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Abstract

In the present paper, we study the polynomial approximation of entire functions over
Jordan domains by using Faber polynomials. The coefficient characterizations of gen-
eralized order and generalized type of entire functions have been obtained in terms of
the approximation errors.
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1 Introduction

Let C be an analytic Jordan curve, D its interior and E be its exteriord leap E confor-
mally onto{w : |w| > 1} such thatp(c) = w0 and¢’(e0) > 0. Then for sufficiently largéz|,
¢ (2) can be expressed as
V4 Ci1 ©C
W= ¢(2)=— —+=+... 1.1
d(2) d+Co+Z+22+ (1.1)

An arbitrary Jordan curve can be approximated from the inside as well as from the outside
by analytic Jordan curves. Since C is analy§ids holomorphic on C as well. The n th
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Faber polynomiak,(z) of C is the principal part of$(z))" at, so that

2
Faber [2] proved that as— oo,
Fa(2) ~ (0(2)" (1.2)
uniformly for z€ E and
1/n
rl‘mo (rge%x|Fn(z)|) =1 (1.3)
A function f holomorphic in D can be represented by its Faber series
f(z) =Y aFn(2) (1.4)
2
where
172
= “Lw))w M Ddw
o e (@)

andr < 1is sufficiently close to 1 so thgt! is holomorphic and univalent ifw| > r, the
series converging uniformly on compact subsets of D.

Let, for an entire functionf, M(r, f) = max,_, |f(z)| be the maximum modulus of
f(z). The growth off (z) is measured in terms of its ordgrand typet defined as under

. loglogM(r, f)
Ilrpjong =p, (1.5)
Iimsuplogl\fsr’f) . (1.6)
r—oo

for 0 < p < . Various workers have given different characterizations for entire functions
of fast growth(p = ).

M. N. Seremeta [4] defined the generalized order and generalized type with the help of
general functions as follows. L& denote the class of functions h satisfying the following
conditions
(i) h(x) is defined orja, «) and is positive, strictly increasing, differentiable and tends to
asx — oo,

(ii)

P10

X—00 h(x) - 17

for every functiony(x) such thatp(x) — o asx — co.
Let A denote the class of functions h satisfying condition (i) and
h(cx)

S
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for everyc > 0, that is,h(x) is slowly increasing.
For the entire functiorf (z) = S_gcnZ", and functionsx(x) € A, B(x) € L°, Seremeta [4,
Th .1] proved that

L afllogM(r, f)] a(n)
p(a, B, f) = “rrn_itij = Ilrr?_itjp 7{5(_%'”’%‘). 1.7)
Further, fora(x) € L°,B~1(x) € L°y(x) €L,
1(a, B, f) = IimsupaﬂogM(r’f)] = limsup G(B) (1.8)

r—o BI(Y(r))P] n—e B{[v(e/PlcalH/MP}

wherep, 0 < p < o, is a fixed number.
Let LP(D) denote the set of functions f holomorphic in D and such that

Z7Z

1 1/p
oo = (5, f@Poxy) <o

where A is the area of D. Fdre LP(D), set
E)=EF(f;D) = rr;ﬁin||f — Th|[Le(D)
wherert, is an arbitrary polynomial of degree at most n.

Giroux [3] obtained the characterizations of order and type of entire functions in terms
of the coefficients of their Faber expansions over Jordan domains. He also obtained nec-
essary and sufficient conditions in terms of polynomial approximation errors.To the best of
our knowledge, coefficient characterization for generalized order and generalized type of
entire functions over Jordan domain have not been obtained so far.

In this paper, we have made an attempt to bridge this gap. First we obtain coefficient
characterization for generalized order and generalized type of entire functions over Jor-
dan domains. Next we obtain necessary and sufficient conditions of generalized order and
generalized type of entire functions in terms of approximation errors.

