OSCILLATIONS OF AN ISOTROPIC, THERMOVISCOELASTIC, RADIALLY INHOMOGENEOUS SPHERE

by

P. SAASTAMOINEN

Institute of Seismology University of Helsinki

Abstract

In this study, there is presented a model of a self-gravitating, isotropic, thermoviscoelastic, radially inhomogeneous sphere, together with a method for numerical determination of the spectral characteristics of vibrations of such a system.

Introduction

A. E. H. Love [4], H. Takeuchi [6] and [7], Z. Alterman, H. Jarosch and C. L. Pekeris [1], among others, have presented a model earth consisting of an isotropic, elastic, self-gravitating, inhomogeneous sphere with a hydrostatic natural state of stress superposed by an infinitesimal deformation. In this study, a generalization of this model has been suggested. It differs from the previous one mainly in two respects. Firstly, the superposed stress-strain relation is linearly viscoelastic (of the rate or of the functional type, A. C. Eringen [3]). Secondly, the coupling between the mechanical and thermodynamical phenomena has been taken into account.

The model

In the spatial coordinate system, the Fourier-transformed equations of motion which govern the oscillations of the thermoviscoelastic model take the following from:

$$\varrho(x) = \stackrel{*}{\varrho} - \stackrel{*}{\varrho} \overline{\nabla} \cdot \bar{u} - \bar{u} \cdot \overline{\nabla} \stackrel{*}{\varrho} = \stackrel{*}{\varrho} + \varrho' \tag{1}$$

$$ar{t}_{ ext{tot}} = \stackrel{*}{p}ar{g} - ar{u} \cdot \overline{igtriangle} \stackrel{*}{p}ar{g} + ar{t}$$
 (2)

$$\tilde{t} = -\beta T \bar{g} + \lambda(\omega) \overline{\nabla} \cdot \tilde{u} \bar{g} + \mu(\omega) [\overline{\nabla} \tilde{u} + (\overline{\nabla} \tilde{u})^T]$$
(3)

$$\nabla \cdot \tilde{t}_{\text{tot}} + \stackrel{*}{\varrho} \tilde{f}' + \varrho' \tilde{f} + \stackrel{*}{\varrho} \omega^2 \tilde{u} = 0$$
 (4)

$$\bar{q} = \varkappa \overline{\nabla} T$$
(5)

$$\overline{\nabla} \cdot \tilde{q} + i\omega \tilde{q} \gamma T + i\omega \beta T_0 \overline{\nabla} \cdot \tilde{u} = 0 \tag{6}$$

$$\nabla^2 \Phi = -4\pi G_{\varrho}^* \tag{7}$$

$$\nabla^2 \Phi' = 4\pi G (\varrho \nabla \cdot \tilde{u} + \tilde{u} \cdot \nabla \varrho)$$
 (8)

$$\bar{f} = \overline{\nabla} \Phi , \bar{f}' = \overline{\nabla} \Phi'$$
 (9)

For an explanation of the equations (1)—(9) the following, rather compact list has been given:

- A. A vector notation has been used, e.g. L. I. Sedov [5].
- B. All the equations have been linearized to the first order with respect to \bar{u} , \bar{f}' , T and their derivatives.
- C. (1) is the equation of continuity, where
 - $-\tilde{x}$ is a point in the spatial space
 - $-\varrho(x)$ is the density of the perturbed body
 - $-\stackrel{*}{\varrho}(x)$ is the initial density
 - $\overline{\nabla} = g^i \partial_i$ is the nabla operator
 - $-\tilde{g}^{i}$ is the spatial base system
 - $\bar{u} = u^i \bar{g}_i = u_i \bar{g}^i$ is the displacement vector
- D. (2) is the total tension in the perturbed body, where
 - $-\hat{p}$ is the initial hydrostatic pressure component
 - $\bar{g} = g^{ij}\bar{g}_i\bar{q}_j = \delta^i_i\bar{g}^i\bar{g}_j = \delta^i_j\bar{g}_i\bar{g}^j = g_{ij}\bar{g}^i\bar{g}^j$ is the metric tensor of the spatial space.
- E. (3) is the infinitesimal stress-strain relation, where
 - T is the additional infinitesimal absolute temperature due to the perturbation in the deformation
 - $\lambda(\omega)$ and $\mu(\omega)$ are the complex elastic moduli, which have been obtained by Fourier-transforming the original stress-strain relations. For the rate-type media:

$$\lambda(\omega) = \frac{P_m S_n - R_n Q_m}{S_n (3R_n + 2S_n)} \quad \text{and} \quad 2\mu(\omega) = \frac{Q_m}{S_n}$$
 (10)

$$R_n = -\alpha + \sum_{j=1}^n \alpha_j (-i\omega)^j$$
, $S_n = -\delta + \sum_{j=1}^n \delta_j (-i\omega)^j$

$$P_m = \lambda_0 + \sum_{j=1}^m \lambda_j (-i\omega)^j$$
 and $Q_m = \mu_0 + \sum_{j=1}^m \mu_j (-i\omega)^j$ (11)

For the functional type of media:

$$\lambda(\omega) = \lambda_0 + \stackrel{*}{\lambda}(\omega)$$
 and $\mu(\omega) = \mu_0 + \stackrel{*}{\mu}(\omega)$. Where (12)

- $\lambda(\omega)$ and $\mu(\omega)$ are Fourier-transforms of some weighting functions.
- $-\beta$, α , α_j , δ , δ_j , λ_0 , λ_j , μ_0 and μ_j are thermal and elastic parameters depending on both \bar{x} and the initial state of the body
- $(\overline{\nabla} \bar{u})^T$ is the transpose of $\overline{\nabla} \bar{u}$
- (4) is the Cauchy equation of motion, where
 - \bar{f} is the body force in the unperturbed body and \bar{f}' the additional body force caused by the perturbation
 - $-\omega$ is the angular frequency
- G. (5) is the equation of heat conduction, where
 - $-\bar{q}$ is the vector of heat flux
 - $-\varkappa$ is the coefficient of thermal conductivity, which depends not only on \bar{x} but also on the initial state of the body
- H. (6) is the equation of energy, where
 - $-\kappa$ and β are thermal parameters depending on \bar{x} and the initial state of the body.
 - $-T_0$ is the temperature in the initial state of the body
- I. (7) and (8) are Poisson equations for determining the gravitational potentials Φ and Φ' caused by $\varrho(\bar{x})$ and $\varrho'(\bar{x})$ resp., where — G is the gravitational constant
- (9) determines the body forces \bar{f} and \bar{f}' .

Spherical coordinate system

In view of the spherical symmetry of the problem, it is natural to express the equations (1)—(9) in the spherical coordinate system of fig. 1., where \tilde{r}^0 is the unit vector in the radial direction $\bar{a}^1(\bar{a}_1)$ and $\bar{a}^2(\bar{a}_2)$ are the two ortogonal surface base vectors.

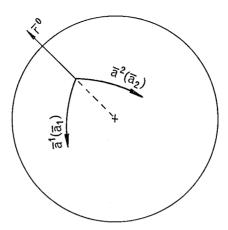


Fig. 1. The used spherical coordinate system

The derivatives of these base vectors will be needed in transformation of the equations (1)-(9) into the spherical coordinate system. Since all the base vectors are independent of r, only derivatives with respect to the surface coordinates $u^{\alpha}(\alpha=1,2)$ should be formed. The partial derivatives of \tilde{r}^0 are

$$\partial_{\alpha}\bar{r}^{0} = \bar{a}_{\alpha} = a_{\alpha\beta}\bar{a}^{\beta} \,, \tag{13}$$

where $a_{\alpha\beta}$ are the covariant components of the surface metric tensor. As \bar{r}^0 , \bar{a}_1 and \bar{a}_2 form a base system for the space, the vector $\partial_{\beta}\bar{a}_{\alpha}$ may be represented with their aid as follows

$$\partial_{\beta} \tilde{a}_{\alpha} = \Gamma^{\varkappa}_{\alpha\beta} \tilde{a}_{\varkappa} + b_{\alpha\beta} \tilde{r}^{0} \tag{14}$$

where $\Gamma^{\kappa}_{\alpha\beta} = \partial_{\beta}\bar{a}_{\alpha} \cdot \bar{a}^{\kappa}$ is the Christoffel symbol for the surface. The coefficient $b_{\alpha\beta}$ is of the form $b_{\alpha\beta} = \partial_{\beta}\bar{a}_{\alpha} \cdot \bar{r}^{0} = -a_{\alpha\beta}$. To arrive at this relation, use has been made of the equation $\bar{a}_{\alpha} \cdot \bar{r}^{0} = 0$. After the substitution of $-a_{\alpha\beta}$ for $b_{\alpha\beta}$ in (14), this becomes

$$\partial_{\beta} \bar{a}_{\alpha} = \Gamma^{\varkappa}_{\alpha\beta} \bar{a}_{\varkappa} - a_{\alpha\beta} \bar{r}^{0} \tag{14'}$$

