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Abstract
We give the general conditions to be fulfilled for the small-angle scattering intensities of
samples, differing in their scattering densities and volume fractions, to be linearly related 
as well as the analytical expressions of the coefficients of the linear relations in terms of the
above parameters. An application to a natural coal undergoing fluid extraction processes
is also discussed.
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 Introduction
In this paper, we aim to draw people’s 
attention to the existence of linear rela-
tions among the scattering intensities of 
samples of which the constituting phases 
have a fixed geometrical configuration
while their scattering densities can be 
varied. More precisely, if the samples are 
made of N different homogeneous phases 
with a fixed geometry, once one has col-
lected the scattering densities relevant 
to N(N-1)/2 different sets of scattering 
density values, the intensities collected 
for other sets of scattering density values 
are linear combinations of the first ones.
The coefficients of the linear relations are
known functions of the scattering density 
and volume fraction values and can be 
used to determine the latter quantities. 
These results can also be generalized to 
the case where the volume fractions are 
slightly varied. By definition, a variation
is slight if the associated change in the in-
ternal geometry of the sample’s phases is 

such that the linearly independent auto-
correlation functions, defined later, are
left approximately unchanged. In fact, 
under this assumption, one finds that the
scattering intensities are linearly related 
and the involved coefficients are again
known functions of the scattering densi-
ties and volume fractions. It is stressed 
that the condition of slight variation can 
be checked experimentally by numeri-
cally verifying whether the linear relation 
among the collected intensities is obeyed 
throughout the explored scattering vector 
range or not and, in the positive case, the 
knowledge of the resulting numerical co-
efficient values can be used to determine
the volume fractions and the scattering 
density values. The plan of the paper is 
as follows. In part entitled ’Basic rela-
tions’, we report the basic equations of 
the small-angle scattering theory and we 
show that only N(N-1)/2 auto-correlation 
functions are linearly independent. In 
part entitled ’Three – phase samples’, we 
specialize the previous results to the case 
of three-phase samples and we report the 
mathematical expressions of the coeffi-
cients involved in the linear relations, in 
terms of the volume fractions and scat-
tering densities. We also mention briefly
some interesting limiting cases corre-
sponding to the cases where one of the 
constituting phases can be considered a 
collection of particles made up of simple 
films or threads. In part entitled ’Slight
variation in the internal geometry’, we 

consider the case of slight variations in 
the internal geometry and a practical ap-
plication. In part entitled ’Conclusions’, 
we report our concluding remarks.

 Basic relations
The fact that the spatial resolution achiev-
able in small-angle scattering experi-
ments does not exceed 1 nm led Debye 
et al. [1] to assume that the sample under 
analysis can be idealized as consisting of 
N(=2) homogeneous phases with scatter-
ing densities (i.e. the electron or the scat-
tering-length density for X-ray or neu-
tron beams, respectively) ni and volume 
fractions φi (with i = 1,..,N). Then, the 
scattering density function of the sam-
ple reads 
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intensity ���� is the square modulus of the Fourier transform of ����� and, for statistically 
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Here, � and ����� �� � ��� � ���������������  (this equality is proved in Ref. [2]) denote the sample's 
volume and mean square density fluctuation, respectively. After substituting Eq. (1) in (3) and 
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[where ���� is the three-dimensional Dirac function and �� (��) the region occupied by phase i
(j)], the correlation function (CF) takes the form  
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Even though Eqs. (5) and (6) were first derived in Ref. [1] in the case of two-phase samples, 
they apply whatever the value of N, as it was first noticed in Refs. [3–5]. According to Debye 
[1], function ������� is the stick probability function (SPF) of phases i and j. In fact, it represents 
the probability density that, after having randomly tossed a very large number of times a stick 
of length r (where randomly means that the angular distribution of the tossed sticks as well as 
the spatial distribution of one of the stick's ends are uniform), one end of the stick falls within 
phase i and the other within j. Definition (4) makes it clear that each ������� only depends on the 
spatial configurations of phases i and j and that the following properties hold true [2-5]: 
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the spatial distribution of one of the stick's ends are uniform), one end of the stick falls within 
phase i and the other within j. Definition (4) makes it clear that each ������� only depends on the 
spatial configurations of phases i and j and that the following properties hold true [2-5]: 
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 and, 
for statistically isotropic samples, it only 
depends on q, the modulus of the scatter-

Equations 3 and 4.

Basic relations 
The fact that the spatial resolution achievable in small-angle scattering experiments does not 
exceed 1 nm leads Debye et al. [1] to assume that the sample under analysis can be idealized as 
consisting of N(=2) homogeneous phases with scattering densities (i.e. the electron or the 
scattering-length density for X-ray or neutron beams, respectively)��� and volume fractions ��
(with i=1,..,N). Then, the scattering density function of the sample reads ������ � � ���������� (r)
where �����) is the function that defines the full geometry, i.e. the shape, the size and the location 
in space) of the ith phase since ��(r) is equal to one or zero depending on whether the tip of r
falls inside or outside phase i. The scattering density fluctuation function �(r) is defined as 

������� � ������ ���� �����
�

���
� �������������������������������������������

where �� � � ���
��� �� is the mean scattering density of the sample. The observed scattered 

intensity ���� is the square modulus of the Fourier transform of ����� and, for statistically 
isotropic samples, it only depends on �, the modulus of the scattering vector ��, related to the 
scattering angle � and the ingoing beam wave-length � as � � ���� � �����

�
��.

Hence, one generally has 
���� � � ���������� �� ��� �����������������������������������������������

which, in principle, applies to both isotropic and anisotropic samples since the first integral 
amounts to angularly averaging over all the possible directions (����) of ��. Eq. (2) can also be 
written as 

���� � �����������
� �� � ������� ������������������������������������������

�

�
where ����, the correlation function of the sample, is defined as 
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Here, � and ����� �� � ��� � ���������������  (this equality is proved in Ref. [2]) denote the sample's 
volume and mean square density fluctuation, respectively. After substituting Eq. (1) in (3) and 
putting 
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[where ���� is the three-dimensional Dirac function and �� (��) the region occupied by phase i
(j)], the correlation function (CF) takes the form  

���� � � ��� � ������ � ���
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������������������������������

Even though Eqs. (5) and (6) were first derived in Ref. [1] in the case of two-phase samples, 
they apply whatever the value of N, as it was first noticed in Refs. [3–5]. According to Debye 
[1], function ������� is the stick probability function (SPF) of phases i and j. In fact, it represents 
the probability density that, after having randomly tossed a very large number of times a stick 
of length r (where randomly means that the angular distribution of the tossed sticks as well as 
the spatial distribution of one of the stick's ends are uniform), one end of the stick falls within 
phase i and the other within j. Definition (4) makes it clear that each ������� only depends on the 
spatial configurations of phases i and j and that the following properties hold true [2-5]: 
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 (3)

Basic relations 
The fact that the spatial resolution achievable in small-angle scattering experiments does not 
exceed 1 nm leads Debye et al. [1] to assume that the sample under analysis can be idealized as 
consisting of N(=2) homogeneous phases with scattering densities (i.e. the electron or the 
scattering-length density for X-ray or neutron beams, respectively)��� and volume fractions ��
(with i=1,..,N). Then, the scattering density function of the sample reads ������ � � ���������� (r)
where �����) is the function that defines the full geometry, i.e. the shape, the size and the location 
in space) of the ith phase since ��(r) is equal to one or zero depending on whether the tip of r
falls inside or outside phase i. The scattering density fluctuation function �(r) is defined as 

������� � ������ ���� �����
�

���
� �������������������������������������������

where �� � � ���
��� �� is the mean scattering density of the sample. The observed scattered 

intensity ���� is the square modulus of the Fourier transform of ����� and, for statistically 
isotropic samples, it only depends on �, the modulus of the scattering vector ��, related to the 
scattering angle � and the ingoing beam wave-length � as � � ���� � �����

�
��.

Hence, one generally has 
���� � � ���������� �� ��� �����������������������������������������������

which, in principle, applies to both isotropic and anisotropic samples since the first integral 
amounts to angularly averaging over all the possible directions (����) of ��. Eq. (2) can also be 
written as 

���� � �����������
� �� � ������� ������������������������������������������

�

�
where ����, the correlation function of the sample, is defined as 

���� � � �
���������������� �������� � ������������������� ���������������������

Here, � and ����� �� � ��� � ���������������  (this equality is proved in Ref. [2]) denote the sample's 
volume and mean square density fluctuation, respectively. After substituting Eq. (1) in (3) and 
putting 

������� �
�
��������� ������� � �������������������������������������������������������������������������
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[where ���� is the three-dimensional Dirac function and �� (��) the region occupied by phase i
(j)], the correlation function (CF) takes the form  

���� � � ��� � ������ � ���
����� �����

�������
������������������������������

Even though Eqs. (5) and (6) were first derived in Ref. [1] in the case of two-phase samples, 
they apply whatever the value of N, as it was first noticed in Refs. [3–5]. According to Debye 
[1], function ������� is the stick probability function (SPF) of phases i and j. In fact, it represents 
the probability density that, after having randomly tossed a very large number of times a stick 
of length r (where randomly means that the angular distribution of the tossed sticks as well as 
the spatial distribution of one of the stick's ends are uniform), one end of the stick falls within 
phase i and the other within j. Definition (4) makes it clear that each ������� only depends on the 
spatial configurations of phases i and j and that the following properties hold true [2-5]: 

������� � ������������������������� � � �� � � � ����������������

Komentarz [A1]: The inserted 
equations are not very easy to read as they 
are blurred – is it possible to make them 
clearer? 

 (4)

Basic relations 
The fact that the spatial resolution achievable in small-angle scattering experiments does not 
exceed 1 nm leads Debye et al. [1] to assume that the sample under analysis can be idealized as 
consisting of N(=2) homogeneous phases with scattering densities (i.e. the electron or the 
scattering-length density for X-ray or neutron beams, respectively)��� and volume fractions ��
(with i=1,..,N). Then, the scattering density function of the sample reads ������ � � ���������� (r)
where �����) is the function that defines the full geometry, i.e. the shape, the size and the location 
in space) of the ith phase since ��(r) is equal to one or zero depending on whether the tip of r
falls inside or outside phase i. The scattering density fluctuation function �(r) is defined as 

������� � ������ ���� �����
�

���
� �������������������������������������������

where �� � � ���
��� �� is the mean scattering density of the sample. The observed scattered 

intensity ���� is the square modulus of the Fourier transform of ����� and, for statistically 
isotropic samples, it only depends on �, the modulus of the scattering vector ��, related to the 
scattering angle � and the ingoing beam wave-length � as � � ���� � �����

�
��.

Hence, one generally has 
���� � � ���������� �� ��� �����������������������������������������������

which, in principle, applies to both isotropic and anisotropic samples since the first integral 
amounts to angularly averaging over all the possible directions (����) of ��. Eq. (2) can also be 
written as 

���� � �����������
� �� � ������� ������������������������������������������

�

�
where ����, the correlation function of the sample, is defined as 

���� � � �
���������������� �������� � ������������������� ���������������������

Here, � and ����� �� � ��� � ���������������  (this equality is proved in Ref. [2]) denote the sample's 
volume and mean square density fluctuation, respectively. After substituting Eq. (1) in (3) and 
putting 
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�
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[where ���� is the three-dimensional Dirac function and �� (��) the region occupied by phase i
(j)], the correlation function (CF) takes the form  

���� � � ��� � ������ � ���
����� �����

�������
������������������������������

Even though Eqs. (5) and (6) were first derived in Ref. [1] in the case of two-phase samples, 
they apply whatever the value of N, as it was first noticed in Refs. [3–5]. According to Debye 
[1], function ������� is the stick probability function (SPF) of phases i and j. In fact, it represents 
the probability density that, after having randomly tossed a very large number of times a stick 
of length r (where randomly means that the angular distribution of the tossed sticks as well as 
the spatial distribution of one of the stick's ends are uniform), one end of the stick falls within 
phase i and the other within j. Definition (4) makes it clear that each ������� only depends on the 
spatial configurations of phases i and j and that the following properties hold true [2-5]: 
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ing vector 

Basic relations 
The fact that the spatial resolution achievable in small-angle scattering experiments does not 
exceed 1 nm leads Debye et al. [1] to assume that the sample under analysis can be idealized as 
consisting of N(=2) homogeneous phases with scattering densities (i.e. the electron or the 
scattering-length density for X-ray or neutron beams, respectively)��� and volume fractions ��
(with i=1,..,N). Then, the scattering density function of the sample reads ������ � � ���������� (r)
where �����) is the function that defines the full geometry, i.e. the shape, the size and the location 
in space) of the ith phase since ��(r) is equal to one or zero depending on whether the tip of r
falls inside or outside phase i. The scattering density fluctuation function �(r) is defined as 

������� � ������ ���� �����
�

���
� �������������������������������������������

where �� � � ���
��� �� is the mean scattering density of the sample. The observed scattered 

intensity ���� is the square modulus of the Fourier transform of ����� and, for statistically 
isotropic samples, it only depends on �, the modulus of the scattering vector ��, related to the 
scattering angle � and the ingoing beam wave-length � as � � ���� � �����

�
��.

