
New State Recovery Attack on RC4Alexander Maximov and Dmitry KhovratovichLaboratory of Algorithmics, Cryptology and SecurityUniversity of Luxembourg6, rue Richard Coudenhove-Kalergi, L-1359 LuxembourgAlexander.Maximov@ericsson.com, Dmitry.Khovratovich@uni.luAbstract. The stream cipher RC4 was designed by R. Rivest in 1987,and it has a very simple and elegant structure. It is probably the mostdeployed cipher on the Earth.In this paper we analyse the class RC4-N of RC4-like stream ciphers,where N is the modulus of operations, as well as the length of inter-nal arrays. Our new attack is a state recovery attack which accepts thekeystream of a certain length, and recovers the internal state. For theoriginal RC4-256, our attack has total complexity of around 2241 opera-tions, whereas the best previous attack needs 2779 of time. Moreover, weshow that if the secret key is of length N bits or longer, the new attackworks faster than an exhaustive search. The algorithm of the attack wasimplemented and veri�ed on small cases.Keywords: RC4, state recovery attack, key recovery attack.1 IntroductionRC4 [Sch96] is a stream cipher designed by Ron Rivest in 1987, and since then ithas been implemented in many various software applications to ensure privacyin communication. It is, perhaps, the most widely deployed stream cipher andits most common application is to protect Internet tra�c in the SSL protocol.Moreover, it has been implemented in Microsoft Lotus, Oracle Secure SQL, etc.The design of RC4 was kept secret until 1994 when it was anonymously leakedto the members of the Cypherpunk community. A bit later the correctness ofthe algorithm was con�rmed.In this paper we study a family RC4-N of RC4 like stream ciphers, where Nis the modulus of operations. The internal state of RC4 is two registers i, j ∈ ZNand a permutation S of all elements of ZN . Thus, RC4 has a huge state of
log2(N

2N !) bits. For the original version, when N = 256, the size of the state is
≈ 1700 bits. This makes any time-memory trade-o� attacks impractical. RC4-256 uses a variable length key from 1 to 256 bytes for its initialisation.The initialisation procedure of RC4 has been thoroughly analysed in a largenumber of various papers, see e.g. [MS01,Man01,PP04]. These results show thatthe initialisation of RC4 is weak, and the secret key can be recovered with a smallportion of data/time. Because of these attacks, RC4 can be regarded as broken.However, if one would tweak the initialisation procedure, the cipher becomessecure again.



The simplicity of the keystream generating algorithm of RC4 has attractedmany cryptanalysis e�orts. In most analyses the scenario assumes that keystreamof some length is given, and either a distinguishing ([Gol97,FM00,Max05,Man05])or a state recovery ([KMP+98]) attack is of interest. A state recovery attack canbe used to determine the actual security level of a cipher, if the initial internalstate is considered as a secret key. The �rst state recovery attack was proposedby Knudsen et al in 1998 [KMP+98]. This had a computational complexity of
2779. Some minor improvements were found in other literature, e.g. [MT98], butstill, there is no attack even close to 2700. One interesting attempt to improve theanalysis was recently done in [Man05]. Although that attack is only a potentialone, the pretending time complexity claimed was around 2290.In this paper we propose a new state recovery attack on RC4-N . For theoriginal design RC4-256 the total time complexity of the attack is less than 2241,requiring keystream of a similar length. This means that there is no additionalgain in using a secret key longer than 30 bytes. We also show that in general if thesecret key is of length N bits or longer the new attack is faster than exhaustivekey search.The idea of the new attack is as follows. The algorithm searches for aplace in the keystream where the probability of a speci�c internal state, compli-ant with a chosen pattern, is high. Afterwards, the new state recovery algorithmis used together with a small portion of data (around 2N output words) in orderto recover the internal state of the cipher in an iterative manner. This algorithmhas been implemented and veri�ed for small values of N , it has determined thecorrect internal state in every simulation run. The success rate of the full attackis shown to be at least 98%. For large values of N , where simulations wereimpossible, an upper bound for the average complexity of the attack is derivedand calculated.This paper is organized as follows. In Section 2 the new iterative state re-covery algorithm is described in detail. Afterwards, Section 3 introduces variousproperties of a pattern that are needed for the recovering algorithm. An e�ectivesearching algorithm to �nd such patterns is also proposed in Appendix B (due tothe page limitation and clarity of presentation). Section 4 describes several tech-niques to detect speci�c states by observing the keystream, and also introducesadditional properties of a pattern needed for detection purposes. Theoreticalanalysis of the state recovery algorithm and derivation of its complexity func-tions are performed in Appendix C. All pieces of the attack are then combined inSection 5. Finally, we perform a set of simulations of the attack, summarize theresults and conclude in Section 6. The paper ends with suggestions for furtherimprovements and open problems in Section 7.1.1 NotationsAll internal variables of RC4 are over the ring ZN , where N is the size of thering. To specify a particular instance of the cipher we denote it by RC4-N . Thus,the original design is RC4-256. Whenever applicable, + and − are performed inmodulo N . At any time t the notation at denotes the value of a variable a at time



t. The keystream is denoted by z = (z1, z2, . . .), where zi is a value 0 ≤ zi < N .In all tables probabilities and complexities will be given in a logarithmical formwith base 2.1.2 Description of the Keystream Generator RC4-NThe new attack targets the keystream generation phase of RC4 and, thus, theinitialisation procedure will not be described. We refer to, e.g., [Sch96] for a fulldescription of RC4. After the initialisation procedure, the keystream generationalgorithm of RC4 begins. Its description is given in Figure 1.Internal variables:
i, j � integers in ZN

S[0 . . . N − 1] � a permutation of integers 0 . . . N − 1
S[·] is initialised with the secret keyThe keystream generator RC4-N
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(A) i = i+ 1(B) j = j + S[i](C) swap(S[i], S[j])(D) zt = S[S[i] + S[j]]Fig. 1. The keystream generation algorithm of RC4-N .2 New State Recovery Algorithm2.1 Previous Analysis: Knudsen's AttackIn [KMP+98] Knudsen et al. have presented a basic recursive algorithm to recoverthe internal state of RC4. It starts at some point t in the keystream z given kknown cells of the permutation St, which helps the recursion to cancel unlikelybranches. The idea of the algorithm is simple. At every time t we have fourunknowns:
jt, St[it], St[jt], S−1

t [zt]. (1)One can simply simulate the pseudo random generation algorithm and, when nec-essary, guess these unknown values in order to continue the simulation. The re-cursion steps backward when a contradiction is reached due to previously wrongguesses. Additionally, it can be assumed that some k values are a priori known(guessed, given, or derived somehow), and this may reduce the complexity ofthe attack signi�cantly. An important note is that the known k values shouldbe located in a short window of the �working area� of the keystream, otherwisethey cannot help to cancel hopeless branches.