2 Generalized Order and Generalized Type

In this section we obtain the growth characterizations in terms of the coeffidiagfjt<of
the Faber series (1.4). We first prove

Theorem 2.1. Leta(x) € A, B(x) € L% SetH(x;c) = B~[c a(x)], then f is restriction to
the domain D of an entire function of finite generalized orpdrand only if

, a(n) B
P Bl Y

provideddH(x;c)/dInx = 0O(1) asx — o« forall ¢, 0 < ¢ < co.
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Proof. Let f(z) = S 1_oanFn(2) be an entire function of finite generalized orgewhere

lZ

= f(d~L(w)) w (" Ddw
2% ik ¢ (w))

with arbitrarily large R. From (1.1) , we have

lim w =d.

W—e W
Hence for sufficiently largéw|,
(d—g)w| < ¢~ (w)| < (d+e)|w.
Therefore
(@~ (w)| < exp{a *[pR(In(d+e)W)]}, P=p+Ee,
and from Cauchy’s inequality, we have
lan] < R"exp{a™*[pB(In(d+&)WR)]}.

for all R sufficiently large. To minimize the right member of this inequality, chdese

R(n) = g exp{H (n; %)}. Substituting this value of R in the above inequality, we have

—Injag| > nH(n;;)—nln(dJrS) —at [PB (H(n:;)ﬂ

N —%In]an\ > H <n;;> =gt [; 0‘(”)}

= B gl ) = Zam
R T TryPwy

Now proceeding to limits and sineds arbitrary, we have

p > limsup an)

_ o 2.2
n—e B(—qnfa) 2

Conversely, let

a(n)

imsup———————=o0
N pB(—%In\an\)

Suppose < . Then for everye > 0, there existdN(€) such that' n > N(g), we have

an  _sie—p,

B(—%Injan) ~

= Jal < exp{—nH (n>}

al k-
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Sincef(z) = Y h_oan Fn(2), therefore

() < niexp{—nH (”i)} Rl

But from (1.2), we have for somi¢ > 0, |F(2)| < K[$(2)|" Vze E and from (1.1), for

all sufficiently large|z|, we have
< —,

Therefore the above inequality reduces to

1f(2)] < Kniexp{—nH (n;clj)} (d’i"g)n (2.4)

By considering the functiog(x) = (5;)" exp{ —xH (x; %)} and proceeding on the lines
of proof of Theorem 1 of Seremeta [4, p 294], we obtain

(2.3)

M(R; f)(1+0(1)) < exp{(G+o(1)a l[cB(InR+G)]}
a[(G+0(1)) HInM(R; )]

< 0= .
B(NR+ G) = 0=0te
Sincea(x) € A andB(x) € L, on lettingR — o and since is arbitrary, we get
. a(InM(R; 1)) , a(n)
limsup—————~* <0 = limsup——5-—-——. (2.5)
R—0c0 B(In R) n—oo0 B(—%|n|an|)
The above inequality holds obviously@f= . From (2.2) and (2.5), we obtain the required
result (2.1). This completes the proof of Theorem 1. O

Next we prove

Theorem 2.2. Let a(x), B~1(x), y(x) € L let p be a fixed numbe) < p < ». Set
H(x;0,p) = y ! { Bt (oa(x)] 1/p}, then f is the restriction to the domain D of an entire
function of generalized ordgy and finite generalized typeif and only if

limsup i <g> =1 (2.6)
e B [y (det/plag|-4m))° |

provided ify(x) € A anda(x) € A, dH(x;0,p)/dInx= O(1) asx — co.

Proof. Proceeding as in the proof of Theorem 1, we have
(d—g)w| < ¢~ (w)| < (d+&)lw.

Let f be an entire function of generalized typhaving finite generalized order Then we
have

(@ (w))| < exp{a™ {TB[(v((d+e)[w)°]}},
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and from Cauchy'’s inequality, we have

lan| < R exp{a ™ {TR[(v((d+e)w])]}},
for all R sufficiently large. To minimize the right hand side of this inequality, chdtse
R(n)= —1-H (ﬂ' 1 p). Substituting value of R in the above inequality, we have

dre ' (p T
exp(g)

@+e)H(3to)|

ans{

= (d+8)e¥Plan VM > H <2:p>

Now proceeding to limits and sineds arbitrary, we have

limsu ° (g) <
p <T (2.7)

limsup : (g) =
v p{[v(deelanl 27}

Suppose) < «. Then for everg > 0, there exist¥ (€) such that for alh > Y(g), we have

a(3)

