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ON THE BUCKLING OF A CENTRALLY LOADED STRAIGHT
BAR IN THE VISCO-ELASTIC RANGE

by
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University of Oulu

Abstract

As a sequel to a former investigation [1] having reference to
some buckling tests with viseo-elastic ice bars in this publication
a brief theoretic account of the buckling phenomenon in general
is given at first, after that there is a report upon some tests with
centrally loaded prismatic wooden bars, and at last an attempt
is made with the aid of the test results to elucidate the buckling
problem in the visco-elastic range.

1. Iniroduction

With the artificial materials, e.g. plastics, it has become more and
more necessary to have command of the visco-elastic phenomenon. In
nature there exist some materials, too, e.g. wood and ice, which behave
visco-elastically in some conditions.

As an addition to the buckling investigation with ice bars (Sana
and OLKKONEN [1]) in this publication at first a brief theoretic presenta-
tion of the buckling of a straight bar in several conditions is given, after
which there is a report upon some tests performed with several prismatic
bars of Finnish pinewood, and at last an attempt, based on the test
results, is made to explain the buckling problem in the visco-elastic
range.
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2. Buckling of a centrally loaded straight bar when the material is perfectly

elastic

Let us consider a slender prismatic bar with hinged ends loaded
centrally with a compressive force F (Fig. 1 a). If the force F is small
enough the bar remains straight and undergoes only axial compression.
This straight form of elastic equilibrium is stable, 4.e., if a lateral force
is applied and a small deflection produced, this deflection disappears
when the lateral force is removed and the bar becomes straight again.
It is assumed that the material is perfectly elastic. By gradually in-
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Fig. 1 a. A slender prismatic bar with hinged ends centrally loaded with an axial

force F. b. F, is called the critical load when it is sufficient to keep the bar

in a slightly bent form. According to the linear theory the deflection & remains
indeterminate at the critical load, <.e., it can be, for instance, infinitesimal.
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creasing the compressive force F a condition is obtained in which the
straight form of equilibrium becomes unstable, and a slight lateral force
may produce a deflection which does not disappear when the lateral
force is removed. This change of the straight form of elastic equilibrium
from stable to instable is called buckling, as is well known, and the
critical load is then defined as the axial load F. which is sufficient to
keep the bar in a slightly bent form (Fig. 1 b).

Let us further assume that the material follows Hooke’s law for all
values of the compressive stress ¢, or

o= Fe, (1)

where ¢ = i when A4 is the cross-sectional area of the bar, ¢ is
. i :

the compressive strain, & = 7 where [ is the length of the bar and

Al the total contraction of the bar in the straight form, and E is the
elastic modulus of the material.

In the fundamental case of buckling of a prismatic bar, i.e., in the
case of a bar with hinged ends, the well known Euler’s formula

w2 BT
Fo=—— (2)

gives the critical value of the compressive force. In this formula I is
the smallest moment of inertia of the cross-section with respect to the
neutral axis, which because of symmetry in this case unites with the
central axis of the cross-section. For other end conditions one must use

l
a modified length 7 , also called the free buckling length, instead
7

of the length ! of the bar, where u is the so-called coefficient of restraint.
Dividing formula (2) by the cross-sectional area A of the bar and

letting 4 = V; be the smallest radius of gyration, the critical value

of the compressive stress will be
= ) (3)

l
where A = 7 is called the slenderness ratio.
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8. Buckling of a bar made of an actual structural material

It was assumed in the previous discussion that the material follows
Hooke’s law without limits. By the structural materials the proportio-
nality between stress and strain holds only up to a certain limiting
value of the stress, called the proportional limit (o, in Fig. 2), which
depends upon the properties of the material. Euler’s buckling formula
(8) is then applicable only when ¢, << dp, %.e., when 1> 2,, where

bp=m VE (4)
Op

is called the limit slenderness.

Let us assume now that the structural material is perfectly elastic
beyond the proportional limit, too. If a bar of such material is compressed
up to a certain stress value beyond the proportional limit (o, in Fig. 2),
and then a small change of load is produced, the relation between the
change in stress and the change in strain is given by the slope of the
compression test curve at the point corresponding to the stress oy.

do
The magnitude of the derivative 7z oo then be considered as a
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Fig. 2. The compressive stress-strain diagram schematically presented.
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variable elastic modulus of the material which is a function of ¢ and
called the tangent modulus ..

When the buckling of a prismatic bar takes place beyond the pro-
portional limit, ¢.e., when 1 <C A, the critical stress can thus be
calculated by the aid of the Engesser’s formula

.'/—EZEg
22 . (5)

O =

In fact the problem is more complicated since the deformation is
not a reversible process. By the diminishing load the stress-strain relation
will follow a linear law as indicated by the dashed line in Fig. 2. In the
case of the buckling of a centrally loaded prismatic bar dealt with in
this paper the influence of the irreversibility upon the critical load,
however, is negligible, as is well known. In Fig. 3 the diagram of the
critical stress is schematically presented both within the proportional
limit and beyond it (the thick continual curve).
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Fig. 3. The critical compressive stress of a centrally loaded prismatic bar as a
function of slenderness ratio. The dotted curve after a visco-elastic creep period,
and the thick continual curve without it.
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. Above it is assumed that the bar is loaded exactly centrally. In the
loading of columns unavoidable, eventhough very small, eccentricities
are, however, always present.