The precise complexity of the attack was calculated in [KMP+98], and severaltables for various values of N and k were given in Appendices D.1 and D.2of [Man01]. As an example, the complete state recovery attack on RC4-256would require time around 2779.2.2 Our Algorithm for State RecoveryIn this section we propose an improved version of the state recovery algorithm.Assume that, at some time t in a window of length w + 1 of the keystream z,all the values jt, jt+1, jt+2, . . . , jt+w are known. This means that for w steps thevalues St+1[it+1], . . . , Si+w[it+w] are known as well, since they are derived as
St+1[it+1] = jt+1 − jt, ∀t. (2)Consequently, w equations of the following kind can be collected:

S−1
k [zk] = Sk[ik] + Sk[jk], k = t + 1, . . . , t + w, (3)where only two variables are unknown,

S−1
k [zk], Sk[jk], (4)instead of four in Knudsen's attack, see (1). Let the set of consecutive w equationsof the form (3) be called a window of length w.Since all js in the window are known, then all swaps done during these wsteps are known as well. This makes it possible to map the positions of theinternal state St at any time t to the positions of some chosen ground state St0at some ground time t0 in the window. For simplicity, let us set t0 = 0.Our new state recovery algorithm is a recursive algorithm, shown in Figure 2.It starts with a collection of w equations, and attempts to solve them. A singleequation is called solved or processed if its corresponding unknowns (4) have beenexplicitly derived or guessed. During the process, the window will dynamicallyincrease and decrease. When the length of the window w is long enough (say,

w = 2N), and all equations are solved, the ground state S0 is likely to be fullyrecovered.Now we give a more detailed description of the di�erent parts of the algo-rithm.Iterative Recovering (IR) Block The Iterative Recovering block receives anumber a of active equations (not yet processed) in the window of length was input, and tries to derive the values of St[jt]s and S−1
t [zt]s. To do that, theIR block goes through two steps iteratively, until no more new derivations arepossible. If all previous guesses were correct, then all newly derived values (cellsof the ground state) will be correct with probability 1. Otherwise, when the IRblock �nds a contradiction the recursion steps backward. The two steps are asfollows.
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Fig. 2. New state recovery algorithm.A. Assume that, for one of the active equations its output symbol zt is alreadyallocated somewhere in the ground state. I.e., the value S−1
t [zt] is known,and the second unknown St[jt] can explicitly be derived using (3).A contradiction arises if (a) St[jt] is already allocated and it is not equal tothe derived value; (b) the derived value already exists in some other cell.B. Already allocated values may give the value of St[jt] in another equation.Consequently, a new value S−1

t [zt] can be derived via (3), which might pos-sibly cause a contradiction.Find and Guess the Maximum Clique (MC) Block If no more activeequations can explicitely be solved, S−1
t [zt] for one t has to be guessed. TheFind and Guess the Maximum Clique block analyses given active equations,and chooses the element that gives the maximum number of new derivations inconsecutive recursive calls of the IR block. This element is then guessed.The analysis is very simple. Let a active equations be vertices vt in a graphrepresentation. Two vertices vt′ and vt′′ are connected if zt′ = zt′′ and/or St′ [jt′ ]and St′′ [jt′′ ] refer (like pointers) to the same cell of the ground state. Guessingany unknown variable in any connected subgraph solves all equations involvedin that subgraph. Therefore, let us call these subgraphs cliques. The MC blocksearches for a maximum clique, and then guess one S−1

t [zt] for one of the equa-tions belonging to the clique. Afterwards, the IR block is called recursively.Window Expansion (WE) Block Obviously, the more equations we have thefaster the algorithm works. Therefore, a new equation is added to the systemas soon as the missing value S[i] in the beginning or in the end of the windowis derived. The Window Expansion block checks for this event and dynamically



extends the window. Sometimes several equations are added at once, especiallyon the leafs of the recursion.Guess One S[i] (GSi) Block If there are no active equations but the groundstate S0 is not yet fully determined, the window is then expanded by a directguess of S[i], in front or in back of the window. Then the WE, IR and MC blockscontinue to work as usual. Additional heuristics can be applied for choosing whichside of the window to be expanded for a larger success.Appendix A provides an example that shows the steps of the outlined algo-rithm.3 Precomputations: Finding Good PatternsThe algorithm presented in the previous section is used in the full state recoveryattack as a part of it. Every time when the algorithm is running at some pointof the keystream, its e�ectiveness depends on certain properties of the currentinternal state. Although these properties are not visible for the intruder, she mayhave a good guess about places in the keystream where the internal state hasgood properties (see Section 4), and apply the state recovery algorithm only atthose places.In this section we will de�ne patterns (see De�nition 1), they determinehuge sets of internal states with common properties. If, for instance, a patternhas a large window then this certainly helps decreasing the complexity of thealgorithm. However, the probability that the internal state is compliant with acertain pattern decreases with the number of conditions put on the pattern.In this section we discuss properties of patterns that in�uence on the com-plexity of the attack, and also study their availability. We have also developedan e�cient algorithm for �nding these paterns, and it is located in Appendix B.3.1 Generative StatesLet us start with the following de�nitionDe�nition 1 (d-order pattern). A d-order pattern is a tuple
A = {i, j, P, V }, i, j ∈ ZN , (5)where P and V are two vectors from Z

d
N with pairwise distinct elements. At atime t the internal state is said to be compliant with A if it = i, jt = j, and

d cells of the state St with indices from P contain corresponding values from
V . utThe example in Figure 4 in Appendix A illustrates how a 5-order patternallows to receive a window of length 15. However, the higher the order, the lessthe probability of such a constraint to happen. Thus, we are interested in �ndinga low order pattern which generates a long window.