Hence, one generally has 
���� � � ���������� �� ��� �����������������������������������������������

which, in principle, applies to both isotropic and anisotropic samples since the first integral 
amounts to angularly averaging over all the possible directions (����) of ��. Eq. (2) can also be 
written as 

���� � �����������
� �� � ������� ������������������������������������������

�

�
where ����, the correlation function of the sample, is defined as 
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Here, � and ����� �� � ��� � ���������������  (this equality is proved in Ref. [2]) denote the sample's 
volume and mean square density fluctuation, respectively. After substituting Eq. (1) in (3) and 
putting 
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[where ���� is the three-dimensional Dirac function and �� (��) the region occupied by phase i
(j)], the correlation function (CF) takes the form  
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������������������������������

Even though Eqs. (5) and (6) were first derived in Ref. [1] in the case of two-phase samples, 
they apply whatever the value of N, as it was first noticed in Refs. [3–5]. According to Debye 
[1], function ������� is the stick probability function (SPF) of phases i and j. In fact, it represents 
the probability density that, after having randomly tossed a very large number of times a stick 
of length r (where randomly means that the angular distribution of the tossed sticks as well as 
the spatial distribution of one of the stick's ends are uniform), one end of the stick falls within 
phase i and the other within j. Definition (4) makes it clear that each ������� only depends on the 
spatial configurations of phases i and j and that the following properties hold true [2-5]: 
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, related to the scattering angle 
θ and the ingoing beam wave-length λ as

Basic relations 
The fact that the spatial resolution achievable in small-angle scattering experiments does not 
exceed 1 nm leads Debye et al. [1] to assume that the sample under analysis can be idealized as 
consisting of N(=2) homogeneous phases with scattering densities (i.e. the electron or the 
scattering-length density for X-ray or neutron beams, respectively)��� and volume fractions ��
(with i=1,..,N). Then, the scattering density function of the sample reads ������ � � ���������� (r)
where �����) is the function that defines the full geometry, i.e. the shape, the size and the location 
in space) of the ith phase since ��(r) is equal to one or zero depending on whether the tip of r
falls inside or outside phase i. The scattering density fluctuation function �(r) is defined as 

������� � ������ ���� �����
�

���
� �������������������������������������������

where �� � � ���
��� �� is the mean scattering density of the sample. The observed scattered 

intensity ���� is the square modulus of the Fourier transform of ����� and, for statistically 
isotropic samples, it only depends on �, the modulus of the scattering vector ��, related to the 
scattering angle � and the ingoing beam wave-length � as � � ���� � �����

�
��.

Hence, one generally has 
���� � � ���������� �� ��� �����������������������������������������������

which, in principle, applies to both isotropic and anisotropic samples since the first integral 
amounts to angularly averaging over all the possible directions (����) of ��. Eq. (2) can also be 
written as 

���� � �����������
� �� � ������� ������������������������������������������

�

�
where ����, the correlation function of the sample, is defined as 
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Here, � and ����� �� � ��� � ���������������  (this equality is proved in Ref. [2]) denote the sample's 
volume and mean square density fluctuation, respectively. After substituting Eq. (1) in (3) and 
putting 
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[where ���� is the three-dimensional Dirac function and �� (��) the region occupied by phase i
(j)], the correlation function (CF) takes the form  
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Even though Eqs. (5) and (6) were first derived in Ref. [1] in the case of two-phase samples, 
they apply whatever the value of N, as it was first noticed in Refs. [3–5]. According to Debye 
[1], function ������� is the stick probability function (SPF) of phases i and j. In fact, it represents 
the probability density that, after having randomly tossed a very large number of times a stick 
of length r (where randomly means that the angular distribution of the tossed sticks as well as 
the spatial distribution of one of the stick's ends are uniform), one end of the stick falls within 
phase i and the other within j. Definition (4) makes it clear that each ������� only depends on the 
spatial configurations of phases i and j and that the following properties hold true [2-5]: 
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.

Hence, one generally has

Basic relations 
The fact that the spatial resolution achievable in small-angle scattering experiments does not 
exceed 1 nm leads Debye et al. [1] to assume that the sample under analysis can be idealized as 
consisting of N(=2) homogeneous phases with scattering densities (i.e. the electron or the 
scattering-length density for X-ray or neutron beams, respectively)��� and volume fractions ��
(with i=1,..,N). Then, the scattering density function of the sample reads ������ � � ���������� (r)
where �����) is the function that defines the full geometry, i.e. the shape, the size and the location 
in space) of the ith phase since ��(r) is equal to one or zero depending on whether the tip of r
falls inside or outside phase i. The scattering density fluctuation function �(r) is defined as 

������� � ������ ���� �����
�

���
� �������������������������������������������

where �� � � ���
��� �� is the mean scattering density of the sample. The observed scattered 

intensity ���� is the square modulus of the Fourier transform of ����� and, for statistically 
isotropic samples, it only depends on �, the modulus of the scattering vector ��, related to the 
scattering angle � and the ingoing beam wave-length � as � � ���� � �����

�
��.

Hence, one generally has 
���� � � ���������� �� ��� �����������������������������������������������

which, in principle, applies to both isotropic and anisotropic samples since the first integral 
amounts to angularly averaging over all the possible directions (����) of ��. Eq. (2) can also be 
written as 

���� � �����������
� �� � ������� ������������������������������������������

�

�
where ����, the correlation function of the sample, is defined as 
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Here, � and ����� �� � ��� � ���������������  (this equality is proved in Ref. [2]) denote the sample's 
volume and mean square density fluctuation, respectively. After substituting Eq. (1) in (3) and 
putting 
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[where ���� is the three-dimensional Dirac function and �� (��) the region occupied by phase i
(j)], the correlation function (CF) takes the form  
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Even though Eqs. (5) and (6) were first derived in Ref. [1] in the case of two-phase samples, 
they apply whatever the value of N, as it was first noticed in Refs. [3–5]. According to Debye 
[1], function ������� is the stick probability function (SPF) of phases i and j. In fact, it represents 
the probability density that, after having randomly tossed a very large number of times a stick 
of length r (where randomly means that the angular distribution of the tossed sticks as well as 
the spatial distribution of one of the stick's ends are uniform), one end of the stick falls within 
phase i and the other within j. Definition (4) makes it clear that each ������� only depends on the 
spatial configurations of phases i and j and that the following properties hold true [2-5]: 
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(2)

which, in principle, applies to both iso-
tropic and anisotropic samples since the 
first integral amounts to angularly aver-
aging over all the possible directions 

Basic relations 
The fact that the spatial resolution achievable in small-angle scattering experiments does not 
exceed 1 nm leads Debye et al. [1] to assume that the sample under analysis can be idealized as 
consisting of N(=2) homogeneous phases with scattering densities (i.e. the electron or the 
scattering-length density for X-ray or neutron beams, respectively)��� and volume fractions ��
(with i=1,..,N). Then, the scattering density function of the sample reads ������ � � ���������� (r)
where �����) is the function that defines the full geometry, i.e. the shape, the size and the location 
in space) of the ith phase since ��(r) is equal to one or zero depending on whether the tip of r
falls inside or outside phase i. The scattering density fluctuation function �(r) is defined as 

������� � ������ ���� �����
�
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� �������������������������������������������

where �� � � ���
��� �� is the mean scattering density of the sample. The observed scattered 

intensity ���� is the square modulus of the Fourier transform of ����� and, for statistically 
isotropic samples, it only depends on �, the modulus of the scattering vector ��, related to the 
scattering angle � and the ingoing beam wave-length � as � � ���� � �����

�
��.

Hence, one generally has 
���� � � ���������� �� ��� �����������������������������������������������

which, in principle, applies to both isotropic and anisotropic samples since the first integral 
amounts to angularly averaging over all the possible directions (����) of ��. Eq. (2) can also be 
written as 

���� � �����������
� �� � ������� ������������������������������������������

�

�
where ����, the correlation function of the sample, is defined as 

���� � � �
���������������� �������� � ������������������� ���������������������

Here, � and ����� �� � ��� � ���������������  (this equality is proved in Ref. [2]) denote the sample's 
volume and mean square density fluctuation, respectively. After substituting Eq. (1) in (3) and 
putting 

������� �
�
��������� ������� � �������������������������������������������������������������������������
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[where ���� is the three-dimensional Dirac function and �� (��) the region occupied by phase i
(j)], the correlation function (CF) takes the form  

���� � � ��� � ������ � ���
����� �����

�������
������������������������������

Even though Eqs. (5) and (6) were first derived in Ref. [1] in the case of two-phase samples, 
they apply whatever the value of N, as it was first noticed in Refs. [3–5]. According to Debye 
[1], function ������� is the stick probability function (SPF) of phases i and j. In fact, it represents 
the probability density that, after having randomly tossed a very large number of times a stick 
of length r (where randomly means that the angular distribution of the tossed sticks as well as 
the spatial distribution of one of the stick's ends are uniform), one end of the stick falls within 
phase i and the other within j. Definition (4) makes it clear that each ������� only depends on the 
spatial configurations of phases i and j and that the following properties hold true [2-5]: 
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of 

Basic relations 
The fact that the spatial resolution achievable in small-angle scattering experiments does not 
exceed 1 nm leads Debye et al. [1] to assume that the sample under analysis can be idealized as 
consisting of N(=2) homogeneous phases with scattering densities (i.e. the electron or the 
scattering-length density for X-ray or neutron beams, respectively)��� and volume fractions ��
(with i=1,..,N). Then, the scattering density function of the sample reads ������ � � ���������� (r)
where �����) is the function that defines the full geometry, i.e. the shape, the size and the location 
in space) of the ith phase since ��(r) is equal to one or zero depending on whether the tip of r
falls inside or outside phase i. The scattering density fluctuation function �(r) is defined as 

������� � ������ ���� �����
�

���
� �������������������������������������������

where �� � � ���
��� �� is the mean scattering density of the sample. The observed scattered 

intensity ���� is the square modulus of the Fourier transform of ����� and, for statistically 
isotropic samples, it only depends on �, the modulus of the scattering vector ��, related to the 
scattering angle � and the ingoing beam wave-length � as � � ���� � �����

�
��.