In the same way, the partial derivatives of \bar{a}^{α} will assume the following form:

$$\partial_{\dot{\theta}}\bar{a}^{\alpha} = - \Gamma^{\alpha}_{\dot{\theta}\dot{\nu}}\bar{a}^{\dot{\nu}} - \delta^{\alpha}_{\dot{\theta}}\bar{r}^{0} \tag{15}$$

To extract the spheroidal and torsional parts from equations (1)—(9), use has been made of the Backus representation theorem (G. F.

BACKUS [2]), according to which a surface vector may be expressed with the aid of two scalar potentials. The following expressions have thus been used for the vector and tensor quantities in (1)—(9):

$$\bar{u} = \bar{r}^0 U + \bar{a}_{\alpha} [a^{\alpha \varkappa} V_{|\varkappa} + \varepsilon^{\alpha \varkappa} W_{|\varkappa}] \tag{16}$$

$$\bar{q} = \bar{r}^0 Q + \bar{a}_{\alpha} [a^{\alpha \varkappa} M_{|\varkappa} + \varepsilon^{\varkappa \alpha} N_{|\varkappa}] \tag{17}$$

$$\bar{t} = \bar{r}^0 \bar{r}^0 P + (\bar{r}^0 \bar{a}_\alpha + \bar{a}_\alpha \bar{r}^0) [a^{\alpha \varkappa} R_{|\varkappa} + \varepsilon^{\alpha \varkappa} S_{|\varkappa}] + \bar{a}_\alpha \bar{a}_n \hat{r}^{\alpha \beta}$$
(18)

$$\overrightarrow{\nabla} = \vec{r}^0 \partial r + \frac{1}{r} \, \vec{a}^\varrho \partial_\varrho \tag{19}$$

In (16)—(19) U, V, W, Q, M, N, P, R and S are scalar potentials. $\varepsilon^{\alpha_{\varkappa}}$ is the surface rotator. $V_{|_{\varkappa}}$ denotes the covariant surface derivate of V.

In a spherical coordinate system, more information is obtainable concerning the quantities of (1)—(9) (Z. ALTERMAN *et al.* [1]).

$$\stackrel{*}{p}, r = \stackrel{**}{\varrho g}, \tag{20}$$

where $\overset{*}{g}$ is the acceleration of the gravitational field.

$$\Phi, r = -\overset{*}{g} \tag{21}$$

$$\stackrel{*}{g}, r = 4\pi G_{\varrho}^* - \frac{2}{r} \stackrel{*}{g}$$
 (22)

$$\Psi = \Phi' , r - 4\pi G_{\rho}^* U \tag{23}$$

Equations for spheroidal and torsional oscillations

If equations (16)—(23) are substituted in (1)—(9) and use is made of both relations (13)—(15), and those which follow:

$$\begin{aligned} & \mathrm{U} = y_1(r) \; S_n \;, \; \; V = y_2(r) \; S_n \;, \; \; P = y_3(r) \; S_n \;, \\ & \mathrm{R} = y_4(r) \; S_n \;, \qquad = y_5(r) \; S_n \;, \qquad = y_6(r) \; S_n \\ & \mathrm{T} = y_7(r) \; S_n \; \text{ and } \; Q = y_8(r) \; S_n \end{aligned} \tag{24}$$

for spheroidal oscillations and

$$W = y_1(r) S_n \text{ and } S = y_2(r) S_n$$
 (25)

for torsional oscillations.