De�nition 2 (w-generative pattern). A pattern A is called w-generativeif for any internal state compliant with A the next w clockings allow to derive wequations of the form (3), i.e., consecutive w + 1 values of js are known. utTable 1 demonstrates a 4-order 7-generative pattern A={-7,-8,{-6, -5, -4,0}, {6, -1, 2, -2}}, that supports the above de�nitions. Eight equations involvesymbols of the keystream zt+1, . . . , zt+8 associated with a certain time t. We saythat the keystream is true if the internal state at time t is compliant with thepattern, otherwise we say the keystream is random.Let another pattern B be derived from A as
B = A + τ = {i + τ, j + τ, P + τ, V }, (6)for some �shift� τ . The pattern B is likely to be w-generative as well. Thishappens when the properties of A are independent of N , which is the usual case.

it jt S[i] S[j] S[i] + S[j] zt −6 −5 −4 −3 −2 −1 0 1 2 3 4 5

−7 −8 � � � � 6 −1 2 x1 x2 x3 −2 x4 x5 x6 x7 x8

−6 −2 6 x2 6 + x2 ∗ x2 −1 2 x1 6 x3 −2 x4 x5 x6 x7 x8

−5 −3 −1 x1 −1 + x1 ∗ x2 x1 2 −1 6 x3 −2 x4 x5 x6 x7 x8

−4 −1 2 x3 2 + x3 ∗ x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

−3 −2 −1 6 5 x8 x2 x1 x3 6 −1 2 −2 x4 x5 x6 x7 x8

−2 −3 −1 6 5 x8 x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

−1 −1 2 2 4 x7 x2 x1 x3 −1 6 2 −2 x4 x5 x6 x7 x8

0 −3 −2 −1 −3 −2 x2 x1 x3 −2 6 2 −1 x4 x5 x6 x7 x8

1 ∗ x4 ∗ ∗ ∗Table 1. An example of a 4-order 7-generative pattern.3.2 AvailabilityWe have done a set of simulations in order to �nd maximum w-generative d-orderpatterns, denoted by M
d
. The results are given in Table 7(a) in Appendix D.Searching for a high order pattern is a challenging task since the computationalcomplexity grows exponentially with d. The best result achieved in our work isa 14-order 76-generative pattern M14.Real values from our simulations Approximated values

d = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
wmax = 6 10 15 21 27 31 37 42 50 55 61 68 76 82 88 94 100 106 112 118Table 2. Dependency of the maximum w from d, simulated and approximated values.Table 2 shows the dependency of a maximum achievable generativeness wmaxfrom the order d. We can note that this dependency is almost linear, and itconverges to wmax = 6d + λ as d → ∞. We make the following conjecture.



Conjecture 1. The rate of wmax

d ≈ 6 as d → ∞.1 utThat conjecture allows us to make a prediction about certain parametersfor patterns with large d. These could not be found due to a very high pre-computation complexity, but they are needed to analyse the attack for large N(N = 128, 256 in Table 3). However, given those parameters, d and w, we canderive theoretical complexities of the attack on average. This has been done inAppendix C.An e�cient search algorithm for patterns with desired properties is given inAppendix B.4 Detection of Patterns in the KeystreamIn the previous section we have studied properties of a pattern that are desirablefor the state recovery algorithm to work fast and e�cient. We have also shown(in Appendix B) how these patterns can be found, and introduced an e�cientsearching algorithm.In this section we show how the internal state of RC4, compliant to a chosenpattern, can be detected by observing the keystream. If the detection is verygood, then the state recovery algorithm might only have to be executed once, atthe right location in the keystream.The detection mechanism itself can be trivial (no detection at all), in whichcase the algorithm has to be run at every position of the keystream. On theother hand, a good detection may require a deep analysis of the keystream,where speci�c properties of the pattern can be used e�ciently.4.1 First Level of AnalysisThe internal state of RC4 compliant to a d-order pattern A can be regarded asan internal event with probability
Pr{Eint} = N−d−1. (7)When the internal event occurs, there could exist an external event Eext ob-served in the keystream, and associated with the pattern A, i.e., Pr{Eext|Eint} =

1. Applying Bayes' law we can derive the detection probability Pdet of the pattern
A in the keystream as

Pdet = Pr{Eint|Eext} =
Pr{Eint}
Pr{Eext}

. (8)1 Indeed, the �jump� of wmax as d increments by one is the sequence Γ={4, 5, 6, 6, 4,6, 5, 8, 5, 6, 7, 8, . . .}. Obviously, for small d this �jump� is small, and it is notablethat the �jump� increases for larger d. In our simulations heuristics were used (seeSection B) when searching patterns for d ≥ 6. This means that our �jumps� in thesequence Γ could possibly be larger if an optimal searching technique is applied,since our heuristic cannot guarantee that we get a pattern with the longest window.This suggests that the ratio w → 6d as d→ ∞ seems quite a fair conjecture.



Our goal in this section is to study possible external events with high Pdet inorder to increase the detection of the pattern.De�nition 3 (l-de�nitive pattern). A w-generative pattern A is called l-de�nitive if there are exactly l out of w equations with determined S[j]s. utIt means that in l equations S[i] + S[j] are known. If, additionally, z′ =
S[S[i]+S[j]] is also known, then the correct value of zt = z′ at the right position
t of the keystream z detects the case �the state at time t is possibly compliantto the pattern�. Otherwise, when zt 6= z′, it says that �the state at time t cannotbe compliant to the pattern�.For detection purposes a large l (up to d) is important. From our experimentswe found that, however, a large l can be achieved via a slight reduction of theparameter w. This leads us to one more conjecture.Conjecture 2. For any d and w = wmax − λ there exist a pattern with l = d,where λ is relatively small 2. utIn the following de�nition we introduce other properties of a patter that areimportant for its good detection via the keystream.De�nition 4 (bα, bβ, bγ-α,β,γpredictive pattern). Let us have an l-de�nitivepattern A and consider only those equations where S[j]s are determined. Then,the pattern A is called bα-αpredictive if for bα of the l equations S[S[i] + S[j]]is determined. For the remaining l − bα equations two additional de�nitions areas follows. The pattern A is called bβ-βpredictive if for bβ pairs of the l − bαequations the unknowns S[S[i]+S[j]]s must be the same. The set of bβ pairs mustbe of full rank. The pattern A is called bγ-γpredictive if the l − bα equationscontain exactly bγ di�erent variables of S[S[i] + S[j]]. utThese types of predictiveness are other properties of a pattern visible in thekeystream. For example, it is not only necessary to search for known z′ values (bαof such), but one can also require that certain pairs of the keystream symbols (bβof such) are equal zt′ = zt′′ , which also helps to detect the pattern signi�cantly.The parameter bα is usually quite moderate and to have it larger than 15is quite di�cult. However, the other criteria are more �exible and can be large.These new parameters follow the constraint