When there is an eccentricity in the compression there exists a
definite deflection for any compressive load however small it may be.
There is then no more a problem of stability in question, but of an
ultimate bending strength. In this eccentric compression of a straight bar
the critical load is defined as the load which makes the maximum
compressive stress on the concave side of the deflected bar as great as
the yielding stress (o, in Fig. 2), i.e., the stress corresponding to the
point on the compression test diagram at which the tangent of the curve
is parallel to the e-axis. If the eccentricity, however, is small enough
its effect on the critical load can be disregarded, as is well known. In
the laboratory tests this is possible to realize.

4. Buckling in connection with a visco-elastic creep

It is assumed above that the deformation does not depend on time.
When loading a bar made of a visco-elastic material the effect of time
upon the compressive strain can not be disregarded.

The visco-elastic strain can be supposed to be produced very slowly.
Let us assume now that a prismatic bar of visco-elastic material has been
compressed centrally with a constant load at a known time interval and
then a small increase of the load is suddenly produced, the relation
between the change in stress and the change in strain is again given by
the slope of the compressive stress-strain diagram which would have
begun if the increase of the load had continued. The magnitude of the

do
derivative — can still be considered as a variable elastic modulus,

de
i.e., as the tangent modulus of the material in the range of deformation
in question, and according to Eq. (5) it determines the critical stress.

5. The tests with visco-elastic wooden bars

For the present publication the author had the following tests to use:
First the tests made by Mr. Eero Olkkonen, Mech.Eng. in the Metals
Laboratory of the Technical Research Centre of Finland in Otaniemi,
and secondly the work required for a diploma by Mr. Jouko Kangas,
‘Mech.Eng. in the Department of Mechanical Engineering of the Uni-
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versity of Oulu. The author’s thanks are due to both investigators for
their assistance.

The test bars in Otaniemi were made of Finnish pinewood whose
specific weight was 0.56, the percentage of moisture ca. 8, and the
summerwood content ca. 30%. The Otaniemi tests, at the author’s
disposal, were in fact not purposed to investigate the buckling of a bar
of Finnish pinewood in the visco-elastic range. In spite of that the
author, however, could make use of them.

The compressive stress-strain diagram is obtained by allowing o
to increase at a set constant rate, as is well known, (in Fig. 4 marked with
t = 0). In the first group of the tests both in Otaniemi and in Oulu a
procedure which aimed at such a compressive stress-strain diagram was
interrupted at o, and the stress was held unchanged for a certain period
of time after which the growth of o occurred again at the original
speed. Then it was observed that the slope of the newly beginning
compressive stress-strain diagram was greater than the slope of the
curve corresponding to the time value ¢ = 0 at the point whose ordinate
equalled the oj-value in question, and in the tests with smaller oj-values
it was roughly the same as the elastic modulus £ of the material in
question, as it is schematically seen in Fig. 4. The corresponding test
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Fig. 4. A schematic compressive stress-strain diagram of a visco-elastic prismatic

bar with an interruption in the growth of the compression stress for a certain
time period.
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was performed by decreasing o after the visco-elastic creep, and as
a result it was obtained that the slope was then not smaller than that
given by the increasing stress at the same ordinate value.

In the former group of the Otaniemi tests the slenderness ratio of
the bars was A = 17 (Table 1), the constant compressive stress o,
varied from 450 to 600 kp/cm2, and the time interval of the visco-elastic
creep ranged from 1 to 5 days. The critical compressive stress o, after
the visco-elastic creep period varied from 695 to 722 kp/em? when it in
the tests without any creep period was on an average o, = 624 kp/cm?.
It may be pointed out that the yielding stress o, and the ultimate
compressive stress o, are the same by wood, and that with so low a
slenderness ratio as A = 17 the critical stress is about ca. 98 per cent
of the yielding stress, 7.e., o. is nearly the same as o,.

In the latter group of the Otaniemi tests the visco-elastic creep began
with ¢ = 0 and continued with a low constant rate of the increasing
gtress up to a certain o¢-value, after which the increase of the stress
continued with a higher rate. In one of these tests in which the rate

Table 1. Buckling test results with pinewood bars. 2 is the slenderness ratio of
the bar. o, is the critical compressive stress on an average of the values obtained
in several tests with bars of the same slenderness ratio, paranthesized the largest
of the participants in the average value. o, is the compressive stress under which
the visco-elastic creep took place. # is the lasting time of the creep period. o; is
the critical compressive stress obtained with each bar after the creep period.