Hence, one generally has 
���� � � ���������� �� ��� �����������������������������������������������

which, in principle, applies to both isotropic and anisotropic samples since the first integral 
amounts to angularly averaging over all the possible directions (����) of ��. Eq. (2) can also be 
written as 

���� � �����������
� �� � ������� ������������������������������������������

�

�
where ����, the correlation function of the sample, is defined as 

���� � � �
���������������� �������� � ������������������� ���������������������

Here, � and ����� �� � ��� � ���������������  (this equality is proved in Ref. [2]) denote the sample's 
volume and mean square density fluctuation, respectively. After substituting Eq. (1) in (3) and 
putting 
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�
��������� ������� � �������������������������������������������������������������������������

�� �� �
��������� � ���

��
���� ���
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�������� ������ ����������������������������

[where ���� is the three-dimensional Dirac function and �� (��) the region occupied by phase i
(j)], the correlation function (CF) takes the form  

���� � � ��� � ������ � ���
����� �����

�������
������������������������������

Even though Eqs. (5) and (6) were first derived in Ref. [1] in the case of two-phase samples, 
they apply whatever the value of N, as it was first noticed in Refs. [3–5]. According to Debye 
[1], function ������� is the stick probability function (SPF) of phases i and j. In fact, it represents 
the probability density that, after having randomly tossed a very large number of times a stick 
of length r (where randomly means that the angular distribution of the tossed sticks as well as 
the spatial distribution of one of the stick's ends are uniform), one end of the stick falls within 
phase i and the other within j. Definition (4) makes it clear that each ������� only depends on the 
spatial configurations of phases i and j and that the following properties hold true [2-5]: 
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. Equation (2) can also be written as

Basic relations 
The fact that the spatial resolution achievable in small-angle scattering experiments does not 
exceed 1 nm leads Debye et al. [1] to assume that the sample under analysis can be idealized as 
consisting of N(=2) homogeneous phases with scattering densities (i.e. the electron or the 
scattering-length density for X-ray or neutron beams, respectively)��� and volume fractions ��
(with i=1,..,N). Then, the scattering density function of the sample reads ������ � � ���������� (r)
where �����) is the function that defines the full geometry, i.e. the shape, the size and the location 
in space) of the ith phase since ��(r) is equal to one or zero depending on whether the tip of r
falls inside or outside phase i. The scattering density fluctuation function �(r) is defined as 

������� � ������ ���� �����
�

���
� �������������������������������������������

where �� � � ���
��� �� is the mean scattering density of the sample. The observed scattered 

intensity ���� is the square modulus of the Fourier transform of ����� and, for statistically 
isotropic samples, it only depends on �, the modulus of the scattering vector ��, related to the 
scattering angle � and the ingoing beam wave-length � as � � ���� � �����

�
��.

Hence, one generally has 
���� � � ���������� �� ��� �����������������������������������������������

which, in principle, applies to both isotropic and anisotropic samples since the first integral 
amounts to angularly averaging over all the possible directions (����) of ��. Eq. (2) can also be 
written as 

���� � �����������
� �� � ������� ������������������������������������������

�

�
where ����, the correlation function of the sample, is defined as 

���� � � �
���������������� �������� � ������������������� ���������������������

Here, � and ����� �� � ��� � ���������������  (this equality is proved in Ref. [2]) denote the sample's 
volume and mean square density fluctuation, respectively. After substituting Eq. (1) in (3) and 
putting 

������� �
�
��������� ������� � �������������������������������������������������������������������������
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[where ���� is the three-dimensional Dirac function and �� (��) the region occupied by phase i
(j)], the correlation function (CF) takes the form  

���� � � ��� � ������ � ���
����� �����

�������
������������������������������

Even though Eqs. (5) and (6) were first derived in Ref. [1] in the case of two-phase samples, 
they apply whatever the value of N, as it was first noticed in Refs. [3–5]. According to Debye 
[1], function ������� is the stick probability function (SPF) of phases i and j. In fact, it represents 
the probability density that, after having randomly tossed a very large number of times a stick 
of length r (where randomly means that the angular distribution of the tossed sticks as well as 
the spatial distribution of one of the stick's ends are uniform), one end of the stick falls within 
phase i and the other within j. Definition (4) makes it clear that each ������� only depends on the 
spatial configurations of phases i and j and that the following properties hold true [2-5]: 
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(2a)

where γ(r), the correlation function of the 
sample, is defined as Equation (3).

Here, V and 

Basic relations 
The fact that the spatial resolution achievable in small-angle scattering experiments does not 
exceed 1 nm leads Debye et al. [1] to assume that the sample under analysis can be idealized as 
consisting of N(=2) homogeneous phases with scattering densities (i.e. the electron or the 
scattering-length density for X-ray or neutron beams, respectively)��� and volume fractions ��
(with i=1,..,N). Then, the scattering density function of the sample reads ������ � � ���������� (r)
where �����) is the function that defines the full geometry, i.e. the shape, the size and the location 
in space) of the ith phase since ��(r) is equal to one or zero depending on whether the tip of r
falls inside or outside phase i. The scattering density fluctuation function �(r) is defined as 

������� � ������ ���� �����
�

���
� �������������������������������������������

where �� � � ���
��� �� is the mean scattering density of the sample. The observed scattered 

intensity ���� is the square modulus of the Fourier transform of ����� and, for statistically 
isotropic samples, it only depends on �, the modulus of the scattering vector ��, related to the 
scattering angle � and the ingoing beam wave-length � as � � ���� � �����

�
��.

Hence, one generally has 
���� � � ���������� �� ��� �����������������������������������������������

which, in principle, applies to both isotropic and anisotropic samples since the first integral 
amounts to angularly averaging over all the possible directions (����) of ��. Eq. (2) can also be 
written as 

���� � �����������
� �� � ������� ������������������������������������������

�

�
where ����, the correlation function of the sample, is defined as 

���� � � �
���������������� �������� � ������������������� ���������������������

Here, � and ����� �� � ��� � ���������������  (this equality is proved in Ref. [2]) denote the sample's 
volume and mean square density fluctuation, respectively. After substituting Eq. (1) in (3) and 
putting 
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��������� ������� � �������������������������������������������������������������������������
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[where ���� is the three-dimensional Dirac function and �� (��) the region occupied by phase i
(j)], the correlation function (CF) takes the form  

���� � � ��� � ������ � ���
����� �����

�������
������������������������������

Even though Eqs. (5) and (6) were first derived in Ref. [1] in the case of two-phase samples, 
they apply whatever the value of N, as it was first noticed in Refs. [3–5]. According to Debye 
[1], function ������� is the stick probability function (SPF) of phases i and j. In fact, it represents 
the probability density that, after having randomly tossed a very large number of times a stick 
of length r (where randomly means that the angular distribution of the tossed sticks as well as 
the spatial distribution of one of the stick's ends are uniform), one end of the stick falls within 
phase i and the other within j. Definition (4) makes it clear that each ������� only depends on the 
spatial configurations of phases i and j and that the following properties hold true [2-5]: 
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Komentarz [A1]: The inserted 
equations are not very easy to read as they 
are blurred – is it possible to make them 
clearer? 

 
(this equality is proved in Ref. [2]) de-
note the sample’s volume and mean 
square density fluctuation, respectively.
After substituting Equations (1) in (3) 
and putting Equation (4) [where δ(·) is the 
three-dimensional Dirac function and Vi 
(Vj) the region occupied by phase i (j)], the 
correlation function (CF) takes the form. 

Basic relations 
The fact that the spatial resolution achievable in small-angle scattering experiments does not 
exceed 1 nm leads Debye et al. [1] to assume that the sample under analysis can be idealized as 
consisting of N(=2) homogeneous phases with scattering densities (i.e. the electron or the 
scattering-length density for X-ray or neutron beams, respectively)��� and volume fractions ��
(with i=1,..,N). Then, the scattering density function of the sample reads ������ � � ���������� (r)
where �����) is the function that defines the full geometry, i.e. the shape, the size and the location 
in space) of the ith phase since ��(r) is equal to one or zero depending on whether the tip of r
falls inside or outside phase i. The scattering density fluctuation function �(r) is defined as 

������� � ������ ���� �����
�

���
� �������������������������������������������

where �� � � ���
��� �� is the mean scattering density of the sample. The observed scattered 

intensity ���� is the square modulus of the Fourier transform of ����� and, for statistically 
isotropic samples, it only depends on �, the modulus of the scattering vector ��, related to the 
scattering angle � and the ingoing beam wave-length � as � � ���� � �����

�
��.

Hence, one generally has 
���� � � ���������� �� ��� �����������������������������������������������

which, in principle, applies to both isotropic and anisotropic samples since the first integral 
amounts to angularly averaging over all the possible directions (����) of ��. Eq. (2) can also be 
written as 

���� � �����������
� �� � ������� ������������������������������������������

�

�
where ����, the correlation function of the sample, is defined as 

���� � � �
���������������� �������� � ������������������� ���������������������

Here, � and ����� �� � ��� � ���������������  (this equality is proved in Ref. [2]) denote the sample's 
volume and mean square density fluctuation, respectively. After substituting Eq. (1) in (3) and 
putting 
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[where ���� is the three-dimensional Dirac function and �� (��) the region occupied by phase i
(j)], the correlation function (CF) takes the form  

���� � � ��� � ������ � ���
����� �����

�������
������������������������������

Even though Eqs. (5) and (6) were first derived in Ref. [1] in the case of two-phase samples, 
they apply whatever the value of N, as it was first noticed in Refs. [3–5]. According to Debye 
[1], function ������� is the stick probability function (SPF) of phases i and j. In fact, it represents 
the probability density that, after having randomly tossed a very large number of times a stick 
of length r (where randomly means that the angular distribution of the tossed sticks as well as 
the spatial distribution of one of the stick's ends are uniform), one end of the stick falls within 
phase i and the other within j. Definition (4) makes it clear that each ������� only depends on the 
spatial configurations of phases i and j and that the following properties hold true [2-5]: 
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(5)
Even though Equations (5) and (6) were 
first derived in Ref. [1] in the case of two-
phase samples, they apply whatever the 
value of N, as it was first noticed in Refs.
[3-5]. According to Debye [1], function 
Pi,j(r) is the stick probability function 
(SPF) of phases i and j. In fact, it rep-
resents the probability density that, af-
ter having randomly tossed a very large 
number of times a stick of length r (where 
randomly means that the angular distri-
bution of the tossed sticks as well as the 
spatial distribution of one of the stick’s 
ends are uniform), one end of the stick 
falls within phase i and the other within 
j. Definition (4) makes it clear that each 
Pi,j(r) only depends on the spatial con-
figurations of phases i and j and that the 
following properties hold true [2-5]:

Basic relations 
The fact that the spatial resolution achievable in small-angle scattering experiments does not 
exceed 1 nm leads Debye et al. [1] to assume that the sample under analysis can be idealized as 
consisting of N(=2) homogeneous phases with scattering densities (i.e. the electron or the 
scattering-length density for X-ray or neutron beams, respectively)��� and volume fractions ��
(with i=1,..,N). Then, the scattering density function of the sample reads ������ � � ���������� (r)
where �����) is the function that defines the full geometry, i.e. the shape, the size and the location 
in space) of the ith phase since ��(r) is equal to one or zero depending on whether the tip of r
falls inside or outside phase i. The scattering density fluctuation function �(r) is defined as 

������� � ������ ���� �����
�

���
� �������������������������������������������

where �� � � ���
��� �� is the mean scattering density of the sample. The observed scattered 

intensity ���� is the square modulus of the Fourier transform of ����� and, for statistically 
isotropic samples, it only depends on �, the modulus of the scattering vector ��, related to the 
scattering angle � and the ingoing beam wave-length � as � � ���� � �����

�
��.

