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Abstract

In this study, there is presented a model of a self-gravitating,
isotropic, thermoviscoelastic, radially inhomogeneous sphere,
together with a method for numerical determination of the
spectral characteristics of vibrations of such a system.

Introduction

A. B. H. Love [4], H. Taxeuvcar [6] and [7], Z. AuTERMAN, H.
JaroscH and C. L. PerEgris [1], among others, have presented a model
earth consisting of an isotropic, elastic, self-gravitating, inhomogeneous
sphere with a hydrostatic natural state of stress superposed by an
infinitesimal deformation. In this study, a generalization of this model
has been suggested. It differs from the previous one mainly in two res-
pects. Firstly, the superposed stress-strain relation is linearly viscoelastic
(of the rate or of the functional type, A. C. EriNa¢EN [3]). Secondly,
the coupling between the mechanical and thermodynamical phenomena
has been taken into account.

The model

In the spatial coordinate system, the Fourier-transformed equations
of motion which govern the oscillations of the thermoviscoelastic model
take the following from:
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e(x)=3—3v-a—a-vz=2+e' 1)
by = 109 — - Vpg +1 (2)

— BTG + M)V * 7 + pl@)[Va + (V)] (3)
V e + of + oF + guta = 0 (4)
§=wIT (5)

V- § -+ iwgyT + iwpTy @ = 0 (6)
V2P = — dnll )

VA = 4aQ(QY - @ + - Vo) (8)
F=Vo.f =V (9)

For an explanation of the equations (1)—(9) the following, rather
compact list has been given:
A. A vector notation has been used, e.g. L. I. SEpov [5].
B. All the equations have been linearized to the first order with respect
to @, f’, T and their derivatives.
C. (1) is the equation of continuity, where
— % is a point in the spatial space
— Q(x) is the density of the perturbed body

— g(x) is the initial density
— V = ¢'9; is the nabla operator
— §* is the spatial base system
— 4 = %'§; = u§* is the displacement vector
D. (2) 1s the total tension in the perturbed body, where

— p is the initial llydlostatlc pressure component

— g=g g,q] = 8ig'g g; = o .G = gqgg is the metric tensor of the
spatial space.

E. (3) is the infinitesimal stress-strain relation, where

— T is the additional infinitesimal absolute temperature due to
the perturbation in the deformation

— Mw) and u(w) are the complex elastic moduli, which have
been obtained by Fourier-transforming the original stress-strain
relations. For the rate-type media:
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J
For the functional type of media:

Mw) = 2y + Mw) and plw) = y, + ;(w) Where (12)

Mw) and ;(w) are Fourier-transforms of some weighting
functions.

— B, &, &, O, 05 Ay Ay pe and gy are thermal and elastic
parameters depending on both. £ and the initial state of the body

— (V)" is the transpose of /%

(4) is the Cauchy equation of motion, where

— f is the body force in the unperturbed body and f' the addi-
tional body force caused by the perturbation

— w is the angular frequency

(5) is the equation of heat conduction, where

— ¢ is the vector of heat flux

— # is the coefficient of thermal conductivity, which depends not
only on £ but also on the initial state of the body
(6) is the equation of energy, where

— % and f are thermal parameters depending on & and the ini-
tial state of the body.

— T, is the temperature in the initial state of the body

(7) and (8) are Poisson equations for determining the gravitational

potentials @ and @' caused by Z(a':) and @'(Z) resp., where
— @ is the gravitational constant
(9) determines the body forces f and f'.