bα + bβ + bγ = l ≤ d. (9)Consider the remaining w− l equations of the pattern A where S[j]s are notdetermined. Let at time instances t1 and t2 one pair of these equations be such2 Table 6(a) in Appendix D contains patterns Xs with l = d where w is still large,which supports the above conjecture. Indeed, Table 4 in Appendix B shows howthe number of available patterns grows when relaxing the condition put on w. I.e.,a slight reduction of w increases the chance of �nding a pattern with d = l. Thismakes the conjecture fair.



that the S[i] values and the S[j] pointers are equal. If the distance ∆t = t2 − t1is small, it is likely that the output z1 is the same as z2. The probability of thisevent is
Pr{z1 = z2|∆t} >

(

1 − ∆t

N

)

·
(

1 − 1

N

)∆t

≈ exp

(

−2∆t

N

)

. (10)De�nition 5 (bθ-θpredictive pattern). A pattern A is called bθ-θpredictiveif the number of such pairs (described above) is bθ. Let the time distances of thesepairs be ∆1, . . . , ∆bθ
, then the cumulative distance is the sum Πθ = Σi∆i utThese four types of predictiveness are direct external events for a pattern.One should observe the keystream and search for certain bα symbols, checkanother bβ and bθ pairs of symbols that they are equal, and also check that agroup of bγ symbols are di�erent from the values of V and from each other.Thus, we have

Pr{Eext} = N−bα−bβ−bθ ·
[

(N − d)!

N bγ (N − d − bγ)!

]

Pr{Eint} ≈ N−d−1 · e−2Πθ/N .

(11)The example in Table 1 is a 4-de�nitive bα = 1, bβ = 1, bγ = 2, bθ = 0-predictive pattern. For detection one has to test that zt+6 = −2, zt+3 = zt+4, and
zt+4, zt+5 are di�erent from the initial values at V and zt+4 6= zt+5. I.e., when,for example, N = 64, the detection probability is 64−5 ÷ (64−2 · 60 · 59/642) ≈
64−2.96 3.4.2 Second Level of AnalysisIn fact, the �rst level of analysis allows to detect a pattern with probability atmost N−1 (because j is not detectable), whereas with the second level of analysisit can be 1. Let us introduce a technique that we call a chain of patterns.De�nition 6 (chain of patterns A → B, distance, intersection). Let ushave two patterns A = {ia, ja, Pa, Va} and B = {ib, jb, Pb, Vb}. An event whentwo patterns appear in the keystream within the shortest possible time distance
σ is called chain of patterns, and is denoted as A → B if B appears after A.The chain distance σ between two patterns A and B is the shortest possibletime between A's ending and B's beginning of their windows, i.e.,

σ = ib − (ia + wa) mod N. (12)The intersection of A and B is the number ξ of positions in A that arereused in B. These positions must not appear as S[i] during σ clockings whilethe chain distance between A and B is approached. ut3 Since γ-predictiveness has a minor in�uence on detection, we skip this parameter infuture calculations.



For example, let A = {0, 0, {1, 3, 5, 6, 7, 8, 22, 23}, {2, 8,−3,−2, 1, 7, 4,−9}}andB = {34, 34, {35, 36, 37, 38, 39, 44, 48, 52}, {8,−2, 1, 2, 4,−5, 5, 3}}. After wa =
30 clockings the �rst pattern becomes A′ = {30, 28, {15, 28, 30, 35, 36, 37, 38, 39},
{−3,−9, 7, 8,−2, 1, 2, 4}}. Obviously, the last ξ = 5 positions can be reused in
B, and after σ = 4 clockings a new pattern B (wb = 34) can appear if jt+34 = jb.The probability that the chain A → B appears is N−9 · N−4, multiplied by theprobability that 5 elements from A′ stay at the same locations during the next 4clockings. This is much larger than the trivial N−9 ·N−9. Thus, a more generaltheorem can be stated.Theorem 1 (chain probability). The probability of a chain A → B to appearis

PA→B = Pr{Eint} ≈ N−(da+db+2−ξ) · e−2(Πθa+Πθb)/N · e−ξ. (13)Proof. In [Man01] it has been shown that ξ elements stay in place during Nclockings with an approximate probability e−ξ. The remaining part comes froman assumption that the internal state is random, from where the proof follows.
utObviously, the probability of the external event for the chain is

Pr{Eext} = N−(bαa+bβa+bθa)−(bαb+bβb+bθb), (14)which can be smaller than Pr{Eint} (see Y4
in Table 6 in Appendix D), confusingthe equation (8). This happens since Pr{Eext} is calculated assuming that thekeystream is random. However, in RC4 only a portion of the observed externalprobability space can appear (which is another source for a distinguishing attack,but it is out of scope of this paper). Therefore, in the case when Pr{Eext} <

Pr{Eint} we simply assume that the detection probability is 1.Table 6 in Appendix D presents a few examples with a good trade-o� (basedon our intuition) between w and detectability for various d. Since the computa-tion time for searching such patterns with multiple desired properties is reallyhuge, only a few examples for small d were given. However, we believe that forlarge d it is possible to detect such patterns with a high probability, up to 1,applying the two proposed levels of analysis.5 Complete State Recovery Attack on RC45.1 Attack Scenario and Total ComplexityRecall pattern detection techniques from Section 4. In the attack scenario anadversary analyses the keystream at every time t, and applies the state recoveryalgorithm if the desired internal event (pattern) is detected. In all cases exceptone the recovering algorithm deals with a random keystream.