Hence, one generally has 
���� � � ���������� �� ��� �����������������������������������������������

which, in principle, applies to both isotropic and anisotropic samples since the first integral 
amounts to angularly averaging over all the possible directions (����) of ��. Eq. (2) can also be 
written as 

���� � �����������
� �� � ������� ������������������������������������������

�

�
where ����, the correlation function of the sample, is defined as 

���� � � �
���������������� �������� � ������������������� ���������������������

Here, � and ����� �� � ��� � ���������������  (this equality is proved in Ref. [2]) denote the sample's 
volume and mean square density fluctuation, respectively. After substituting Eq. (1) in (3) and 
putting 

������� �
�
��������� ������� � �������������������������������������������������������������������������
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[where ���� is the three-dimensional Dirac function and �� (��) the region occupied by phase i
(j)], the correlation function (CF) takes the form  

���� � � ��� � ������ � ���
����� �����

�������
������������������������������

Even though Eqs. (5) and (6) were first derived in Ref. [1] in the case of two-phase samples, 
they apply whatever the value of N, as it was first noticed in Refs. [3–5]. According to Debye 
[1], function ������� is the stick probability function (SPF) of phases i and j. In fact, it represents 
the probability density that, after having randomly tossed a very large number of times a stick 
of length r (where randomly means that the angular distribution of the tossed sticks as well as 
the spatial distribution of one of the stick's ends are uniform), one end of the stick falls within 
phase i and the other within j. Definition (4) makes it clear that each ������� only depends on the 
spatial configurations of phases i and j and that the following properties hold true [2-5]: 
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(6a)

�����
�

���
��� ��� ����������������� � �� � � � ����������������������������������

������� ���� ������������������������ � � �� � � ������������������������������

������������ �� ������������������������� � � �� � � ��������������������������������
From Eq.(6b) it follows that each ������� can be written in terms of �� and the SPFs with � � �
and from (6a) that each SPF with � � � is simply equal to that with � � �. Hence, one can choose 
as linearly independent only those SPFs with indices such that � � �. Using these observations, 
Eq. (5) converts into 

���� � � � ��� � ����
����� ����

�������
��������������������������������������������

with 

�������� � � ������������� ��������� � �� � �� � ���������������������
as it was shown in Ref. [2]. Function ������� only depends on the spatial configuration of phases 
i and j. Besides, due to conditions (6c) and (6d), it obeys the following boundary conditions 

������� � ��������������������� � �����������������������������������������������
and for this reason it can be named the correlation function of phases i and j. Taking the Fourier 
transform (FT) of Eq. (7a) and putting 

�������� � ���� � � ������� ����
�

�
��������������������������������������������������

from Eq.~(2a), it follows that 
���� � �� � ����

�������
������������������������������������������������������������������������

with 
���� �� � ��� �����������������������������������������������������������������������������������

Eq. (10) is particularly interesting. It shows that the scattering intensities of samples that have a 
fixed internal geometry and differ only in the scattering densities are always linear 
combinations of the ��� � ���� quantities �������� that depend on the only geometry of the 
homogeneous phases that make up the samples. The coefficients of the linear combinations are 
����� times ����. The last quantity according to Eq. (11) defines the contrast between phases i
and j. The only ����s can be varied by isotopic substitution in the case of neutron scattering [6, 
7]. In the case of X-ray scattering, the variation can be made by anomalous scattering [8, 9] or, 
when the sample has a porous structure, by filling the pores with different fluids or gases at 
different pressures, assuming that the pores are rather large and fully accessible [10]. These 
remarks imply that, given an N-phase sample with a particular internal geometry, if one 
performs M (greater than N(N-1)/2) different scattering density variations and collects the 
corresponding M scattering intensities, denoted by ����� with � � �� � � � �� these according to Eq. 
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where ���� is the Kronecker symbol and ���� denotes the area of the (i,j) interface while ���� �
� ����������  (the prime denotes that j cannot be equal to i) is the total area of the surface 
bounding phase i. Combining Eqs. (9), (7b) and (12), one finds at a large q that 
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Finally, the well-known Porod law [11] is recovered by substituting Eq. (13) into Eq. (10). 

Three-phase samples 
The previous results will now be specialized to the case of three-phase samples where only 
three SPFs are linearly independent. Different choices of the linearly independent SPFs are 
possible. For instance, for some polymeric three-phase samples, Miyazaki et al. [16] found it 
convenient to choose �������, ������� and �������, while Wu [17] and Ciccariello and Riello [18] 
considered the choice: �������, ������� and �������. In the following, we shall confine ourselves to 
this choice, which is the most symmetric one, but it should be clear that most of the results 
reported later can be extended, mutatis mutandis, to other choices of the linearly independent 
SPFs. In order to deal with the linearly independent �������, ������� and �������, we need to define 
the auto-CF of phase i as 
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which, combined with Eq. (10), yields the Porod invariant expression. The total contrast of 
phase i with the remaining two is defined as 
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i,j,k being a circular permutation of 1,2,3. By simple algebra, one easily converts Eqs. (7a) and 
(2a) into 
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where ������ is the three-dimensional FT of �����. It is noted that ������, multiplied by V, is the 
scattering intensity of a sample (of volume V) formed by phase i, with unit scattering density 
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where δi,j is the Kronecker symbol and 
Si,j denotes the area of the (i,j) interface 
while Si,i = 

has not been modified by the manipulations required to vary the scattering densities (or that all 
the pores are accessible, if one is sure that the internal geometry cannot change). Besides, in 
such a case, the coefficients appearing in the linear combinations can be used to determine 
some of the scattering densities and, what is more important, from the measured intensities one 
can determine all the ��������s. Recalling that the values of the three first derivatives of �������s at 
r=0 have known integral expressions in terms of the (i,j) interfaces [1, 11-15], one can use 
these relations to extract from the �����(q)s further structural information on the internal geometry 
of the sample. For simplicity, we only report here the relation relevant to the first derivative. In 
this case, one knows [12] that 

����� ��� � � ��������
����
�� �������������������������������������������������

where ���� is the Kronecker symbol and ���� denotes the area of the (i,j) interface while ���� �
� ����������  (the prime denotes that j cannot be equal to i) is the total area of the surface 
bounding phase i. Combining Eqs. (9), (7b) and (12), one finds at a large q that 

�������� � � ������������ ����������������������������������������������������������������������������
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The previous results will now be specialized to the case of three-phase samples where only 
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where ������ is the three-dimensional FT of �����. It is noted that ������, multiplied by V, is the 
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Finally, the well-known Porod law [11] is 
recovered by substituting Equation (13) 
into Equation (10).

 Three-phase samples
The previous results will now be special-
ized to the case of three-phase samples 
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where only three SPFs are linearly inde-
pendent. Different choices of the linearly 
independent SPFs are possible. For in-
stance, for some polymeric three-phase 
samples, Miyazaki et al. [16] found it 
convenient to choose P1,1(r), P2,2(r) and 
P1,2(r), while Wu [17] and Ciccariello and 
Riello [18] considered the choice: P1,1(r), 
P2,2(r) and P3,3(r). In the following, we 
shall confine ourselves to this choice,
which is the most symmetric one, but it 
should be clear that most of the results 
reported later can be extended, mutatis 
mutandis, to other choices of the linearly 
independent SPFs. In order to deal with 
the linearly independent P1,1(r), P2,2(r) 
and P3,3(r), we need to define the auto-CF
of phase i as
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where ������ is the three-dimensional FT of �����. It is noted that ������, multiplied by V, is the 
scattering intensity of a sample (of volume V) formed by phase i, with unit scattering density 
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where ������ is the three-dimensional FT of �����. It is noted that ������, multiplied by V, is the 
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and, as consequence of the first relation,

has not been modified by the manipulations required to vary the scattering densities (or that all 
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where ������ is the three-dimensional FT of �����. It is noted that ������, multiplied by V, is the 
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which, combined with Eq. (10), yields 
the Porod invariant expression. The to-
tal contrast of phase i with the remaining 
two is defined as
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where ������ is the three-dimensional FT of �����. It is noted that ������, multiplied by V, is the 
scattering intensity of a sample (of volume V) formed by phase i, with unit scattering density 
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which substituted into Eq. (18) allows us to recover Porod's law.  At this point, we make a short 
diversion by adding two remarks. First, we observe that the previous equations reduce to those 
of two-phase samples, letting the scattering densities of two phases become equal or the volume 
fraction of one phase go to zero. Second, it is possible that one phase, say phase 3, has a 
constant thickness �� as it happens for the surfactant in a water-oil-surfactant mixture (see, e.g.,
[19]). Assuming that �� is very small, as it was first discussed by Teubner [20], the contribution 
to the scattering intensity from the surfactant phase can be considered as being due to a film. 
This contribution is easily worked out from the last expression in Eq. (4). In fact, ��� and ���
can fairly be written as ����� and ����� so that �������, the SPF of the surfactant, becomes 

���
��������� � ���

��
� ���
��

�������� � ����� � �������

and, by Eq. (14), ����� becomes 

����� �
���

���� � ��� ��
���
�� � ������ � ���

��
� ���
��

�������� � ����� � �������
��� ������������������������������

If one compares the above integral expression with that of the second-order derivative of an 
SPF, worked out by Ciccariello et al. (i.e. Eq. (3.1) of Ref. [12]), one sees that the latter's 
integrand contains the expression ����� � ������������ � �������, which is not present in Eq. (19). Recalling that 
������ and ������ respectively denote the unit vectors orthogonal to ��� and ��� and that the second 
derivative of any SPF tends to zero as � � � if the interface is smooth [12], it is now clear that 
the limit of (19) must be singular as � � � because the vanishing factor ����� � ������� is not present in 
(19). In fact, a more careful analysis [20, 21] shows that 
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as �� becomes large. From Eq. (18), one would obtain, in the q range where ��� �� �$ and 
��� � � with �� denoting the mean distance among the points of the surfactant phase, that 
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Then, if ������ and ��� ��� do not appreciably change in the above-defined q range, the observed 
scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
scattering behaviour is dominated by the film phase. For completeness, it is also mentioned that 
the scattering intensity can show a ��� behaviour [21] if one phase has a thread-like structure. 

We go back now to discuss the implications of Eq. (18). Assume we have M samples made up 
of three homogeneous phases with a fixed internal geometry and different scattering densities 
that assume the values ���� with i=1,2,3 and a=1,...,M with � � �. The corresponding scattering 
intensities will be �����, a=1,2,..,M. According to Eq. (18), they only depend on the three ������s.
Therefore, the ������s can be obtained from three �����s, e.g. from �����, ����� and �����. In fact, 
solving the resulting system of linear equations, one finds 
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If one compares the above integral expression with that of the second-order derivative of an 
SPF, worked out by Ciccariello et al. (i.e. Eq. (3.1) of Ref. [12]), one sees that the latter's 
integrand contains the expression ����� � ������������ � �������, which is not present in Eq. (19). Recalling that 
������ and ������ respectively denote the unit vectors orthogonal to ��� and ��� and that the second 
derivative of any SPF tends to zero as � � � if the interface is smooth [12], it is now clear that 
the limit of (19) must be singular as � � � because the vanishing factor ����� � ������� is not present in 
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Then, if ������ and ��� ��� do not appreciably change in the above-defined q range, the observed 
scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
scattering behaviour is dominated by the film phase. For completeness, it is also mentioned that 
the scattering intensity can show a ��� behaviour [21] if one phase has a thread-like structure. 
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scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
scattering behaviour is dominated by the film phase. For completeness, it is also mentioned that 
the scattering intensity can show a ��� behaviour [21] if one phase has a thread-like structure. 
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scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
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SPF, worked out by Ciccariello et al. (i.e. Eq. (3.1) of Ref. [12]), one sees that the latter's 
integrand contains the expression ����� � ������������ � �������, which is not present in Eq. (19). Recalling that 
������ and ������ respectively denote the unit vectors orthogonal to ��� and ��� and that the second 
derivative of any SPF tends to zero as � � � if the interface is smooth [12], it is now clear that 
the limit of (19) must be singular as � � � because the vanishing factor ����� � ������� is not present in 
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Then, if ������ and ��� ��� do not appreciably change in the above-defined q range, the observed 
scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
scattering behaviour is dominated by the film phase. For completeness, it is also mentioned that 
the scattering intensity can show a ��� behaviour [21] if one phase has a thread-like structure. 