B{ [v(det/plan|-2/m)]"}

Conversely let

<n+e=T1.

o < § ool (g2

IN
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To estimate the summation of the left hand side of above inequality, we consider the
—X
function(x) = (R el/P)X [H (g %,p)} . Then following the proof of Seremeta [4, Th
.2, Page 296], we obtain

MR < epfaos o) a (v (r8))7]})
By using the definition of the clad® andA, and proceeding to limits, we obtain

T = IimsupW <n
R—wo B[VR)?] ~

From (2.7) and (2.8), we get the required result. This completes the proof of Theorem
2. O

(2.8)

3 LP- Approximation

In this section we consider the approximations of an entire function over the domain D.
Consider the polynomials

Pn(2) = AnZ'+...(An > 0)

defined through
122

D

These polynomials were first considered by T. Carleman [1] who proved that

L

1/2
on(2) ~ (W”A) V20D asn_ o 3.1

uniformly for z € E where A and)(z) are as defined earlier. Any functidne L?(D) can
be expanded in terms of these polynomials in a series

f(z2) = Z}bn Pn(2) (3.2)
where
1 Z Z
b= 5 (2 pa(@dxdy
A D

and the series converges uniformly on compact subsets of D.

Parseval’s relation yields
- 1/2
E7 = ( > rbk12> : (3:3)

k=n+1
We now prove
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Lemma 3.1. Leta(x) € A, B(x) € L°, then
. a(n) . a(n)
limsup ——————~ = limsup (3.4)
n—oo B(—%In‘bn‘) n—oo [3(—%|I’]E§)
Proof. From (3.3), we have
|bn+1| < Erzh
== 1 In 1 > 1 Ini
n = |bna| — n o EZ

Sincep € L°, we have
1 1,

- > _Z .
B< nIn|bn+1|) > B< nInEn)

Sincea € A, proceeding to limits, we have
: a(n) . a(n)
limsup ——————— < limsup —————-. (3.5)
n—oo B(—%In|bn|) n—oo B(—%mE%)

Conversely, let
Iimsup& =p
B(—7nbn|) '

n—oo

Suppos® < «. Then for everye > 0, there exist$5(¢), such that for alh > G(g), we have

Therefore
& 1
< G exp{—ZkH(k; )}
k:;rl P

2
(Erzm)
G 2 1HH 1; ! 1 1

Gexp{Z(n+ DH(n+ 1;;)}

1 1
= Ing > (n+1)H(n+1;6)

n
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1 ) 1
- > = .
orB( — InEn> > ﬁ0((n+l)
Now proceeding to limits, we obtain
, a(n) , a(n)
limsup ———— < p=Ilimsup —————. (3.6)

From (3.5) and (3.6), we get the required result. This completes the proof of Lemnia 1.
Now we prove

Lemma 3.2. Leta(x),B71(x),y(x) € L% let p be a fixed numbe@ < p < ». SetH (x;0,p) =
y ! { Bt(o a(x))]l/p}, then

. ) “(5)
R R e P

Proof. From (3.3), we have

IN

| bn+l’ Eri

&P |, 1| YN > /P (E2) YN,

Sincey € L°, we have

y{d e/? ’bn+1\_1/n} > V{d /P (Eﬁ)_l/n}

= B{(v[a & oo 27])"} > B{ (v[a e R )"}

o(8) el
B{ (vld e/ [bnia )"}~ B{ (v[a e E2)"))}

By applying limits, sincax € L°, we obtain

al s al(hn
. (3) | (3)
R N R = T L S

Conversely, let

Hence

limsup i (g>
v { [y(deelbnf 7))}

=T
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Supposa < «. Then for every > 0, there exist¥ (¢), such that for alh >V (g), we have

)

1 —Nn
< dngve n.- )