. g, ¢ A
Test place A —
kp/em? kp/em? d kpfem?
Otaniemi 17 624 (650) 450 3.7 695
500 4 700
5560 3 720
5560 4.8 713
600 3.1 722
Oula 40 523 (b58) 400 4 597
450 4 641
440 14 620
Oulu 60 248 (273) 200 3 358
200 3 311
150 4 3565
200 4 301
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Fig. 5. The upper part of the compressive stress-strain curve of a centrally loaded

prismatic wooden bar when the stress increased at first with a rate of 42 kp/em? in
an hour and from the value of 550 kp/em? on with a rate of 0.25 kp/em? in a second.

of the increasing stress was 42 kp/em? in an hour the slope of the beginning
o(e) curve pertaining to the faster phase of the increasing stress after
the slow period at ¢ = 550 kp/em?, was as great as ca. 5.6 + 10* kp/em?
(Fig. 5) when the slope at the point ¢ = 0 was ca. 9 - 10* kp/em?, and,
on the other hand, the tangent of the actual compressive stress-strain
diagram at o = 550 kp/cm? would be much more gently sloping, if not
nearly parallel to the e-axis.

The bars in the tests performed by Mr. Kangas in Oulu were made
of Finnish pinewood, which was mainly similar to the wood used in
the Otaniemi tests treated above. A part of the test results are presented
in Table 1.

6. Some conclusions on the buckling of a prismatic wooden bar, or an ice
bar, respectively, in the visco-elastic range

The range of the validity of the above theory: Above the buckling load,
or the critical load of a centrally loaded prismatic bar was defined as
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the axial load, which is sufficient to keep the bar in a slightly bent form.
In consequence of this definition the critical stress of a bar with hinged
ends can be calculated from the FKuler—Engesser formula

2, do
20 Tt T e

Under all the test circumstances treated above the thus defined
tangent modulus #,, when it was determined after a visco-elastic creep
period of a wooden bar, appeared to be greater than that determined
before the visco-elastic deformation at the same stress value. Thence
the critical load of a centrally loaded prismatic bar of Finnish pinewood
seems to increase with the visco-elastic compression, at least when
A << 2, as it is qualitatively shown in Fig. 3 (dotted curve), and as it
appears quantitatively from the test results in Table 1.

Mr. Kangas presents in his work that the tangent modulus &, of pine-
wood after a visco-elastic creep period may be distinctly greater than
the elastic modulus & of the same wood when ¢, is small enough,
which seems to confirm the supposition that the visco-elastic deformation
would cause an increase of the critical compressive stress in the Huler
regime, too. The construction of the test equipments in the Oulu tests
was presumably such that the test results concerning the elastic modulus
and the tangent modulus of pinewood are dependable to a less degree
than those having reference to the values of the critical stress, where-
fore the author abstains from taking an attitude in the matter in question,
in particular when the statement lacks the experimental verification
by the aid of the buckling tests in the Huler range.

O =

Some restraints in regard to time and stress on the use of the above theory:
According to an earlier investigation mentioned in point 1. the above
may be applied to the ice bars on the conditions presented in the said
publication, too. Besides the restrictions to time and temperature on
ice there is perhaps a more general one to the magnitude of the constant
compressive stress which causes the visco-elastic creep, at any rate on
wood, as it may be apparent from the following.

When the source of the visco-elastic creep, the constant compressive
stress o,, is very close to the yielding stress o, the rate of the creep
does not decrease with time towards zero, but it approaches to a certain
constant. The consequence of this is that, because of a too great com-
pressive strain, the bar breaks before long. In one of the tests performed
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Fig. 6. A complete visco-elastic creep curve caused by a constant compressive
stress of 600 kp/em? on a centrally loaded, prismatic wooden bar, when the predictive
value for the yielding stress was ca. 620 kp/em?.

in this way in Otaniemi the bar was compressed with a stress of
oy = 600 kp/em?, when the predictive value for the yielding stress was
at an average of ca. 620 kp/em? The visco-elastic creep attained a rate
of ca. 5.9 1075 in an hour, and the creep lasted ca. 1.15 days before
the rupture of the bar occurred. A short time prior to the rupture a
noticeable growth in the rate of the increase of the creep was realized
(the tertiary creep phase in Fig. 6). When the constant compressive stress
o, was not so close to the yielding stress the slope of the ¢(f) curve
approached with time towards zero, as it is seen in Fig. 7. To these latter
test bars the theory presented above is applicable with full right, because
of the fact that their creep process lacks the tertiary phase and the latter
part of the secondary phase. For ice there obviously exists both a
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Fig. 7. A visco-elastic creep curve which lacks the tertiary phase and the latter
part of the secondary creep phase. A prismatic wooden bar is loaded centrally
with a constant compressive stress of 450 kp/em? The predictive value for the
yielding stress is the same as in Fig. 6.

secondary and a tertiary phase in its creep curve, and thus the restriction
of the lasting time of the creep process in the ice tests is inevitable when
one wants to apply to ice the theory of buckling in the visco-elastic range
presented in this paper.

Many additional investigations are, however, requisite for the
complete clearing up of the course of the buckling process which appears
in connection with a visco-elastic creep.
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