We go back now to discuss the implications of Eq. (18). Assume we have M samples made up 
of three homogeneous phases with a fixed internal geometry and different scattering densities 
that assume the values ���� with i=1,2,3 and a=1,...,M with � � �. The corresponding scattering 
intensities will be �����, a=1,2,..,M. According to Eq. (18), they only depend on the three ������s.
Therefore, the ������s can be obtained from three �����s, e.g. from �����, ����� and �����. In fact, 
solving the resulting system of linear equations, one finds 
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scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
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scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
scattering behaviour is dominated by the film phase. For completeness, it is also mentioned that 
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We go back now to discuss the implications of Eq. (18). Assume we have M samples made up 
of three homogeneous phases with a fixed internal geometry and different scattering densities 
that assume the values ���� with i=1,2,3 and a=1,...,M with � � �. The corresponding scattering 
intensities will be �����, a=1,2,..,M. According to Eq. (18), they only depend on the three ������s.
Therefore, the ������s can be obtained from three �����s, e.g. from �����, ����� and �����. In fact, 
solving the resulting system of linear equations, one finds 

 is not present in 
(19). In fact, a more careful analysis [20, 
21] shows that

and a void phase filling the remaining region of the sample. At a large qs, ������ has the 
following leading asymptotic behaviour: 

������ �
����

���� � ���������������������������������������������������������������������������
which substituted into Eq. (18) allows us to recover Porod's law.  At this point, we make a short 
diversion by adding two remarks. First, we observe that the previous equations reduce to those 
of two-phase samples, letting the scattering densities of two phases become equal or the volume 
fraction of one phase go to zero. Second, it is possible that one phase, say phase 3, has a 
constant thickness �� as it happens for the surfactant in a water-oil-surfactant mixture (see, e.g.,
[19]). Assuming that �� is very small, as it was first discussed by Teubner [20], the contribution 
to the scattering intensity from the surfactant phase can be considered as being due to a film. 
This contribution is easily worked out from the last expression in Eq. (4). In fact, ��� and ���
can fairly be written as ����� and ����� so that �������, the SPF of the surfactant, becomes 

���
��������� � ���

��
� ���
��

�������� � ����� � �������

and, by Eq. (14), ����� becomes 

����� �
���

���� � ��� ��
���
�� � ������ � ���

��
� ���
��

�������� � ����� � �������
��� ������������������������������

If one compares the above integral expression with that of the second-order derivative of an 
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Then, if ������ and ��� ��� do not appreciably change in the above-defined q range, the observed 
scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
scattering behaviour is dominated by the film phase. For completeness, it is also mentioned that 
the scattering intensity can show a ��� behaviour [21] if one phase has a thread-like structure. 

We go back now to discuss the implications of Eq. (18). Assume we have M samples made up 
of three homogeneous phases with a fixed internal geometry and different scattering densities 
that assume the values ���� with i=1,2,3 and a=1,...,M with � � �. The corresponding scattering 
intensities will be �����, a=1,2,..,M. According to Eq. (18), they only depend on the three ������s.
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which substituted into Eq. (18) allows us to recover Porod's law.  At this point, we make a short 
diversion by adding two remarks. First, we observe that the previous equations reduce to those 
of two-phase samples, letting the scattering densities of two phases become equal or the volume 
fraction of one phase go to zero. Second, it is possible that one phase, say phase 3, has a 
constant thickness �� as it happens for the surfactant in a water-oil-surfactant mixture (see, e.g.,
[19]). Assuming that �� is very small, as it was first discussed by Teubner [20], the contribution 
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If one compares the above integral expression with that of the second-order derivative of an 
SPF, worked out by Ciccariello et al. (i.e. Eq. (3.1) of Ref. [12]), one sees that the latter's 
integrand contains the expression ����� � ������������ � �������, which is not present in Eq. (19). Recalling that 
������ and ������ respectively denote the unit vectors orthogonal to ��� and ��� and that the second 
derivative of any SPF tends to zero as � � � if the interface is smooth [12], it is now clear that 
the limit of (19) must be singular as � � � because the vanishing factor ����� � ������� is not present in 
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Then, if ������ and ��� ��� do not appreciably change in the above-defined q range, the observed 
scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
scattering behaviour is dominated by the film phase. For completeness, it is also mentioned that 
the scattering intensity can show a ��� behaviour [21] if one phase has a thread-like structure. 

We go back now to discuss the implications of Eq. (18). Assume we have M samples made up 
of three homogeneous phases with a fixed internal geometry and different scattering densities 
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Therefore, the ������s can be obtained from three �����s, e.g. from �����, ����� and �����. In fact, 
solving the resulting system of linear equations, one finds 

 and, consequently,

and a void phase filling the remaining region of the sample. At a large qs, ������ has the 
following leading asymptotic behaviour: 

������ �
����

���� � ���������������������������������������������������������������������������
which substituted into Eq. (18) allows us to recover Porod's law.  At this point, we make a short 
diversion by adding two remarks. First, we observe that the previous equations reduce to those 
of two-phase samples, letting the scattering densities of two phases become equal or the volume 
fraction of one phase go to zero. Second, it is possible that one phase, say phase 3, has a 
constant thickness �� as it happens for the surfactant in a water-oil-surfactant mixture (see, e.g.,
[19]). Assuming that �� is very small, as it was first discussed by Teubner [20], the contribution 
to the scattering intensity from the surfactant phase can be considered as being due to a film. 
This contribution is easily worked out from the last expression in Eq. (4). In fact, ��� and ���
can fairly be written as ����� and ����� so that �������, the SPF of the surfactant, becomes 

���
��������� � ���

��
� ���
��

�������� � ����� � �������

and, by Eq. (14), ����� becomes 

����� �
���

���� � ��� ��
���
�� � ������ � ���

��
� ���
��

�������� � ����� � �������
��� ������������������������������

If one compares the above integral expression with that of the second-order derivative of an 
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Then, if ������ and ��� ��� do not appreciably change in the above-defined q range, the observed 
scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
scattering behaviour is dominated by the film phase. For completeness, it is also mentioned that 
the scattering intensity can show a ��� behaviour [21] if one phase has a thread-like structure. 
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that assume the values ���� with i=1,2,3 and a=1,...,M with � � �. The corresponding scattering 
intensities will be �����, a=1,2,..,M. According to Eq. (18), they only depend on the three ������s.
Therefore, the ������s can be obtained from three �����s, e.g. from �����, ����� and �����. In fact, 
solving the resulting system of linear equations, one finds 
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which substituted into Eq. (18) allows us to recover Porod's law.  At this point, we make a short 
diversion by adding two remarks. First, we observe that the previous equations reduce to those 
of two-phase samples, letting the scattering densities of two phases become equal or the volume 
fraction of one phase go to zero. Second, it is possible that one phase, say phase 3, has a 
constant thickness �� as it happens for the surfactant in a water-oil-surfactant mixture (see, e.g.,
[19]). Assuming that �� is very small, as it was first discussed by Teubner [20], the contribution 
to the scattering intensity from the surfactant phase can be considered as being due to a film. 
This contribution is easily worked out from the last expression in Eq. (4). In fact, ��� and ���
can fairly be written as ����� and ����� so that �������, the SPF of the surfactant, becomes 

���
��������� � ���

��
� ���
��

�������� � ����� � �������

and, by Eq. (14), ����� becomes 

����� �
���

���� � ��� ��
���
�� � ������ � ���

��
� ���
��

�������� � ����� � �������
��� ������������������������������

If one compares the above integral expression with that of the second-order derivative of an 
SPF, worked out by Ciccariello et al. (i.e. Eq. (3.1) of Ref. [12]), one sees that the latter's 
integrand contains the expression ����� � ������������ � �������, which is not present in Eq. (19). Recalling that 
������ and ������ respectively denote the unit vectors orthogonal to ��� and ��� and that the second 
derivative of any SPF tends to zero as � � � if the interface is smooth [12], it is now clear that 
the limit of (19) must be singular as � � � because the vanishing factor ����� � ������� is not present in 
(19). In fact, a more careful analysis [20, 21] shows that 

����� �
�����

����� � ������� �������������������������������������������������
                
as � � � and, consequently, 

������ � �
�������

���� � �������� ������������������������������������������������������
as �� becomes large. From Eq. (18), one would obtain, in the q range where ��� �� �$ and 
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Then, if ������ and ��� ��� do not appreciably change in the above-defined q range, the observed 
scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
scattering behaviour is dominated by the film phase. For completeness, it is also mentioned that 
the scattering intensity can show a ��� behaviour [21] if one phase has a thread-like structure. 

We go back now to discuss the implications of Eq. (18). Assume we have M samples made up 
of three homogeneous phases with a fixed internal geometry and different scattering densities 
that assume the values ���� with i=1,2,3 and a=1,...,M with � � �. The corresponding scattering 
intensities will be �����, a=1,2,..,M. According to Eq. (18), they only depend on the three ������s.
Therefore, the ������s can be obtained from three �����s, e.g. from �����, ����� and �����. In fact, 
solving the resulting system of linear equations, one finds 
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If one compares the above integral expression with that of the second-order derivative of an 
SPF, worked out by Ciccariello et al. (i.e. Eq. (3.1) of Ref. [12]), one sees that the latter's 
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Then, if ������ and ��� ��� do not appreciably change in the above-defined q range, the observed 
scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
scattering behaviour is dominated by the film phase. For completeness, it is also mentioned that 
the scattering intensity can show a ��� behaviour [21] if one phase has a thread-like structure. 

We go back now to discuss the implications of Eq. (18). Assume we have M samples made up 
of three homogeneous phases with a fixed internal geometry and different scattering densities 
that assume the values ���� with i=1,2,3 and a=1,...,M with � � �. The corresponding scattering 
intensities will be �����, a=1,2,..,M. According to Eq. (18), they only depend on the three ������s.
Therefore, the ������s can be obtained from three �����s, e.g. from �����, ����� and �����. In fact, 
solving the resulting system of linear equations, one finds 
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which substituted into Eq. (18) allows us to recover Porod's law.  At this point, we make a short 
diversion by adding two remarks. First, we observe that the previous equations reduce to those 
of two-phase samples, letting the scattering densities of two phases become equal or the volume 
fraction of one phase go to zero. Second, it is possible that one phase, say phase 3, has a 
constant thickness �� as it happens for the surfactant in a water-oil-surfactant mixture (see, e.g.,
[19]). Assuming that �� is very small, as it was first discussed by Teubner [20], the contribution 
to the scattering intensity from the surfactant phase can be considered as being due to a film. 
This contribution is easily worked out from the last expression in Eq. (4). In fact, ��� and ���
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If one compares the above integral expression with that of the second-order derivative of an 
SPF, worked out by Ciccariello et al. (i.e. Eq. (3.1) of Ref. [12]), one sees that the latter's 
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derivative of any SPF tends to zero as � � � if the interface is smooth [12], it is now clear that 
the limit of (19) must be singular as � � � because the vanishing factor ����� � ������� is not present in 
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Then, if ������ and ��� ��� do not appreciably change in the above-defined q range, the observed 
scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
scattering behaviour is dominated by the film phase. For completeness, it is also mentioned that 
the scattering intensity can show a ��� behaviour [21] if one phase has a thread-like structure. 
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that assume the values ���� with i=1,2,3 and a=1,...,M with � � �. The corresponding scattering 
intensities will be �����, a=1,2,..,M. According to Eq. (18), they only depend on the three ������s.
Therefore, the ������s can be obtained from three �����s, e.g. from �����, ����� and �����. In fact, 
solving the resulting system of linear equations, one finds 
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[19]). Assuming that �� is very small, as it was first discussed by Teubner [20], the contribution 
to the scattering intensity from the surfactant phase can be considered as being due to a film. 
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If one compares the above integral expression with that of the second-order derivative of an 
SPF, worked out by Ciccariello et al. (i.e. Eq. (3.1) of Ref. [12]), one sees that the latter's 
integrand contains the expression ����� � ������������ � �������, which is not present in Eq. (19). Recalling that 
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Then, if ������ and ��� ��� do not appreciably change in the above-defined q range, the observed 
scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
scattering behaviour is dominated by the film phase. For completeness, it is also mentioned that 
the scattering intensity can show a ��� behaviour [21] if one phase has a thread-like structure. 