<d gl/p |bn|—l/n

implying

Therefore

0 —2k
(E2)? < 3 d*edp [H (k;l,p)]
k=n+1 p T

N

|
—
T
//~
>
'ot o
- | R
—~
Al | ©
©
——
| I |
N
>
+
=
'A
\
 ~
T
/N
>
'ot o
R
~
Al | ©
o
~——
N~ —
N

IN
o
—
=
S~—
1
T
/~
>
E
.
Al

for n > 2d€e'/P. Thus

d e (Er%)—l/(n-i—l) > H <n+1; 1,p>

[V
<\
-
—N
| — |
Mo
AN
A~ a
| =
Q
7N
>
o |+
=
~__
~__
_ 1
£
o
—

and
(")
B[{v[d el/p (Er%)—l/(n-&-l)} }1/0] '

Sincea(x) ,B~1(x) andy(x) € L°, proceeding to limits, we have

_ I
e R O (=D b Y

From (3.8) and (3.9), we get the required result (3.7). This completes the proof of Lemma
2. O

T+€ >

(3.9)



85

Approximation of Entire Functions over Jordan Domains

Now we prove
Theorem 3.3.Let2 < p < o. a(x) € A, B(X) € L°. SetH(x;c) = B~ [ca(x)], then fis

restriction to the domain D of an entire function of finite generalized opdiéand only if

: a(n) B
Ileypm =p, (3.10)

provideddH(x;c)/dInx = O(1) asx — o« for all ¢, 0 < ¢ < oo,
Proof. We prove the theorem in two steps. First we consider the cagec2. Assume f

is of finite generalized ordegy. Then from (2.1), we have

(n3)

jan| < "

ZZ

Now by considering the orthonormality of the polynomiglgz), we have

|

1 00
bh = a Fk(2) pn(2)dx dy.
A k:;rl D
Hence
[on| < |ax| max|F(2)].
k:;rl zeC
Since from (1.3), we have
max|F(2)] < L (1+¢)K, (3.11)
zeC
therefore, we have
b < L Y e Ak (11 g)k
k=n+1
< Le MR (14 g0t [1_ lJers
< O(1)L e (M H((+1):3)
sinceH (x; %) is an increasing function» c asx — «. Hence
1
In— > (n+1)H((n+1);=2)
[bn|
so that
1 (1
- > -
1 In|ba| > B [p a(n+1)]
i a(n+1)

=]

1
S >
orB( n+1In|bn|> >
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and
a(n+1)

p+e > ————————.
B(—=1; Infbnl)

Sincep € L°, proceeding to limits, we get

limsup an)

_ 3.12
P (L In o)) (842

< p
Conversely, let

. a(n)
2P B nie)

Suppose < «. Then for eacle > 0, there existZ(¢) such that for alh > Z(¢g), we have
|bn| < e—n H(n;%).

By Carleman’s result, as— o, we have

1/2
on(2) ~ ((””)A> 8@ (6@)"

1
uniformly for z € E. Therefore for alz € E, we have

@] < L (n+1)Y210'(2)] [0(2)]",
0'(2)) < T VzeE,

|2
and  [9(2)] < d—e

for all z with sufficiently large modulus. Therefore
<) n
f2)] < L S emHmd) mypve (12
@<L ye R

Now considem B~ [2 a(n)] — 3In(n+1) = g(n).
Hence

g1 [cly a(n)] -2 {1+; In(grz:)l)}

or%a(n) =B [i g(n){1+; In(gr;;;l)}]‘




Approximation of Entire Functions over Jordan Domains

Sincep € L°, we have

implying

Therefore

|<LZ)_nH (n:5) <|Z|8>.