Spherical coordinate system

In view of the spherical symmetry of the problem, it is natural to

express the equations (1)—(9) in the spherical coordinate system of
fig. 1., where # is the unit vector in the radial divection @a,) and
a*(d,) are the two ortogonal surface base vectors.
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Fig. 1. The used spherical coordinate system

The derivatives of these base vectors will be needed in transformation
of the equations (1)—(9) into the spherical coordinate system. Since
all the base vectors are independent of r, only derivatives with respect
to the surface coordinates #*(x = 1,2) should be formed. The partial
derivatives of # are

0,70 = @, = a,, 0", (18)

where a,, are the covariant components of the surface metric tensor.
As #, G, and @, form a base system for the space, the vector 9,d, may
be represented with their aid as follows

By, = I, 4 byg® (14)
where I, = 0,d,a* is the Christoffel symbol for the surface. The
coefficient b,, is of the form b,z = 094G, - 7 = — @y, To arrive at
this relation, use has been made of the equation 4, 7 = 0. After the
substitution of — a,, for b,, in (14), this becomes

04y, = L'pl, — 0™ (14")

In the same way, the partial derivatives of a* will assume the
following form:

06" = — I'g.ar — 05r® (15)

To extract the spheroidal and torsional parts from equations (1)—
(9), use has been made of the Backus representation theorem (G. F.
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Backus [2]), according to which a surface vector may be expressed with
the aid of two scalar potentials. The following expressions have thus
been used for the vector and tensor quantities in (1)—(9):

@ = U + a[a™V, + W] (16)

q = 7Q + a,[a* M, + &°N] (17)

[ = 0P 4 (G, + @, [0 R, 4 e8] + G, (18)
1

V= + — a9, (19)

In (16)—(19) U, V, W, @, M, N, P, R and 8§ are scalar potentials.

¢ is the surface rotator. V|, denotes the covariant surface derivate

of V.
In a spherical coordinate system, more information is obtainable
concerning the quantities of (1)—(9) (4. ALTERMAN ef al. [1]).
* w
P, =204, (20)

#
where ¢ is the acceleration of the gravitational field.

%
D,r=—g (21)
2 %
§,r=dnllg— g (22)
%
V=@, r — 4aGoU (23)

Bquations for spheroidal and torsional oscillations

If equations (16)—(23) are substituted in (1)—(9) and use is made of
both relations (13)—(15), and those which follow:

U=y 8, V=y,r)8, P=uysr)S, (24)
R=yr) S, =usr)Sn, = uysr) S
T — y,) Su amd @ = yglr) S,

for spheroidal oscillations and

W =y,(r) S, and S = g,(r) S (25)
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for torsional oscillations.
Then, after some manipulation, the following linear homogeneous dif-
ferential equation system is derived:

Y _ 4 26
d?‘ - ("')?/ B ( )
where y is a column vector with the radial parts of (24) and (25) as
components. To describe the spheroidal oscillations, A(r) will be a
8x8 matrix, with elements:
27 n(n + 1) A
Ay = (A + 2u) A = (A + 2u) (27)
1
13 T e An= ‘L
A+ 2u A+ 2

A
Ay = Ay = Apg = Ay =0
A
4

Hek
Lt 0 (3 2
w= e R TaG 1 o)

g

eg  2u(32 + 2u)
A32=ﬂ(n+1)7—m
4u n(n + 1)
SRR R
=:< 4fu
Assz_Q:Am:_T(l_l_%u),A35:Aas:0
s
0y 2u(31 + 2u) dnfn + D) u( @) 2w x|
A41:—_—,2—7 2 = 2 — Te T oW
r 72(A + 2u) 24 - 2u) 7
A A A 5 A Z
43:_7'(3+2M)’ 44:—7,, 45:*1,
26u
A47:m:A46:A4s:0

A51=475G@’A56=17A52=A53=A54=A55=A56=A57=0
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*
dn(n + 1)nGe n(n + 1)
Agp = — —T”“—’A%: e

2
Ase"'—"“?a A61=A63=A64=A67=A68=0

1
A'zs:;s Ay = Apy = Aoy = Agy = Ay = Agg = Ay = 0

4 diwfuT, 2in(n + 1) wfud’,
ST At 2w TR A+ 2p)
4 wwpT, 4 nin+1) = 10f%T,
A RC 87 = ’ —“"07—1_*_2”
2
Agg = — 2 Agy = Agy = Agg =0