We go back now to discuss the implications of Eq. (18). Assume we have M samples made up 
of three homogeneous phases with a fixed internal geometry and different scattering densities 
that assume the values ���� with i=1,2,3 and a=1,...,M with � � �. The corresponding scattering 
intensities will be �����, a=1,2,..,M. According to Eq. (18), they only depend on the three ������s.
Therefore, the ������s can be obtained from three �����s, e.g. from �����, ����� and �����. In fact, 
solving the resulting system of linear equations, one finds 
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where ��� �� ��, ��� �� �� and ���� ��� ��� are circular permutations of (1,2,3), respectively determined 
by the first value of �, � and ��. The remaining intensities �����, with � � ��� ��, can be 
expressed as linear combinations of the first three intensities by Eqs. (22) and (23) and the 
explicit relation is 
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It is noted that coefficients ���� and ���� depend on the differences of the scattering densities 
because each sum present in Eqs. (23) and (25) is a sum of the terms that involve the product of 
two scattering density differences. To make this point clear, consider for instance 
� ��������� � ���������  and take � � � and � � �. One finds 
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and the property appears evident. We briefly discuss the structural information that can be 
obtained by the previous equations. First, to determine fully the ������s by Eq. (22), we only need 
to know the scattering densities of the phases of the three samples because the knowledge of the 
��s follows the requirement that sum-rules (15b) are obeyed. The measurement of further 
scattering intensities, relevant to samples with the same internal geometry, allows us to check 
whether the resulting intensities are linearly related to the outset three intensities throughout the 
explored q range, and to determine the numerical values of coefficients ����. If the linearity is 
obeyed, one is sure that the contrast variation technique, or any other technique used to vary the 
scattering densities, has not modified the internal geometry of the samples. Moreover, from 
the knowledge of the numerical values of the ����s, one can determine the scattering densities of 
the mth sample if the scattering densities of the outset three samples are known, otherwise one 
can only determine the scattering density differences of the mth sample with those of the first 
three. The knowledge of the ������s allows us to determine the areas of the ��s and to extract 
further information on the structure of these surfaces such as, for instance, the presence of 
edges [12] and their average curvatures [13]. If phase i has a monodispersed particulate 
structure, one can use the well-known relation [22] 
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(with ��$, ����� and ����� equal to the particle number, the particle angularly averaged form-
factor and the structure function, respectively) to obtain further geometrical and statistical-
mechanical information on the structure of phase i.
Finally, we mention that the above results can usefully be applied to metallic catalysts. 
Whenever the pores are rather large and fully accessible to a fluid, by letting the pressure of the 
latter vary so as to approach the critical point, the scattering density of the filled pores should 
vary enough for the collected scattering intensities to differ enough to make the application of 
the above results useful. In this case, the above formulae simplify since one varies the scattering 
density of a single phase. The corresponding equations can be found in [18], where 
most of the above ideas were already discussed. 
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which substituted into Eq. (18) allows us to recover Porod's law.  At this point, we make a short 
diversion by adding two remarks. First, we observe that the previous equations reduce to those 
of two-phase samples, letting the scattering densities of two phases become equal or the volume 
fraction of one phase go to zero. Second, it is possible that one phase, say phase 3, has a 
constant thickness �� as it happens for the surfactant in a water-oil-surfactant mixture (see, e.g.,
[19]). Assuming that �� is very small, as it was first discussed by Teubner [20], the contribution 
to the scattering intensity from the surfactant phase can be considered as being due to a film. 
This contribution is easily worked out from the last expression in Eq. (4). In fact, ��� and ���
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If one compares the above integral expression with that of the second-order derivative of an 
SPF, worked out by Ciccariello et al. (i.e. Eq. (3.1) of Ref. [12]), one sees that the latter's 
integrand contains the expression ����� � ������������ � �������, which is not present in Eq. (19). Recalling that 
������ and ������ respectively denote the unit vectors orthogonal to ��� and ��� and that the second 
derivative of any SPF tends to zero as � � � if the interface is smooth [12], it is now clear that 
the limit of (19) must be singular as � � � because the vanishing factor ����� � ������� is not present in 
(19). In fact, a more careful analysis [20, 21] shows that 
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as �� becomes large. From Eq. (18), one would obtain, in the q range where ��� �� �$ and 
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Then, if ������ and ��� ��� do not appreciably change in the above-defined q range, the observed 
scattered intensity decreases as ���, as it happens in the case of plane lamellae, because the 
scattering behaviour is dominated by the film phase. For completeness, it is also mentioned that 
the scattering intensity can show a ��� behaviour [21] if one phase has a thread-like structure. 

We go back now to discuss the implications of Eq. (18). Assume we have M samples made up 
of three homogeneous phases with a fixed internal geometry and different scattering densities 
that assume the values ���� with i=1,2,3 and a=1,...,M with � � �. The corresponding scattering 
intensities will be �����, a=1,2,..,M. According to Eq. (18), they only depend on the three ������s.
Therefore, the ������s can be obtained from three �����s, e.g. from �����, ����� and �����. In fact, 
solving the resulting system of linear equations, one finds 
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expressed as linear combinations of the first three intensities by Eqs. (22) and (23) and the 
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It is noted that coefficients ���� and ���� depend on the differences of the scattering densities 
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and the property appears evident. We briefly discuss the structural information that can be 
obtained by the previous equations. First, to determine fully the ������s by Eq. (22), we only need 
to know the scattering densities of the phases of the three samples because the knowledge of the 
��s follows the requirement that sum-rules (15b) are obeyed. The measurement of further 
scattering intensities, relevant to samples with the same internal geometry, allows us to check 
whether the resulting intensities are linearly related to the outset three intensities throughout the 
explored q range, and to determine the numerical values of coefficients ����. If the linearity is 
obeyed, one is sure that the contrast variation technique, or any other technique used to vary the 
scattering densities, has not modified the internal geometry of the samples. Moreover, from 
the knowledge of the numerical values of the ����s, one can determine the scattering densities of 
the mth sample if the scattering densities of the outset three samples are known, otherwise one 
can only determine the scattering density differences of the mth sample with those of the first 
three. The knowledge of the ������s allows us to determine the areas of the ��s and to extract 
further information on the structure of these surfaces such as, for instance, the presence of 
edges [12] and their average curvatures [13]. If phase i has a monodispersed particulate 
structure, one can use the well-known relation [22] 
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(with ��$, ����� and ����� equal to the particle number, the particle angularly averaged form-
factor and the structure function, respectively) to obtain further geometrical and statistical-
mechanical information on the structure of phase i.
Finally, we mention that the above results can usefully be applied to metallic catalysts. 
Whenever the pores are rather large and fully accessible to a fluid, by letting the pressure of the 
latter vary so as to approach the critical point, the scattering density of the filled pores should 
vary enough for the collected scattering intensities to differ enough to make the application of 
the above results useful. In this case, the above formulae simplify since one varies the scattering 
density of a single phase. The corresponding equations can be found in [18], where 
most of the above ideas were already discussed. 
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most of the above ideas were already discussed. 

 (26)

Slight variation in the internal geometry 
So far, we have insisted on the condition that the internal geometry is fixed. It is, however, 
possible that small changes in the internal geometry leave the �����s practically unmodified. On 
the basis of Eq. (15a), the values of each ����� at the origin and at infinity do not change even if 
the interfaces are considerably modified. Hence, it appears sensible to assume that, if the 
interfaces are shifted by a small amount � orthogonally to each point of the interfaces (so that 
the latter's shapes and topologies do not change), we can set 
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where the outermost prime (which must not be confused with the derivative symbol) denotes 
that the quantities refer to the varied sample. When the conditions (28) are obeyed, we shall say 
the two samples are related by a slight variation. The main consequence of this assumption, 
already discussed in Ref. [18] in a more restricted case, is that the intensities ������ of the slight 
modified samples (with different scattering densities and fixed internal geometry) are linearly 
related to the intensities ��������� � ������ of the three initial samples (differing among 
themselves only in the scattering densities) as follows 
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where the previous conventions on indices ��� �� ��, ���� ��� ��� and �������� have been used. The 
above ����

�s reduce to Eqs. (36)-(38) of Ref. [18] since there it was assumed that: ����� � ���� �
��� ����� � ���, ���� � ��
for � � ����� and ��� � ��. (It is noted that the mentioned Eqs. (37) and (38) contain a misprint: 
the ��s present in the numerators must read ���.) As shown in [18], Eqs. (29) and (30) can 
usefully be applied to analyse the small-angle X-ray intensities of a natural coal that underwent 
fluid extraction processes. The experiments were performed by Nemmers, Horne and Bale [23] 
on a subbituminous coal (named Wyodak). The coal was first dried at 393 K and then put into a 
properly devised cell connected to an apparatus able to let tetrahydrofuran (THF) flow through 
the coal within the sealed cell at controlled temperatures and pressures. The intensity of the 
original coal, collected at 393 K before any extraction process, is shown in Figure 1. Then, the 
temperature was raised to 593 and the THF flowed through the cell at a pressure of 4.5 MPa. 
After stopping the flow, the temperature was lowered to 393 K and the SAXS intensities were 
collected at the THF pressures of 0.1, 4.5 and 15.2 MPa. Figure 1 shows a substantial change in 
the intensity shapes. Comparing these with those reported in Figure 1 of Ref. [24], it appears 
evident that the internal structure of the initial subbituminous coal is now similar to that of 
medium-volatile ones. The second fluid extraction consisted of raising the cell temperature to 
553 K and again letting the THF flow through the cell at a pressure of 15.2 MPa. After stopping 
the flow, the cell was again brought to 393 K and the SAXS intensities were collected at 
pressures of 0.1, 4.5 and 15.2 MPa. These intensities are shown in Figure 2. Figure 3 
schematically shows the modifications that occurred in the internal structure of the coal by the 
fluid extraction processes. The initial configuration of the subbituminous coal is shown in 
Figure 3A. It consists of islands, made up of very disordered and distorted graphitic regions, 
and further aliphatic chains, also containing atomic species different from carbon as it usually 
happens in organic materials [25, 26]. The THF, flowing through the coal, mainly takes this 
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Equations 19, 23, 25, 26 and 30.
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the first value of i, a and a′. The remain-
ing intensities Ia(q), with a = 4,..,M, can 
be expressed as linear combinations of 
the first three intensities by Equations
(22) and (23) and the explicit relation is 
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It is noted that coefficients ���� and ���� depend on the differences of the scattering densities 
because each sum present in Eqs. (23) and (25) is a sum of the terms that involve the product of 
two scattering density differences. To make this point clear, consider for instance 
� ��������� � ���������  and take � � � and � � �. One finds 
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and the property appears evident. We briefly discuss the structural information that can be 
obtained by the previous equations. First, to determine fully the ������s by Eq. (22), we only need 
to know the scattering densities of the phases of the three samples because the knowledge of the 
��s follows the requirement that sum-rules (15b) are obeyed. The measurement of further 
scattering intensities, relevant to samples with the same internal geometry, allows us to check 
whether the resulting intensities are linearly related to the outset three intensities throughout the 
explored q range, and to determine the numerical values of coefficients ����. If the linearity is 
obeyed, one is sure that the contrast variation technique, or any other technique used to vary the 
scattering densities, has not modified the internal geometry of the samples. Moreover, from 
the knowledge of the numerical values of the ����s, one can determine the scattering densities of 
the mth sample if the scattering densities of the outset three samples are known, otherwise one 
can only determine the scattering density differences of the mth sample with those of the first 
three. The knowledge of the ������s allows us to determine the areas of the ��s and to extract 
further information on the structure of these surfaces such as, for instance, the presence of 
edges [12] and their average curvatures [13]. If phase i has a monodispersed particulate 
structure, one can use the well-known relation [22] 
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(with ��$, ����� and ����� equal to the particle number, the particle angularly averaged form-
factor and the structure function, respectively) to obtain further geometrical and statistical-
mechanical information on the structure of phase i.
Finally, we mention that the above results can usefully be applied to metallic catalysts. 
Whenever the pores are rather large and fully accessible to a fluid, by letting the pressure of the 
latter vary so as to approach the critical point, the scattering density of the filled pores should 
vary enough for the collected scattering intensities to differ enough to make the application of 
the above results useful. In this case, the above formulae simplify since one varies the scattering 
density of a single phase. The corresponding equations can be found in [18], where 
most of the above ideas were already discussed. 
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obeyed, one is sure that the contrast variation technique, or any other technique used to vary the 
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(with ��$, ����� and ����� equal to the particle number, the particle angularly averaged form-
factor and the structure function, respectively) to obtain further geometrical and statistical-
mechanical information on the structure of phase i.
Finally, we mention that the above results can usefully be applied to metallic catalysts. 
Whenever the pores are rather large and fully accessible to a fluid, by letting the pressure of the 
latter vary so as to approach the critical point, the scattering density of the filled pores should 
vary enough for the collected scattering intensities to differ enough to make the application of 
the above results useful. In this case, the above formulae simplify since one varies the scattering 
density of a single phase. The corresponding equations can be found in [18], where 
most of the above ideas were already discussed. 
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and the property appears evident. We briefly discuss the structural information that can be 
obtained by the previous equations. First, to determine fully the ������s by Eq. (22), we only need 
to know the scattering densities of the phases of the three samples because the knowledge of the 
��s follows the requirement that sum-rules (15b) are obeyed. The measurement of further 
scattering intensities, relevant to samples with the same internal geometry, allows us to check 
whether the resulting intensities are linearly related to the outset three intensities throughout the 
explored q range, and to determine the numerical values of coefficients ����. If the linearity is 
obeyed, one is sure that the contrast variation technique, or any other technique used to vary the 
scattering densities, has not modified the internal geometry of the samples. Moreover, from 
the knowledge of the numerical values of the ����s, one can determine the scattering densities of 
the mth sample if the scattering densities of the outset three samples are known, otherwise one 
can only determine the scattering density differences of the mth sample with those of the first 
three. The knowledge of the ������s allows us to determine the areas of the ��s and to extract 
further information on the structure of these surfaces such as, for instance, the presence of 
edges [12] and their average curvatures [13]. If phase i has a monodispersed particulate 
structure, one can use the well-known relation [22] 
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(with ��$, ����� and ����� equal to the particle number, the particle angularly averaged form-
factor and the structure function, respectively) to obtain further geometrical and statistical-
mechanical information on the structure of phase i.
Finally, we mention that the above results can usefully be applied to metallic catalysts. 
Whenever the pores are rather large and fully accessible to a fluid, by letting the pressure of the 
latter vary so as to approach the critical point, the scattering density of the filled pores should 
vary enough for the collected scattering intensities to differ enough to make the application of 
the above results useful. In this case, the above formulae simplify since one varies the scattering 
density of a single phase. The corresponding equations can be found in [18], where 
most of the above ideas were already discussed. 
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and the property appears evident. We briefly discuss the structural information that can be 
obtained by the previous equations. First, to determine fully the ������s by Eq. (22), we only need 
to know the scattering densities of the phases of the three samples because the knowledge of the 
��s follows the requirement that sum-rules (15b) are obeyed. The measurement of further 
scattering intensities, relevant to samples with the same internal geometry, allows us to check 
whether the resulting intensities are linearly related to the outset three intensities throughout the 
explored q range, and to determine the numerical values of coefficients ����. If the linearity is 
obeyed, one is sure that the contrast variation technique, or any other technique used to vary the 
scattering densities, has not modified the internal geometry of the samples. Moreover, from 
the knowledge of the numerical values of the ����s, one can determine the scattering densities of 
the mth sample if the scattering densities of the outset three samples are known, otherwise one 
can only determine the scattering density differences of the mth sample with those of the first 
three. The knowledge of the ������s allows us to determine the areas of the ��s and to extract 
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(with ��$, ����� and ����� equal to the particle number, the particle angularly averaged form-
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Finally, we mention that the above results can usefully be applied to metallic catalysts. 
Whenever the pores are rather large and fully accessible to a fluid, by letting the pressure of the 
latter vary so as to approach the critical point, the scattering density of the filled pores should 
vary enough for the collected scattering intensities to differ enough to make the application of 
the above results useful. In this case, the above formulae simplify since one varies the scattering 
density of a single phase. The corresponding equations can be found in [18], where 
most of the above ideas were already discussed. 
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whether the resulting intensities are linearly related to the outset three intensities throughout the 
explored q range, and to determine the numerical values of coefficients ����. If the linearity is 
obeyed, one is sure that the contrast variation technique, or any other technique used to vary the 
scattering densities, has not modified the internal geometry of the samples. Moreover, from 
the knowledge of the numerical values of the ����s, one can determine the scattering densities of 
the mth sample if the scattering densities of the outset three samples are known, otherwise one 
can only determine the scattering density differences of the mth sample with those of the first 
three. The knowledge of the ������s allows us to determine the areas of the ��s and to extract 
further information on the structure of these surfaces such as, for instance, the presence of 
edges [12] and their average curvatures [13]. If phase i has a monodispersed particulate 
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(with ��$, ����� and ����� equal to the particle number, the particle angularly averaged form-
factor and the structure function, respectively) to obtain further geometrical and statistical-
mechanical information on the structure of phase i.
Finally, we mention that the above results can usefully be applied to metallic catalysts. 
Whenever the pores are rather large and fully accessible to a fluid, by letting the pressure of the 
latter vary so as to approach the critical point, the scattering density of the filled pores should 
vary enough for the collected scattering intensities to differ enough to make the application of 
the above results useful. In this case, the above formulae simplify since one varies the scattering 
density of a single phase. The corresponding equations can be found in [18], where 
most of the above ideas were already discussed. 
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Finally, we mention that the above results can usefully be applied to metallic catalysts. 
Whenever the pores are rather large and fully accessible to a fluid, by letting the pressure of the 
latter vary so as to approach the critical point, the scattering density of the filled pores should 
vary enough for the collected scattering intensities to differ enough to make the application of 
the above results useful. In this case, the above formulae simplify since one varies the scattering 
density of a single phase. The corresponding equations can be found in [18], where 
most of the above ideas were already discussed. 
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expressed as linear combinations of the first three intensities by Eqs. (22) and (23) and the 
explicit relation is 
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It is noted that coefficients ���� and ���� depend on the differences of the scattering densities 
because each sum present in Eqs. (23) and (25) is a sum of the terms that involve the product of 
two scattering density differences. To make this point clear, consider for instance 
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and the property appears evident. We briefly discuss the structural information that can be 
obtained by the previous equations. First, to determine fully the ������s by Eq. (22), we only need 
to know the scattering densities of the phases of the three samples because the knowledge of the 
��s follows the requirement that sum-rules (15b) are obeyed. The measurement of further 
scattering intensities, relevant to samples with the same internal geometry, allows us to check 
whether the resulting intensities are linearly related to the outset three intensities throughout the 
explored q range, and to determine the numerical values of coefficients ����. If the linearity is 
obeyed, one is sure that the contrast variation technique, or any other technique used to vary the 
scattering densities, has not modified the internal geometry of the samples. Moreover, from 
the knowledge of the numerical values of the ����s, one can determine the scattering densities of 
the mth sample if the scattering densities of the outset three samples are known, otherwise one 
can only determine the scattering density differences of the mth sample with those of the first 
three. The knowledge of the ������s allows us to determine the areas of the ��s and to extract 
further information on the structure of these surfaces such as, for instance, the presence of 
edges [12] and their average curvatures [13]. If phase i has a monodispersed particulate 
structure, one can use the well-known relation [22] 
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(with ��$, ����� and ����� equal to the particle number, the particle angularly averaged form-
factor and the structure function, respectively) to obtain further geometrical and statistical-
mechanical information on the structure of phase i.
Finally, we mention that the above results can usefully be applied to metallic catalysts. 
Whenever the pores are rather large and fully accessible to a fluid, by letting the pressure of the 
latter vary so as to approach the critical point, the scattering density of the filled pores should 
vary enough for the collected scattering intensities to differ enough to make the application of 
the above results useful. In this case, the above formulae simplify since one varies the scattering 
density of a single phase. The corresponding equations can be found in [18], where 
most of the above ideas were already discussed. 
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Figure 1. SAXS intensities of the Wyodak coal at T=120^0 °C in 
an Argon atmosphere at 0.1 MPa (void square) and, after the first
extraction process described in part entitled ’Slight variation in the 
internal geometry’ at 120^0 °C in a THF atmosphere at 0.1 MPa 
(full circles), 4.5 MPa (full triangles) and 15.2 MPa (full squares). 
[For greater clarity, each intensity has been shifted from the nearest 
left one by 2/3.] The continuous lines are the results of best fitting
a linear combination of the three intensities shown in Figure 2 to 
each intensity collected after the first extraction process.

Figure 2. SAXS intensities of the Wyodak coal after the second 
extraction process at T=120^0 °C and P=0.1 MPa (full circles), 
4.5 MPa (full triangles) and 15.2 MPa (full squares). The q 
values are the same as in Figure 1. It is noticeable that, as the 
pressure decreases, the width of the shoulder increases while 
its intensity is at first nearly constant and then considerably
decreases. These changes are accounted for by the numerical 
changes of the ni and φi reporte in the table of [18].
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So far, we have insisted on the condition 
that the internal geometry is fixed. It is,
however, possible that small changes in 
the internal geometry leave the Гi(r)s 
practically unmodified. On the basis of
Equation (15a), the values of each Гi(r) 
at the origin and at infinity do not change
even if the interfaces are considerably 
modified. Hence, it appears sensible to
assume that, if the interfaces are shifted 
by a small amount δ orthogonally to each 
point of the interfaces (so that the latter’s 
shapes and topologies do not change), we 
can set
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interfaces are shifted by a small amount � orthogonally to each point of the interfaces (so that 
the latter's shapes and topologies do not change), we can set 
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where the outermost prime (which must not be confused with the derivative symbol) denotes 
that the quantities refer to the varied sample. When the conditions (28) are obeyed, we shall say 
the two samples are related by a slight variation. The main consequence of this assumption, 
already discussed in Ref. [18] in a more restricted case, is that the intensities ������ of the slight 
modified samples (with different scattering densities and fixed internal geometry) are linearly 
related to the intensities ��������� � ������ of the three initial samples (differing among 
themselves only in the scattering densities) as follows 
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where the previous conventions on indices ��� �� ��, ���� ��� ��� and �������� have been used. The 
above ����

�s reduce to Eqs. (36)-(38) of Ref. [18] since there it was assumed that: ����� � ���� �
��� ����� � ���, ���� � ��
for � � ����� and ��� � ��. (It is noted that the mentioned Eqs. (37) and (38) contain a misprint: 
the ��s present in the numerators must read ���.) As shown in [18], Eqs. (29) and (30) can 
usefully be applied to analyse the small-angle X-ray intensities of a natural coal that underwent 
fluid extraction processes. The experiments were performed by Nemmers, Horne and Bale [23] 
on a subbituminous coal (named Wyodak). The coal was first dried at 393 K and then put into a 
properly devised cell connected to an apparatus able to let tetrahydrofuran (THF) flow through 
the coal within the sealed cell at controlled temperatures and pressures. The intensity of the 
original coal, collected at 393 K before any extraction process, is shown in Figure 1. Then, the 
temperature was raised to 593 and the THF flowed through the cell at a pressure of 4.5 MPa. 
After stopping the flow, the temperature was lowered to 393 K and the SAXS intensities were 
collected at the THF pressures of 0.1, 4.5 and 15.2 MPa. Figure 1 shows a substantial change in 
the intensity shapes. Comparing these with those reported in Figure 1 of Ref. [24], it appears 
evident that the internal structure of the initial subbituminous coal is now similar to that of 
medium-volatile ones. The second fluid extraction consisted of raising the cell temperature to 
553 K and again letting the THF flow through the cell at a pressure of 15.2 MPa. After stopping 
the flow, the cell was again brought to 393 K and the SAXS intensities were collected at 
pressures of 0.1, 4.5 and 15.2 MPa. These intensities are shown in Figure 2. Figure 3 
schematically shows the modifications that occurred in the internal structure of the coal by the 
fluid extraction processes. The initial configuration of the subbituminous coal is shown in 
Figure 3A. It consists of islands, made up of very disordered and distorted graphitic regions, 
and further aliphatic chains, also containing atomic species different from carbon as it usually 
happens in organic materials [25, 26]. The THF, flowing through the coal, mainly takes this 
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on a subbituminous coal (named Wyodak). The coal was first dried at 393 K and then put into a 
properly devised cell connected to an apparatus able to let tetrahydrofuran (THF) flow through 
the coal within the sealed cell at controlled temperatures and pressures. The intensity of the 
original coal, collected at 393 K before any extraction process, is shown in Figure 1. Then, the 
temperature was raised to 593 and the THF flowed through the cell at a pressure of 4.5 MPa. 
After stopping the flow, the temperature was lowered to 393 K and the SAXS intensities were 
collected at the THF pressures of 0.1, 4.5 and 15.2 MPa. Figure 1 shows a substantial change in 
the intensity shapes. Comparing these with those reported in Figure 1 of Ref. [24], it appears 
evident that the internal structure of the initial subbituminous coal is now similar to that of 
medium-volatile ones. The second fluid extraction consisted of raising the cell temperature to 
553 K and again letting the THF flow through the cell at a pressure of 15.2 MPa. After stopping 
the flow, the cell was again brought to 393 K and the SAXS intensities were collected at 
pressures of 0.1, 4.5 and 15.2 MPa. These intensities are shown in Figure 2. Figure 3 
schematically shows the modifications that occurred in the internal structure of the coal by the 
fluid extraction processes. The initial configuration of the subbituminous coal is shown in 
Figure 3A. It consists of islands, made up of very disordered and distorted graphitic regions, 
and further aliphatic chains, also containing atomic species different from carbon as it usually 
happens in organic materials [25, 26]. The THF, flowing through the coal, mainly takes this 

Slight variation in the internal geometry 
So far, we have insisted on the condition that the internal geometry is fixed. It is, however, 
possible that small changes in the internal geometry leave the �����s practically unmodified. On 
the basis of Eq. (15a), the values of each ����� at the origin and at infinity do not change even if 
the interfaces are considerably modified. Hence, it appears sensible to assume that, if the 
interfaces are shifted by a small amount � orthogonally to each point of the interfaces (so that 
the latter's shapes and topologies do not change), we can set 
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where the outermost prime (which must not be confused with the derivative symbol) denotes 
that the quantities refer to the varied sample. When the conditions (28) are obeyed, we shall say 
the two samples are related by a slight variation. The main consequence of this assumption, 
already discussed in Ref. [18] in a more restricted case, is that the intensities ������ of the slight 
modified samples (with different scattering densities and fixed internal geometry) are linearly 
related to the intensities ��������� � ������ of the three initial samples (differing among 
themselves only in the scattering densities) as follows 
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where the previous conventions on indices ��� �� ��, ���� ��� ��� and �������� have been used. The 
above ����

�s reduce to Eqs. (36)-(38) of Ref. [18] since there it was assumed that: ����� � ���� �
��� ����� � ���, ���� � ��
for � � ����� and ��� � ��. (It is noted that the mentioned Eqs. (37) and (38) contain a misprint: 
the ��s present in the numerators must read ���.) As shown in [18], Eqs. (29) and (30) can 
usefully be applied to analyse the small-angle X-ray intensities of a natural coal that underwent 
fluid extraction processes. The experiments were performed by Nemmers, Horne and Bale [23] 
on a subbituminous coal (named Wyodak). The coal was first dried at 393 K and then put into a 
properly devised cell connected to an apparatus able to let tetrahydrofuran (THF) flow through 
the coal within the sealed cell at controlled temperatures and pressures. The intensity of the 
original coal, collected at 393 K before any extraction process, is shown in Figure 1. Then, the 
temperature was raised to 593 and the THF flowed through the cell at a pressure of 4.5 MPa. 
After stopping the flow, the temperature was lowered to 393 K and the SAXS intensities were 
collected at the THF pressures of 0.1, 4.5 and 15.2 MPa. Figure 1 shows a substantial change in 
the intensity shapes. Comparing these with those reported in Figure 1 of Ref. [24], it appears 
evident that the internal structure of the initial subbituminous coal is now similar to that of 
medium-volatile ones. The second fluid extraction consisted of raising the cell temperature to 
553 K and again letting the THF flow through the cell at a pressure of 15.2 MPa. After stopping 
the flow, the cell was again brought to 393 K and the SAXS intensities were collected at 
pressures of 0.1, 4.5 and 15.2 MPa. These intensities are shown in Figure 2. Figure 3 
schematically shows the modifications that occurred in the internal structure of the coal by the 
fluid extraction processes. The initial configuration of the subbituminous coal is shown in 
Figure 3A. It consists of islands, made up of very disordered and distorted graphitic regions, 
and further aliphatic chains, also containing atomic species different from carbon as it usually 
happens in organic materials [25, 26]. The THF, flowing through the coal, mainly takes this 

for j = 1,2,3 and φ1' = φ1.

As shown in [18], Equations (29) and 
(30) can usefully be applied to analyse 
the small-angle X-ray intensities of a 
natural coal that underwent fluid extrac-
tion processes. The experiments were 
performed by Nemmers, Horne and Bale 
[23] on a subbituminous coal (named 
Wyodak). The coal was first dried at 393 K 
and then put into a properly devised cell 
connected to an apparatus able to let tet-
rahydrofuran (THF) flow through the
coal within the sealed cell at controlled 
temperatures and pressures. The intensity 
of the original coal, collected at 393 K 
before any extraction process, is shown 
in Figure 1. Then, the temperature was 
raised to 593 and the THF flowed through
the cell at a pressure of 4.5 MPa. After 
stopping the flow, the temperature was
lowered to 393 K and the SAXS intensi-
ties were collected at the THF pressures 
of 0.1, 4.5 and 15.2 MPa. Figure 1 shows 
a substantial change in the intensity 
shapes. Comparing these with those re-
ported in Figure 1 of Ref. [24], it appears 
evident that the internal structure of the 
initial subbituminous coal is now similar 
to that of medium-volatile ones. The sec-
ond fluid extraction consisted of raising
the cell temperature to 553 K and again 
letting the THF flow through the cell at a
pressure of 15.2 MPa. After stopping the 
flow, the cell was again brought to 393 K
and the SAXS intensities were collected 
at pressures of 0.1, 4.5 and 15.2 MPa. 
These intensities are shown in Figure 2. 
Figure 3 schematically shows the modi-
fications that occurred in the internal
structure of the coal by the fluid extrac-
tion processes. The initial configuration
of the subbituminous coal is shown in 
Figure 3a. It consists of islands, made up 
of very disordered and distorted graphitic 
regions, and further aliphatic chains, also 
containing atomic species different from 
carbon as it usually happens in organic 
materials [25, 26]. The THF, flowing

through the coal, mainly takes this sec-
ond component away. Figures 3b and 3c 
schematically show the coal’s internal 
configuration after the first and second
treatments, respectively. The removal of 
part of the aliphatic chains leads to the 
formation of pores, which are filled by
THF at different pressures during the 
SAXS measurements. Thus, the intensi-
ties of Figure 1 (leaving aside that col-
lected before fluid extraction) and those
of Figure 2 refer to three-phase samples 
where phase 1 (namely the one formed by 
the graphitic regions) has not been modi-
fied while phase 2 (that formed by the
chains) was reduced in its volume frac-
tion and to some extent varied in its scat-
tering density and, finally, phase 3 is the
resulting void region filled with THF at
different pressures. If the variation of the 
coal structure from the first to the second
extraction processes is slight, each of the 
scattering intensities collected after the 
first treatment ought to be a linear combi-
nation of those collected after the second 
extraction (or vice versa). The continu-
ous lines of Figure 1 are the fit results
and show that the linearity condition is 
reasonably met. From the coefficients of
the resulting linear combinations, it is 
possible to determine the volume frac-
tions and the scattering density values as 
reported in Table 1 of Ref. [18], to which 
one should refer for further details.

 Conclusions
Starting from basic Equation (10), it has 
been shown that the scattering intensities of 

second component away. Figs. 3B and 3C schematically show the coal's internal configuration 
after the first and second treatments, respectively. The removal of part of the aliphatic chains 
leads to the formation of pores, which are filled by THF at different pressures during the SAXS 
measurements. Thus, the intensities of Figure 1 (leaving aside that collected before fluid 
extraction) and those of Figure 2 refer to three-phase samples where phase 1 (namely the one 
formed by the graphitic regions) has not been modified while phase 2 (that formed by the 
chains) was reduced in its volume fraction and to some extent varied in its scattering density 
and, finally, phase 3 is the resulting void region filled with THF at different pressures. If the 
variation of the coal structure from the first to the second extraction processes is slight, each of 
the scattering intensities collected after the first treatment ought to be a linear combination of 
those collected after the second extraction (or vice versa). The continuous lines of Figure 1 are 
the fit results and show that the linearity condition is reasonably met. From the coefficients of 
the resulting linear combinations, it is possible to determine the volume fractions and the 
scattering density values as reported in Table I of Ref. [18], to which one should refer for 
further details. 

Conclusions 
Starting from basic Eq. (10), it has been shown that the scattering intensities of ���� ������

� �
samples, made up of N homogeneous phases and different only in the scattering densities, are 
linearly related among themselves. In the case of three-phase samples (N=3), it is possible to 
determine the auto-CF of each single phase from three scattering intensities relevant to three 
different sets of scattering densities. This property can be used in the case of a porous sample 
by filling the pores with a fluid at different pressures (near the fluid critical point). For some 
samples that also differ in their internal geometry, it is possible to check whether the 
modification is slight or not by looking at the existence of linear relations among the scattering 
intensities. If this happens, the resulting coefficients of the linear combinations can be used to 
determine (some of) the ��s and ��s using analytic expressions (30) of the coefficients that, in 
this paper, have been explicitly worked out for the most general case. This procedure has 
already been usefully employed [18] to analyse the scattering intensities of a natural coal that 
had undergone fluid extraction processes. 
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 samples, made up of N ho-
mogeneous phases and different only in 
the scattering densities, are linearly re-
lated among themselves. In the case of 
three-phase samples (N=3), it is possible 
to determine the auto-CF of each single 
phase from three scattering intensities 
relevant to three different sets of scatter-
ing densities. This property can be used 
in the case of a porous sample by filling
the pores with a fluid at different pres-
sures (near the fluid critical point). For
some samples that also differ in their in-
ternal geometry, it is possible to check 
whether the modification is slight or not
by looking at the existence of linear re-
lations among the scattering intensities. 
If this happens, the resulting coefficients
of the linear combinations can be used 
to determine (some of) the nis and φis 
using analytic expressions (30) of the 
coefficients that, in this paper, have
been explicitly worked out for the most 
general case. This procedure has already 

Figure 3. a) Schematic view of a natural coal section the islands are made up of small, 
distorted graphitic layers; the wavy lines depict aliphatic chains that, having a biological 
origin, contain amino acids and other atomic species and tend to be volatile, b) view of 
the coal after the first extraction process; the THF flow has reduced the filament region
creating pores, c) the second extraction has further reduced the chain region and enlarged 
the pore one.
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been usefully employed [18] to analyse 
the scattering intensities of a natural 
coal that had undergone fluid extraction
processes.
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