87

Consider the functioi(x) = (¢%;)" exp[~x H (X 515 )]. Take its logarithmic derivative

and set it equal to zero. Then we have

£ () n(rgg) Tl -

By assumption of the theorem there exits> 0 such that fox > X1

d H (x ( 0+25)

< K.
d Inx

LetKy(R) = E[ *1{(0+28) B(INR+ K’)H +1andky = max(K’(s),E[xl]Jrl). For
R> Ri(ko), W' (ko) /W(ko) >0, andy' (K1 (R))/W(Ky(R)) <O.
Letx* (R) be the point where the functiap attains its maximum such theéi(x*(R)) =

MaX, < x < k;(R) P(X), thenky < x*(R) < K1 (R) andx*(R) = a~1((c+2¢) B(InR—-a(R))),
where

.1
-K <a(R) = W'X_”(R) < K.
Further
Ra~H{(0+28) BnR—In (d-£)-a(R)}
o omax (b RY < max W0 = o iAo @ e} R @A)

= exp{K a }[(0+2¢) BInR—In(d—) ~a(R))]}

“(o+2) B(Y)]}

=

IN

expsK a



Ramesh Ganti and G.S.Srivastava

88

whereB(Y) = B(INnR—In(d—¢)+K'). Therefore foR > Ry (ko), we have
0 ko ki(R) o
MR f) < T R = 3[R + % bR+ S |bR
K=0 K=0 k=ko+1 k=k1(R)+1

< O(RO)+1+ kl(R)kOSrkngé(R)(|bk\ RY).
Hence
M(Rf) (1+0(1)) < (a [(c+2¢)B(Y)]+1) exp{K/ a L(o+2e) B(Y)]}
exp{ (K'+0(1)) a~*[(0+22) B(Y)] }.

IN

Then, we have
a [(K'+o(1))*1 INM(R; f)]
< 0+ 2.

B(Y)
Sincea(x) € A andB(x) € L°, proceeding to limits aR — o, we obtain
. a(lnM(R; f))
= limsup———-—+- 3.13
p = limsup=—grr o= < (3.13)
Combining (3.12) and (3.13),we obtain
limsup & =p
The result now follows on using Lemma 1 for the cas@ef 2.
Now we consider the cage> 2. Since, we have
(3.14)

E2 < EP <EY

for 2 < p < o, it is sufficient to consider the cage= «. Suppose f is an entire function of

generalized type having finite generalized orgefhen

Ey < max
zeC

< ) la max|R(2)].

Since by Theorem 1, we have
lan] < e "HmD),
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and since we have

max|F(z)| < K(1+¢)X,
zcC

therefore the above inequality becomes

00

Er < K Y e ™M) (1yg)
k=n+1
-1
< Ke MUHOHD) (g | gyne) [1_ (125)}

< 0(1) K e—(n+1) H(n+1;%) (1+8)(n+1)

1

or B(_n+1 InE,‘f) > —a(n+1).

Sincea € L°, proceeding to limits, we get

limsup an)

e B(—IEz)

In view of inequalities (3.19) and the fact that (3.10) holdsgct 2, this last inequality is
an equality. This completes the proof of Theorem 3. O

Next we prove

Theorem 3.4.Let2 < p< . a(x), B~1(x), y(x) € L° and p be a fixed numbe@ < p < o.
SetH(x;0,p) = y ! { Bt (oa(x)] 1/p}, then f is restriction to the domain D of an entire
function of generalized ordgy and finite generalized typeif and only if
. (5)
limsup oy = 1 (3.15)
n—oo B{ [V(del/p(Er?)*l/n)} }

provided ify(x) € A anda(x) € A, dH(x;0,p)/dInx = O(1) asx — oo.

Proof. We prove the result in two steps. First we consider the case whel. Assume f
is an entire function of generalized typdéaving finite generalized ordet From equation

(2.6), we have
1 —-Nn
< dna/e n. 2
|an| < d"€ [H<p,r,p>] ;

whereT = 1+ €. As before we mentioned in the proof of Theorem 3, we obtain

|bn| < |ax| max|F(2)|-
" k:;Jrl zeC
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Since from (1.3), we have

max|F(2)] < L (1+¢)k
zeC

Therefore, we have

lbn| < L z dk /P [H <1 7p>
k=n+1

< L g+ &% [H( 1,% ﬂ (1+¢) (n+1) {1 (1+¢)el/P ]
p 1

T
’ n+l 1 1 _(n+l)
o1 L d™Yer [H <p == pﬂ (1+¢)*Y)

1+s
(n+1)