Proposition 1 (Total Attack Complexities). Let the detection probabilitybe Pdet, then the total time CT and data CD complexities of the attack are
CT = Pr{Eint}−1 + (P−1

det
− 1) · CRand + 1 · CTrue,

CD = Pr{Eint}−1.
(15)

ut5.2 Success Rate of the AttackThe complexities CTrue and CRandom are upper bounds for the average time thealgorithm requires. It means that for some cases it could take more time thanthese bounds. In order to guarantee the upper bound of the total (not aver-age) time complexity one can terminate the algorithm after, for example, Cthroperations. In this case the success rate of the attack can be determined.
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Fig. 3. Probability density (left) and cumulative (right) functions of the time CTrue inlogarithmical form (k = log2 CTrue). The scenario is N = 64,M
8
and 2000 samples.Figure 3 shows density and cumulative functions for the time complexityof an example attack scenario. It shows that around 98% of all simulations ofthe attack have time smaller than the average 229.28 (vertical line). When thekeystream is random the termination makes the average time bound CRandom evensmaller, since the random case is likely to be repeated very many times and thesecond term in (15) can only decrease.The plots in Figure 3 also show that even if the termination of the algorithmis done on the level Cthr =

√
CTrue (≈ 215), the success rate of the attack is stillvery high. I.e., the state recovery algorithm on RC4-64 can be done in time 215with success probability 35%! If a similar situation happens for large N (e.g.,

N = 256), then the full time complexity can be signi�cantly decreased (perhaps,down to a square root of the estimated average complexity), and the successprobability can still be very large.



6 Simulation Results and ConclusionsWe have selected a set of test cases with various parameters and patters, andderived total data and time complexities of the new attack. Table 3 presents theresults of this work. For example, when N = 64, the total complexity of the newattack is upper bounded by 260, if the pattern X9 is used. This is much fasterthan, for example, Knudsen's attack, which complexity for this case is 2132.6.Even if d = 9 elements of the state are known, Knudsen's attack needs 298.1 oftime, which is still much higher. The complexity of a potential attack recentlydiscussed by I. Mantin in [Man05] 4 is also higher. As it was shown in Section 5.2,the success rate of the new attack is at least 98%.
N N = 64 N = 100 N = 128 N = 160 N = 200 N = 256Cases I II III IV V VI VII VIII IX X XI XII XIIIDescriptions of the cases (? � are hypothetical cases)Pattern M

8
Y

8
X

9
X

11
M

13
M

14
? M

14
? M

14
? M

14
?

d 8 8 9 11 13 14 17 14 18 14 23 14 29
w 37 29 41 49 68 76 92 76 102 76 132 76 168
l 6 6 5 11 9 10 10 10 10 10 14 10 17

bα 0 4 4 9 0 0 10 0 11 0 10 0 11
bβ 1 1 0 0 2 2 0 2 0 2 2 2 4
bγ 5 1 1 2 7 8 0 8 0 8 2 8 2
bθ 0 0 2 0 2 2 0 2 7 2 4 2 12
Πθ 0 0 4 0 4 4 0 4 � 4 � 4 �Internal/external/detection probabilities

Pint -54.0 -65.8 -60.0 -79.7 -93.0 -105.0 -112.0 -109.8 -139.1 -114.7 -183.5 -120.0 -240.0
Pext -6.0 -60.0 -36.0 -59.8 -26.6 -28.0 -70.0 -29.3 -131.8 -30.6 -122.3 -32.0 -216.0
Pdet -48.0 -5.8 -24.0 -19.9 -66.4 -77.0 -42.0 -80.5 -7.3 -84.1 -61.2 -88.0 -24.0Complexities of the state recovery algorithmwhen the keystream is true/randomTheor. 20.5 58.2 22.8 107.8 10.0 71.3 71.7 191.1 131.7 317.4 121.3 507.4 217.1

C
R
a
n
d Attun. 15.5 57.8 � 107.5 � 66.3 � 179.2 � 302.6 � 491.8 �Theor. 35.0 64.9 30.9 120.4 34.5 94.7 102.0 213.0 138.2 335.6 157.5 519.6 225.4Attun. 30.3 57.6 � 108.3 31.8 85.5 � 185.1 � 309.9 � 501.8 �

C
T
r
u
e Real 29.3 � � � 29.1 � � � � � � � �Total data/time complexity, and the comparisonwith previous attacks

CK(0) 132.6 236.6 324.8 431.4 572.0 779.7Knud- sen's CK(d) 101.7 101.7 98.1 189.3 181.0 261.3 256.9 364.6 346.1 501.9 458.2 705.9 629.3Mantin's po-tential attack 73 114 147 186 243 290
CD 54.0 65.8 60.0 79.7 93.0 105.0 112.0 109.8 139.1 114.7 183.4 120.0 240.0Our attack CT 63.5 63.4 60.0 127.4 93.1 143.4 113.7 271.7 140.4 386.7 184.0 579.8 241.7Table 3. Simulation results and comparisons with previous attacks.4 Mantin detects a large number of bytes of the state, and then applies Knudsen'sattack given those bytes. However, to make these knowns to reduce the complexityof Knudsen's attack they must be located in a short window all together, and thisis not the case. This fact is con�rmed in [Man05] (Section �State Recovery Attack�).



Table 3 also contains intermediate probabilities and complexities for the at-tack, including theoretical (∆ = 0) and attuned (∆ = 2) values for CRand and
CTrue. When it was possible, the real attack on a true keystream was simulated(real complexities for CTrue are shown in italic). In these simulations the completestate of RC4 was successfully recovered for every randomly generated keystreamcompliant with the corresponding pattern.For larger N , patterns of a high order are needed to receive an attack of lowcomplexity. The largest pattern that we could �nd in this work is M