Then, after some manipulation, the following linear homogeneous differential equation system is derived:

$$\frac{dy}{dr} = A(r)y , (26)$$

where y is a column vector with the radial parts of (24) and (25) as components. To describe the spheroidal oscillations, A(r) will be a 8x8 matrix, with elements:

$$A_{11} = -\frac{2\lambda}{r(\lambda + 2\mu)}, A_{12} = \frac{n(n+1)\lambda}{r(\lambda + 2\mu)}$$

$$A_{13} = \frac{1}{\lambda + 2\mu}, A_{17} = \frac{\beta}{\lambda + 2\mu}$$

$$A_{14} = A_{15} = A_{16} = A_{18} = 0$$

$$A_{21} = -\frac{1}{r}, A_{22} = \frac{1}{r}, A_{24} = \frac{1}{\mu}$$

$$A_{23} = A_{25} = A_{26} = A_{27} = A_{28} = 0$$

$$A_{31} = -\frac{*}{e}\omega^{2} - 4\frac{e^{*}g}{r} + \frac{4\mu(3\lambda + 2\mu)}{r^{2}(\lambda + 2\mu)}$$

$$A_{32} = n(n+1)\left[\frac{e^{*}g}{r} - \frac{2\mu(3\lambda + 2\mu)}{r^{2}(\lambda + 2\mu)}\right]$$

$$A_{33} = -\frac{4\mu}{r(\lambda + 2\mu)}, A_{34} = \frac{n(n+1)}{r}$$

$$A_{36} = -\frac{*}{e}, A_{37} = -\frac{4\beta\mu}{r(\lambda + 2\mu)}, A_{35} = A_{38} = 0$$

$$A_{41} = \frac{*}{e}\frac{e^{*}g}{r} - \frac{2\mu(3\lambda + 2\mu)}{r^{2}(\lambda + 2\mu)}, A_{42} = \frac{4n(n+1)\mu(\lambda + \mu)}{r^{2}(\lambda + 2\mu)} - \frac{2\mu}{r^{2}} - \frac{*}{e}\omega^{2}$$

$$A_{43} = -\frac{\lambda}{r(\lambda + 2\mu)}, A_{44} = -\frac{3}{r}, A_{45} = -\frac{e}{r}$$

$$A_{47} = \frac{2\beta\mu}{r(\lambda + 2\mu)}, A_{46} = A_{48} = 0$$

$$A_{51} = 4\pi G\varrho, A_{56} = 1, A_{52} = A_{53} = A_{54} = A_{55} = A_{56} = A_{57} = 0$$

$$\begin{split} A_{62} &= - \; \frac{4n(n+1)\pi G_{\mathcal{Q}}^*}{r} \;, A_{65} = \frac{n(n+1)}{r^2} \\ A_{66} &= - \; \frac{2}{r} \;, \; A_{61} = A_{63} = A_{64} = A_{67} = A_{68} = 0 \\ A_{78} &= \frac{1}{\varkappa} \;, \; A_{71} = A_{72} = A_{73} = A_{74} = A_{75} = A_{76} = A_{77} = 0 \\ A_{81} &= - \; \frac{4i\omega\beta\mu T_0}{r(\lambda+2\mu)} \;, \; A_{82} = \frac{2in(n+1)\;\omega\beta\mu T_0}{r(\lambda+2\mu)} \\ A_{83} &= - \; \frac{i\omega\beta T_0}{\lambda+2\mu} \;, \; A_{87} = \frac{n(n+1)}{r} - i\omega^*_{\mathcal{Q}}\gamma - \frac{i\omega\beta^2 T_0}{\lambda+2\mu} \\ A_{88} &= - \; \frac{2}{r} \;, \; A_{84} = A_{85} = A_{86} = 0 \end{split}$$

To describe the torsional oscillations, A(r) will be a 2x2 matrix with the elements:

$$A_{11} = \frac{1}{r}, \ A_{22} = \frac{1}{\mu}$$
 (28)
$$A_{21} = -\frac{*}{\varrho}\omega^2 + \frac{\mu}{r^2} (n^2 + n - 2), \ A_{22} = -\frac{3}{r}$$

The boundary conditions for y_1, \ldots, y_6 are to be found in Z. Alter-MAN et al. [1]. As y_7 is the radial part of the temperature caused by the deformation, it should vanish from a certain depth downwards. Since y_8 is the radial part of the heat conduction vector, it must vanish on the surface of the sphere.

