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RAPID KECK SPECTROSCOPY OF CATACLYSMIC VARIABLES

Warren Skidmore,1 Keith Horne,2 Kevin Pearson,3 Richard Gomer,4 Kieran O’Brien,5 and Bev Oke6

RESUMEN

Presentamos un análisis de Espectroscoṕıa Rápida de Keck de las CVs AM Her (polar) y SS-Cyg (nova enana).
Descomponemos los espectros en componentes constantes y variables e identificamos diferentes tipos de varia-
bilidad en AM Her con diferentes escalas caracteŕısticas de tiempo. Se aislaron la componente variable del flujo
del disco de acreción y las caracteŕısticas observacionales de una pequeña fulguración en SS Cyg.

ABSTRACT

We present an analysis of Rapid Keck Spectroscopy of the CVs AM Her (polar) and SS Cyg (dwarf nova).
We decompose the spectra into constant and variable components and identify different types of variability in
AM Her with different characteristic timescales. The variable flickering component of the accretion disc flux
and the observational characteristics of a small flare in SS Cyg are isolated.

Key Words: NOVAE, CATACLYSMIC VARIABLES — STARS: INDIVIDUAL (AM HER, SS CYG)

1. INTRODUCTION

AM Her is the prototypical Polar system - the
accretion stream threads onto the white dwarf mag-
netosphere, accreting down onto one of the mag-
netic poles. The white dwarf is locked into co-
rotation with the binary. Variability occurs on a
variety of timescales, ellipsoidal modulation on hour
timescales, flickering from the threading and impact
regions on second timescales.

The dwarf nova SS Cyg has a record of visual
magnitude observations stretching back over 100
years. Variability in SS Cyg arises due to orbital
modulations on hour timescales and accretion disc
flickering on second timescales.

AM Her & SS Cyg were observed during a cam-
paign to observe LMXBs & CVs at high time res-
olution with the Keck LRIS. Reports of analysis
of observations from this campaign are O’Brien et
al. (2001), Steeghs et al. (2001) and Skidmore et
al. (2003a). These references and Skidmore et al.
(2003b) describe the data reduction process and pe-
culiar problems with this data set that were over-
come during analysis. Early analysis of the AM Her
and SS Cyg observations has been reported in Skid-
more et al. (2003b).

The data cover 3017Å to 7989Åwith 2.4Å/pix
dispersion and 72ms integration time per spectrum
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with no dead time. We can decompose such data
into constant and variable components (Skidmore et
al. 2003b). This simple decomposition is improved
by filtering to suppress rapid variability, subtracting
the smoothed data from the raw data and fitting to
the fast and slow components simultaneously.

2. AM HER

AM Her was observed on 1998 July 2 for 1689s
(orbital phases 0.388 to 0.539 - Schwarz et al. 2002).
All light curves have the same basic features (Skid-
more et al. 2003b). The blue continuum and Hβ − δ

line light curves have slight differences in the relative
sizes of rapid variations in each light curve. The red
continuum light curve has small short timescale dif-
ferences compared to the other light curves. Power
spectra of the light curves have similar slopes. The
rapid variability is probably due to the discrete but
random flow of blobs onto the pole.

The mean spectrum has strong Balmer & HeII
lines, weak HeI and Balmer jump in emission, typical
of polars (Skidmore et al. 2003b). The simple de-
composition residuals rise around the emission lines
and are broader than the RMS spectrum emission
lines, indicating that the decomposition fails to de-
scribe the line wing variability. Thus the line wings
vary on a significantly different timescale and man-
ner to the continuum, this difference becomes larger
toward the blue (Skidmore et al. 2003b).

2.1. Two component variability

Fig. 1, the fast variability spectrum emission lines
are red shifted and optically thin. The strength
of the red-shifted fast variable component and the
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156 SKIDMORE ET AL.

Fig. 1. Fast & slow variability spectra & variability light
curves of AM Her, break period is 5 seconds.

amount of red shift increases as the break period
decreases. The red rise in the variability spectra is
most probably due to rapidly varying cyclotron flux.
Emission line equivalent width in the slow variability
spectrum is lower than in the mean spectrum, indi-
cating an optically thick variability source compared
to main line emitting regions.

3. SS CYG

SS Cyg was observed on 6 July 1998, 1044s cov-
ered orbital phases 0.828 - 0.872. Light-curves of
SS Cyg (Skidmore et al. 2003b) show a general
decline in flux with small amplitude variability of
∼0.045 mags and a flare lasting 2.5 minutes.

3.1. Flare light-curves

Fig. 2 shows light-curves of the small flare in four
continuum regions. The bluest Paschen continuum
light-curve rises, peaks & drops before the redder
light-curves. The Balmer continuum light curve rises
after but falls before the blue Paschen continuum.

3.2. Spectra throughout flare

Fig. 3 shows spectra obtained at points through-
out the small flare (see dots in figure 2) after remov-
ing the underlying spectrum. The red continuum,
Balmer continuum and high order lines rise rapidly
indicating an increase in emitting region tempera-
ture, the continuum flux rises more strongly toward
the blue. At mid & late rise the emission line flux
& width increases. At the peak the emission lines
are narrow, the emitting material has a high optical
depth, we see lots of HeII (4686Å) & HeI (5876Å &

Fig. 2. Continuum light-curves of the flare, 3590Å to
3640Å (dot-dashed), 4165Å to 4285Å (dashed), 5400Å to
5600Å (solid) and 7080Å to 7560Å (dotted). Dots show
the times at which spectra shown in figure 3 were mea-
sured. Y axis scaling is normalised.

Fig. 3. Spectra at times throughout the flare.

4472Å) emission. Early decline shows a large de-
crease in emission line width. In the latter decline
the Balmer jump and emission line flux & widths fall
significantly, the continuum flux becomes very red.

3.3. Variability spectra

Fig. 4 shows the variability spectra for various
parts of the data set & the time averaged spectrum.
These show that the variability spectrum of the flare
is the same as the variability spectrum of the small
scale flickering. This means that the flickering prob-
ably arises due to a similar process as the flare.

4. CONCLUSIONS

In AM Her we have shown that there appears
to be at least two distinct types of variability with
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RAPID KECK SPECTROSCOPY OF CVs 157

Fig. 4. Top panel shows the mean spectrum of SS Cyg.
Next panel shows the variability spectrum of the com-
plete data set after removal of a low order polynomial (to
remove long period variations - orbital, non-flickering).
Lower panels show the variability spectra of the flicker-
ing only, the flare only and the flare after the removal of
the underlying spectrum as described in section 3.2.

different spectral and temporal characteristics. Fur-
ther analysis and modeling of these fast and slow
variability spectra is planned.

We have extracted the variable component of the
accretion flux in SS Cyg and shown that small scale
flickering and larger flares appear to have a common
origin. We are beginning to model the accretion disc
variability spectra using the fireball model (Pearson
et al. 2003, 2004).
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