ ε)k

≤ K dn+1 e(n+1)/ρ
[
H

(
n+1

ρ
;

1
τ

, ρ
)]−(n+1)

(1+ ε)(n+1)


1− d (1+ ε) e1/ρ

[
H

(
n+1

ρ ; 1
τ , ρ

)]


−1

≤ O(1) K dn+1 e(n+1)/ρ
[
H

(
n+1

ρ
;

1
τ

, ρ
)]−(n+1)

(1+ ε)(n+1)

=⇒ (E∞
n )1/(n+1) ≤ d e1/ρ (1+ ε)[

H
(

n+1
ρ ; 1

τ , ρ
)]

d e1/ρ (1+ ε)
(E∞

n )1/(n+1) ≥
[
H

(
n+1

ρ
;

1
τ

, ρ
)]

or β
{[

γ
(

d e1/ρ (1+ ε) (E∞
n )−1/(n+1)

)]ρ}
≥ 1

τ
α
(

n+1
ρ

)
.

Sinceα(x), β−1(x), γ(x) ∈ Lo, proceeding to limits we obtain

τ ≥ limsup
n→∞

α
(

n
ρ

)

β
{[

γ
(
d e1/ρ (E∞

n )−1/n
)]ρ

} .

In view of inequalities (3.19) and the fact that (3.15) holds forp = 2, this last inequality is
an equality. This completes the proof of Theorem 4.
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