14
, and thiswas applied to attack RC4-N with N = 128, 160, 200, 256. These attack scenariosare those that we have in our hands already. However, the complexities receivedare not optimal, but they are still lower than in Knudsen's attack. Conjecture 1and also discussions in Section 4 make it possible to approximate the parametersof a hypothetical pattern that is likely to exist (? � patterns). To be secure, werelate d and w as w = 6d−6, with a con�dence gap of 6 positions. The remainingparameters were chosen moderate as well. As the result, we obtained an attackon RC4-256 with the (upper bounded) total complexity of 2241.7, and this is thebest state recovery attack known at the moment.In general, we have noted the following tendency. For RC4-N with a secretkey of length N bits or longer, the new attack can recover the internal statemuch faster than an exhaustive search. This observation can also be seen fromthe results in Table 3.As the last point of the discussions we note that the key recovery attack canbe easily converted from a state recovery attack. There are several papers dealingwith recovering the secret key from a known internal state [MS01,Man01,PM07].However, this part works much faster than currently known state recovery at-tacks, and, therefore, we just refer to these papers without giving details.7 Further Improvements and Open ProblemsPattern detection improvements. With a chain of patterns described in Section 4one could reach a good detection. However, not only forward direction of chain-ing can be considered, but also backward one. Additionally, there is a possibilityto analyse longer sequences of patterns in order to have a good detectability. An-other idea is to use unusual recyclable patterns in a similar manner as in [Man05].The di�erence is that these patterns are both recyclable and have a long window.For example, A = {0,−4, {6, 4, 1, 5, 3}, {0, 1, 7,−2,−1}}.State recovery algorithm improvement. The GSi block can choose the corner(left or right) of the window to be extended by an additional heuristic analysis ofthe current situation during the process. Another improvement is achieved if theMC block could speculatively run the recursion for additional 1-3 extra forwardsteps for every possible guess, and, afterwards, make such a guess for which thenumber of sub branches is the minimum. The average time of the attack for thisstrategy is reduced.Derivation and statistics. Our investigation showed that the derived theoret-ical upper bound gives a much larger complexity than the one received from the



real simulations of the attack. Obviously, a better analysis of the algorithm'scomplexity is needed. This would allow a more accurate estimation of the totalcomplexity, and it might improve the complexities in Table 3 signi�cantly. An-other interesting problem is to determine the density function of the recoveringalgorithm, likewise in Figure 3. This may allow us to decrease the complexity insquare root times, maintaining a high success rate.Other open problems. The search for patterns of a higher order with longwindows is another challenging open question. We have shown that there arechains of patterns with short distances. The �rst pattern is used for the recover-ing algorithm, and the second one is for detection. However, another interestingquestion is whether or not the second pattern can also be used in the recoveringalgorithm.We believe that the outlined open problems have a huge potential for reducingthe complexity of the attack on RC4. Perhaps, very soon we will be witnessingan attack of complexity lower than 2128 on the full RC4-256.AcknowledgementsWe thank Martin Hell and also anonymous reviewers for their signi�cant editorialcomments.References[FM00] S. R. Fluhrer and D. A. McGrew. Statistical analysis of the alleged RC4keystream generator. In B. Schneier, editor, Fast Software Encryption 2000,volume 1978 of Lecture Notes in Computer Science, pages 19�30. Springer-Verlag, 2000.[Gol97] J. Dj. Goli¢. Linear statistical weakness of alleged RC4 keystream generator.In W. Fumy, editor, Advances in Cryptology�EUROCRYPT'97, volume1233 of Lecture Notes in Computer Science, pages 226�238. Springer-Verlag,1997.[KMP+98] L. R. Knudsen, W. Meier, B. Preneel, V. Rijmen, and S. Verdoolaege. Anal-ysis methods for (alleged) RC4. In K. Ohta and D. Pei, editors, Advances inCryptology�ASIACRYPT'98, volume 1998 of Lecture Notes in ComputerScience, pages 327�341. Springer-Verlag, 1998.[Man01] I. Mantin. Analysis of the stream cipher RC4. Master's thesis, The Weiz-mann Institute of Science, Department of Applied Math and ComputerScience, Rehovot 76100, Israel., 2001.[Man05] I. Mantin. Predicting and distinguishing attacks on RC4 keystream gener-ator. In R. Cramer, editor, Advances in Cryptology�EUROCRYPT 2005,volume 3494 of Lecture Notes in Computer Science, pages 491�506, 2005.[Max05] A. Maximov. Two linear distinguishing attacks on VMPC and RC4A andweakness of RC4 family of stream ciphers. In H. Gilbert and H. Handschuh,editors, Fast Software Encryption 2005, volume 3557 of Lecture Notes inComputer Science, pages 342�358. Springer-Verlag, 2005.



[MS01] I. Mantin and A. Shamir. Practical attack on broadcast RC4. In M. Matsui,editor, Fast Software Encryption 2001, volume 2355 of Lecture Notes inComputer Science, pages 152�164. Springer-Verlag, 2001.[MT98] S. Mister and S. E. Tavares. Cryptanalysis of RC4-like ciphers. In SelectedAreas in Cryptography�SAC 1998, Lecture Notes in Computer Science,pages 131�143, 1998.[PM07] G. Paul and S. Maitra. Permutation after RC4 key sheduling reveals thesecret key. In Selected Areas in Cryptography�SAC 2007, volume 4876 ofLecture Notes in Computer Science, pages 360�377. Springer-Verlag, 2007.Available at http://eprint.iacr.org/2007/208, June 1, 2007 (accessed Jan-uary 10, 2008).[PP04] S. Paul and B. Preneel. A new weakness in the RC4 keystream generatorand an approach to improve the security of the cipher. In B. Roy andW. Meier, editors, Fast Software Encryption 2004, volume 3017 of LectureNotes in Computer Science, pages 245�259. Springer-Verlag, 2004.[Sch96] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Codein C. John Wiley&Sons, New York, NY, 2nd edition, 1996. ISBN 0-471-11709-9.A Example Support for the State Recovery AlgorithmFigure 4 illustrates an example of the process of the IR block. In the example westart with speci�c values of i and j, and also d = 5 cells of the state S are �lledwith certain values, whereas the remaining cells are unknown. This constraintallows to collect w = 15 equations of the form (3). The keystream is given in therightmost column of the table.The �rst iteration, in Figure 4(b), �nds that z6 = 4 and z8 = −2 are alreadyallocated, thus solving equations 6 and 8 (s4 = 10, s9 = 5). Afterwards, given
s9 = 5, the IR block solves the equation 14 and successfully checks for a con-tradiction, in Figure 4(c). Finally, after the step (e) four additional cells of thestate S were derived with probability 1.When the IR block is processed, the input to the MC block is the maximumclique of size 4 equations with 5 unknowns, shown in Figure 4(f). It means thatguessing only one unknown determines four other ones. Furthermore, the spaceof possible guesses is signi�cantly reduced due to the higher probability of acontradiction to occur.B Searching TechniqueSince the search space for a d-order pattern grows exponentially with d, only pat-terns of order d ≤ 6 were analysed before in various literature, e.g., in [Man05]. Inthis section we suggest a few techniques that accelerate this search signi�cantly,and allow to search and analyse patterns of order up to d ≤ 15, approximately,on a usual desktop PC.First, we need to make some observations on the construction of patterns.Afterwards, several ideas based on the observation for improving the algorithmfollow.
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PSfrag replacementsFig. 4. Example of the iterative reconstruction process.As can be seen from Table 7 in Appendix D, all �good� patterns found have