7

To describe the torsional oscillations, A(r) will be a 2x2 matrix with
the elements:

1
An = ? > Azz = (28)

ko P : 3
Ay = — oo +72(’”' +n—2), A22=—7

The boundary conditions for #,, ... ¥y, are to be found in Z. ALTER-
MAN et al. [1]. As vy, is the radial part of the temperature caused by
the deformation, it should vanish from a certain depth downwards.
Since 9, is the radial part of the heat conduction vector, it must vanish
on the surface of the sphere.

A method for numerical solution of the eigenfrequencies and eigenfunctions
of the oscillations

The boundary conditions are expressed symbolically as follows:

y(ro) = o and L(y(r)) = 0 (29)

where L is a linear operator, r, is the reference depth below which
no appreciable amount of energy exists and r refers to the surface
of the model sphere. The general solution of (26) is

y(r) = R(r , 10) %o » (30)
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where the resolvent R(r,r,) possesses the semi-group property.
B(r ,r0) = B(r , y) R(ry , 7o) (31)

By use of the property (31), methods can be developed for practical
determination of the resolvent. For this purpose, the interval 7,7, is

divided into n parts 7,,r;, 7y,7,... and 7, ;,r,. After that y(r,)
can be expressed as follows:
Y(ra) = B(r,, 7)o By, 70) y (32)

The eigenvalues are obtained by making the y(r.) in (32) compatible
with the boundary condition L(y(r.)) = 0. Thereafter the corresponding
eigenfunction is found from (32).

B(ryyq1, 7). is obtained by developing ¥,,, and g, into Taylor

series around the point 7, 3 =%+ Ek , Where k=1, —1.
After the elimination of g, 3 from these series, it is found that

I, ' Iy, - 3 .

o= \T+ 3l —F dey) mtomd, 63

and from (33)

R rd = 1+ 3 g1~ 2 0,y (34

In (33), I is the unit matrix, 4, 3 is the value of the matrix A(r)
‘at the point 7, 19 and O(k}) is a matrix which behaves under a norm

|1l like ||OR) < MK, where M is a scalar constant.
Some characteristics of the mapping (34) are obtainable by applying
it to an eigenvector u, 1 of the matrix 4, e If 2, 1 is an

eigenvalue of A, 3» the corresponding eigenvalue of R(r,,,,7)
is

by,
1+ 9 A T

by,
].—Elk_*_%_

fyy = (35)

It is found that (35) maps the right half of the 1, y-plane inside
the unit circle of the u, j-Plane. Since the real parts of the eigen-
values of A4, 3 are negative, R(r,,,7) is a contracting mapping.



Oscillations of an isotropic, thermoviscoelastic, radially inhomogeneous sphere 53

Acknowledgement: The author wishes to express his gratitude to
the Sohlberg Foundation of the Societas Scientiarum Fennica for the
financial support during this work.

REFERENCES

1. AutERMAN, Z., H. Jarosch and C. L. Pekeris, 1959: Oscillations of the earth.
Proc. Roy. Soc. 252, 80—95.

2. Backus, G. F., 1967: Converting vector and tensor equations to scalar equations
in spherical coordinates. Geophys. J. R. astr. Soc. 18, 71—101.

3. BrinarN, A, C., 1967: Mechanics of continua. John Wiley & Sons, Inec.

4. Love, A. E. H., 1911: Some problems of geodynamics. Dover Publications, Inc.

5. SEpov, L. 1., 1966: Foundations of the nonlinear mechanics of continua. Perga-
mon Press Lid.

6. TaxmucHr, H., 1950: On the Earth tide of the compressible Earth of variable
density and elasticity. Trans. Am. Geophys. Union 81, 651 —689.

7. —»— 1966: Theory of the Barth’s inierior. Blaisdell Publ. Co.