IN

(n de’P (1+e)
— |b YD < [H(M;%,p)}

dev’P (14¢) n+1 1
DYECE [H< o ’T’pﬂ

/e ~1/(n+1))1° 1 (n+1
or B{[v(¢e® e ¥0w))} > Ta("E),
Sincea(x), B~1(x), y(x) € L°, proceeding to limits, sinceis arbitrary, we obtain

T > limsu O((g)
> p . (3.16)
v p{[y(d &0 o4}

Conversely, let

limsup a(%) =0

v ] [y(d e b 1)

Suppose& < «. Then for eaclt > 0, there existd (¢) such that for alh > L(¢g), we have

1 —-n
< dhegve D-f
|bn|_den |:H<p10_7p>:| )

whered = ¢ + €. As in the proof of Theorem 1, we obtain

If(z)) <L nid” gvp [H (; % p)]_n (n41)42 (di)n
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Consider
[|_|(nﬂ+11)p/;n)]p .
pra’
Then
o)y 10 _ M3 e)]
( e ) (n+1)1/2n
and

P (14 1/m) (W)”" - vl{ LNE a(Q))]l/p}.

As n — o, we have
(1+0(1)) (g(ne/p)> 1/1 — [B‘l <1 a(g)ﬂ i

Sincey(x) € L°, by using the property df° class, we have

- ykg(ne/p))”"] [ (ia<2>)]”"
0((2) = (C+¢) {(B ly<g(rzm>—1/p] p>}+o(y(u))

n 1 -°
g(n/p) = [H <p10+87p>} .
Therefore, using above approximationgdh/p), we get
@ n 1 N rdiz\"
< /e - — .
a5 et WGiaee)] (5%

Consider the functiof(x) = (Re"/P) [H(
equal to zero. Then

Y

implying

N

dInx

(x)

e _ |nR+1—|n<H(X:1vp>)_dln(H<;;Ois,p)) = 0.
p p O+¢

91

—X
) p)} . Set its logarithmic derivative
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If a(x),y(x) € A, then by hypothesis of theorem, there ex#sts 0, such that fox > x;, we

have
din( (31 ok 0))

A.
dInx <

By replacingo by 0 + ¢, the rest of the minimization process follows from the proof of
converse part of Seremeta [4, Th .2, Page 296]. Then we get,

M(R f) < exp{(Ap+o(1)) a * {(o+2)B[(v(R é*A))pH}.
Sincea(x), y(x) € L°, proceeding to limits, we obtain

L a(InM(R; 1))
LIRS Ry <

Combining (3.16) and (3.17), we obtain

(3.17)

. ()

limsup oy =T (3.18)

ne B [y (det/plbg|-m))° |

The result now follows on using Lemma 2 for the casgef 2.
Now we consider the other cape> 2. Since, we have

EZ < EP < Ep (3.19)

for 2 < p < o, itis sufficient to consider the cage= «. Suppose f is an entire function of
generalized type having finite generalized orgethen

n

Ey < max|f(2)— Y axK(2)
n zeC kZO
< |a| max|F(2)]-
k:ZH 2eC

Since by Theorem 2, we have

1 —Nn
<Kdeg® |g(N. 2
wraoe (3t
and since we have

max|F(2)] < K(1+¢),

zeC
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therefore the above inequality becomes

7 < K Y dd [H(E;i,pﬂk(lﬂ)k

k=n+1
-1

—(n+1)
< KdWlen/e [ n+1; 1 (14¢)™D [1- d(1+¢g)e"/P
o HCpito)
p 1T
—(n+1)
< O(1)K gntl gn+1)/p {H <n;11 % 7 p>] (1+ 8)(”+1)

— (Epy < 9P
H(i o))

»)]

o — P 1 n+1
or bfv(aer are e )} = Fo(F)
Sincea(x), B~1(x), y(x) € L°, proceeding to limits we obtain

. (3)
T > limsup R
e p{ [v(d &P (Ep)4/n))° )
In view of inequalities (3.19) and the fact that (3.15) holdsgct 2, this last inequality is
an equality. This completes the proof of Theorem 4. O

n+1 .

p )

=

de’P (1+¢) WLEES
(Eﬁo)l/(n-i-l) p !

| =
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