V s with values from a short interval Iδ = [−δ . . .+δ], where δ ≈ 10 . . .25 is quite
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maximumw

δFig. 5. Dependency of the maximum w from δ for various d.conservative. Figure 5 illustrates the dependency of the maximum achievable wfrom δ. From this we make the following conjecture.Conjecture 3. A pattern with the largest w is likely found among all possiblecombinations for i = 0, j ∈ Iδ, V ∈ Id
δ , with a moderate value of δ � N . utThis conjecture will be used as the basis for a signi�cant improvement in thesearching technique of such patterns.Table 4 provides the number of patterns for δ = 15, and various valuesof d and w. When d and δ are �xed, the amount of desired patterns can beexponentially increased by letting w be slightly less than wmax. This approachcan help �nding patterns with additional properties which are introduced inSection 4.

d The number of patterns Ad when δ = 15.
↓ w → 15 14 13 12 11 10 9 8 7 64 #{A4} → 1 3 10 26 226 863 5234 21702 114563 853012

w → 21 20 19 18 17 16 15 14 13 125 #{A5} → 1 4 6 15 66 252 652 1879 6832 27202
w → 27 26 25 24 23 22 21 20 19 186 #{A6} → 1 2 7 42 81 177 371 799 2646 10159Table 4. The number of di�erent constraints for speci�c d and w, when δ = 15.The �rst idea is to set i = 0 due to (6), and for the remaining variables onlya small set of values Iδ for some δ should be tested due to Conjecture 3.A straightforward approach would be to allocate d values in a vector S andthen to check the desired properties of the pattern. The time complexity of this



approach is O
((

N
d

)(
|Iδ|
d

)
|Iδ|

), which is still very large. Our second idea is toallocate a new element in S only when it is necessary. This will signi�cantlydecrease the time complexity.
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Fig. 6. Recursive algorithm for searching patterns with large w.The diagram of a recursive algorithm exploiting the �rst two ideas is shownin Figure 6, but it can be improved with the following heuristic. The third ideais to start searching for a desired pattern somewhere in the middle of its futurewindow. Let us split d as d = dfwd+dback and then start the algorithm in Figure 6allowing to allocate exactly dfwd cells of S. At the point (∗) the current length ofthe window w is compared with some threshold wthr. If w ≥ wthr, then a similarrecursive algorithm starts, but it goes backward and allocates remaining dbackcells of S. This double-recursion results in a pattern with w likely to be close tothe maximum possible length of the window.C Complexity Analysis of the Recovering AttackSince for large inputs it is not always possible to make real simulations of thenew recovering attack, we are interested in a theoretical upper bound of itscomplexity. In this section we explain how this complexity can be derived, veri�edand used.C.1 Tool for Simulations and AnalysisThe new recovering algorithm is a recursion as shown in Figure 7(a). The nodesare IR and WE blocks, whereas each branch is initiated by MC or GSi blocks.



A branch is terminated when a contradiction occurs, and only one path leads tothe correct solution, where the internal state is successfully recovered.We measure the complexity of the attack as the number of branches, i.e., thenumber of guesses in the MC and GSi blocks done.
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Fig. 7. (a) Attack as a recursion; (b) Three parts of the tool for simulations.Let us introduce a three-part tool, shown in Figure 7(b), in order to calcu-late the complexity of the attack when a certain pattern is given. We give adescription of each of the three parts.In the �rst part the simulation of the attack with a certain pattern is launched(all four blocks, IR, WE, MC, GSi, are working), and the number of branches iscounted. Whenever the depth of the recursion reaches ∆thr, some precomputedfunction for the complexity of the remaining subtree is called, and the recursionmakes a backward step.The second part is a precomputed pattern-independent upper bound of theaverage complexity, when the status of the recursion can be described as thenumber of already allocated cells L and the number of active equations a.The third part is Knudsen's attack complexity accepted as an upper boundfor the algorithm on the leafs of the recursion, in order to avoid analysis of WE.To receive theoretical complexity using this tool one should run the simu-lations a su�cient number of times, and then take an average of the results.The exact complexity is received when ∆thr = ∞, in this case the tool requresthe same computational time as the targeting complexity. On the other hand,



when ∆thr = 0, the upper bound of the complexity is received immediately. Thereason to introduce ∆thr and the three parts of the tool will be explained later.C.2 AssumptionsWe will derive the precomputed pattern-independent upper bound of the averagecomplexity under the following assumptions.Assume that the algorithm �rstprocesses all given w equations of thekind (3) with two unknowns in each,and then Knudsen's attack is appliedto the remaining part of the recursion(see table on the right, in the columnswith WE on and o�).Assume that in all given w equa-tions the values St[jt] refer to di�er-ent unknowns. This makes the attackslower since in the MC block the max-imum clique can then only be con-structed via keystream symbols. Thetable on the right shows that for thisassumption the complexity of the at-tack is higher.Assume that the keystream is ran-dom, which is reasonable since the realinternal state is unknown to an at-tacker. We have selected several pat-terns with similar properties, d =
4, w = 9 (A s and Bs from Table 7).One half of them have di�erent St[jt]s,and the other half contains pairs of

(Logarithms of the complexities)Random z True zPatrn. WE o� WE on WE o� WE on
∆thr = ∞, N = 25, d = 4, w = 9,all St[jt] are di�erent. # of tests is ≥ 500.