A method for numerical solution of the eigenfrequencies and eigenfunctions of the oscillations

The boundary conditions are expressed symbolically as follows:

$$y(r_0) = y_0 \text{ and } L(y(r_n)) = 0$$
 (29)

where L is a linear operator, r_0 is the reference depth below which no appreciable amount of energy exists and r refers to the surface of the model sphere. The general solution of (26) is

$$y(r) = R(r, r_0) y_0, (30)$$

where the resolvent $R(r, r_0)$ possesses the semi-group property.

$$R(r, r_0) = R(r, r_1) R(r_1, r_0)$$
(31)

By use of the property (31), methods can be developed for practical determination of the resolvent. For this purpose, the interval r_0 , r_n is divided into n parts r_0 , r_1 , r_1 , r_2 ,... and r_{n-1} , r_n . After that $y(r_n)$ can be expressed as follows:

$$y(r_n) = R(r_n, r_{n-1}) \dots R(r_1, r_0) y$$
 (32)

The eigenvalues are obtained by making the $y(r_n)$ in (32) compatible with the boundary condition $L(y(r_n)) = 0$. Thereafter the corresponding eigenfunction is found from (32).

 $R(r_{k+1}, r_k)$ is obtained by developing y_{k+1} and y_k into Taylor series around the point $r_{k+\frac{1}{2}} = r_k + \frac{h_k}{2}$, where $h_k = r_{k+1} - r_k$. After the elimination of $y_{k+\frac{1}{2}}$ from these series, it is found that

$$y_{k+1} = \left(I + \frac{h_k}{2} A_{k+\frac{1}{2}}\right) \left(I - \frac{h_k}{2} A_{k+\frac{1}{2}}\right)^{-1} y_k + 0(h_k^3), \qquad (33)$$

and from (33)

$$R(r_{k+1}, r_k) = \left(I + \frac{h_k}{2} A_{k+\frac{1}{2}}\right) \left(I - \frac{h_k}{2} A_{k+\frac{1}{2}}\right)^{-1}$$
(34)

In (33), I is the unit matrix, $A_{k+\frac{1}{2}}$ is the value of the matrix A(r) at the point $r_{k+\frac{1}{2}}$, and $O(h_k^3)$ is a matrix which behaves under a norm $\|\cdot\|$ like $\|O(h_k^3)\| < Mh_k^3$, where M is a scalar constant.

Some characteristics of the mapping (34) are obtainable by applying it to an eigenvector $u_{k+\frac{1}{2}}$ of the matrix $A_{k+\frac{1}{2}}$. If $\lambda_{k+\frac{1}{2}}$ is an eigenvalue of $A_{k+\frac{1}{2}}$, the corresponding eigenvalue of $R(r_{k+1}, r_k)$ is

$$\mu_{k+\frac{1}{2}} = \frac{1 + \frac{h_k}{2} \lambda_{k+\frac{1}{2}}}{1 - \frac{h_k}{2} \lambda_{k+\frac{1}{2}}}$$
(35)

It is found that (35) maps the right half of the $\lambda_{k+\frac{1}{2}}$ -plane inside the unit circle of the $\mu_{k+\frac{1}{2}}$ -plane. Since the real parts of the eigenvalues of $A_{k+\frac{1}{2}}$ are negative, $R(r_{k+1}, r_k)$ is a contracting mapping.

Acknowledgement: The author wishes to express his gratitude to the Sohlberg Foundation of the Societas Scientiarum Fennica for the financial support during this work.

REFERENCES

- 1. Alterman, Z., H. Jarosch and C. L. Pekeris, 1959: Oscillations of the earth. Proc. Roy. Soc. 252, 80-95.
- 2. Backus, G. F., 1967: Converting vector and tensor equations to scalar equations in spherical coordinates. Geophys. J. R. astr. Soc. 13, 71-101.
- 3. Eringen, A. C., 1967: Mechanics of continua. John Wiley & Sons, Inc.
- 4. LOVE, A. E. H., 1911: Some problems of geodynamics. Dover Publications, Inc.
- 5. Sedov, L. I., 1966: Foundations of the nonlinear mechanics of continua. Pergamon Press Ltd.
- 6. TAKEUCHI, H., 1950: On the Earth tide of the compressible Earth of variable density and elasticity. Trans. Am. Geophys. Union 31, 651-689.
- 7. ->- 1966: Theory of the Earth's interior. Blaisdell Publ. Co.