A 1 15.87 14.25 16.33 15.09
A 2 15.24 14.02 16.30 14.38
A 3 14.89 14.48 16.00 14.80
A 4 15.51 14.18 16.38 14.44
A 5 15.20 12.97 15.87 12.57
A 6 14.98 12.02 15.50 11.66Average 15.32 13.86 16.09 14.24

∆thr = ∞, N = 25, d = 4, w = 9, at leasttwo St[jt] coincide. # of tests is ≥ 5000.
B1 7.41 7.95 13.08 13.49
B2 5.08 3.71 13.42 12.03
B3 4.62 3.67 13.30 12.00
B4 4.84 4.43 10.28 10.06
B5 3.41 3.72 11.42 12.21
B6 2.94 3.19 12.00 13.38
B7 3.81 4.57 11.12 12.39Average 5.37 5.60 12.48 12.54Assumptions make the algorithmslower and bound the real complexity.equal St[jt]s. Afterwards, the complexities of the attack are estimated (∆thr =

∞, N = 25) when the keystream is random/true, and WE is on/o�. The resultsclearly show that the complexities under our assumptions are upper bounds.C.3 Average Complexity DerivationsIn this section a precomputed pattern-independent upper bound of the averagecomplexity is derived under the assumptions proposed above. In all formulas thefollowing meaning of variables is accepted: a is the number of active (not yetprocessed) equations of the form (3); L is the number of known and previouslyassigned cells of the state, and no single zt from the active equations can be oneof the L values; l is the number of already (the most recently) assigned cells ofthe state, and zts from active equations could possibly be one of the l values;
qmax is the size of the maximum possible clique that can be found in the MCblock.



q

q+1

x
x
x
x
x
x

x
x
x
x
x
x x  ....   x

x x  ....   x

x
x
xx
xx
xx
xx
xx

x
x

x
x

x
x
x
x
x
x

x
x

x
x

+1PSfrag replacements CMC(L; a; qmax)

CB

IR(L; a; qmax) CA0

IR (L; l; a; qmax)

CA1

IR (L; l; a; qmax)

δ

δ

zz

zz

S0S0

S0S0

L

L

L

L

a

a

a

a

l

l

N

NN

N

Fig. 8. Four cases supporting derivations of the attack complexity.Every step of the recursion has a complexity to which we will refer as: CK(L)is the complexity of Knudsen's attack, given that L cells of the internal stateare known, and it can be precomputed as in [KMP+98]; CMC(L; a; qmax) is thecomplexity of the MC block; CA0

IR
(L; l; a; qmax) is the complexity of one iterationof the IR block that starts with L known and l new values, and ends with anotherset of new values of some size δ; CA1

IR
(L; l; a; qmax) is the same as CA0

IR
, but for one ofthe equations the value of S[j] is known; CB

IR
(L; a; qmax) is the complexity of thecase when IR returns no new assignments, but for one equation S[j] is known,i.e., the IR block makes an iteration of a di�erent sort in this case.Supplementary Formulas When L cells of S0 are already known and δ newassignments are performed one by one, the probability of no contradiction is

Pc(L; δ) =
(N − L)!

(N − L − δ)!N δ
, when 0 ≤ L + δ ≤ N. (16)Let M(r; a; q) be the number of possible keystream sequences of length a,where each symbol can have one out of r values, and the maximum possible size



of a clique is q. The value of M can recursively be calculated as 5
M(r; a; q) =

q
∑

i=0

(
a

i

)

M(r − 1; a− i; q), where {

1 ≤ a, t ≤ N,

q ≤ a,

M(r; 0; 0) = 1, where 1 ≤ t ≤ N.

(17)Complexity CA0

IR
(L; l; a; qmax) The probability that, in one iteration, δ out of

a equations will be solved is
PA0(L; l; a; δ; qmax) =

(
a

δ

)
M(l; δ; qmax) · M(N − L − l; a− δ; qmax)

M(N − L; a; qmax)
,when {

0 ≤ L + l + a ≤ N,

0 ≤ δ ≤ a.

(18)In these δ equations zt must be one of the l values and they must give δnew values St[jt], since, otherwise, they would have been found before. For eachof the δ equations, St[zt] is allocated somewhere. Thus, a new value St[jt] =
S−1

t [zt] − St[it] can be derived. The number of active equations is evidentlyreduced by δ. The total complexity of CA0

IR
is recursively expressed as

CA0

IR
(L; l;a; qmax) =

a−1∑

δ=1

PA0(L; l; a; δ; qmax) · Pc(L + l; δ) · CA0

IR
(L + l; δ; a− δ; qmax)

+ PA0(L; l; a; a; qmax) · Pc(L + l; a) · CK(L + l + a)

+ PA0(L; l; a; 0; qmax) · CMC(L + l; a), when {

0 ≤ L + l + a ≤ N,

1 ≤ qmax ≤ a,

CIR(L; l;0; 0) = CK(L + l), when L + l ≤ N. (19)Complexity CMC(L; a; qmax) The probability of a maximum clique of size q toappear is
PMC(L; a; qmax; q) =

M(N − L; a; q) − M(N − L; a; q − 1)

M(N − L; a; qmax)
, where {

1 ≤ L + a ≤ N,

1 ≤ q ≤ qmax ≤ a,

(20)with a boundary case PMC(L; 0; 0; 0) = 1. The parameter qmax tells us that inthe remaining active equations no cliques of size more than qmax exist, since,otherwise, it would have been found on a previous call of the MC block.Consider the unknown x = S−1
t [zt] from the clique that has to be guessedas one of the N − L remaining values. The choice of x is in principal one of the5 One should start with a loop for t = 1 → N , then a loop for a = 1 → N , and thencalculate the corresponding subtable.



following three options. (a) x is one of the jts and the equation associated withtime t belongs to the clique. This happens in q choices and results in q − 1 newvalues. An additional contradiction test should be included: St[it] + zt must beequal to S−1
t [zt] (= x). (b) x is one of the jts and the equation associated withtime t does not belong to the clique. This happens in a − q choices and resultsin q + 1 new values. (c) In the remaining N − L − a choices q new values of thestate are obtained.Finally, the MC block is the only block where the complexity is summarized.Thus, its total complexity is

CMC(L; a; qmax) = (N − L)
︸ ︷︷ ︸complexity +

qmax∑

q=1

PMC(L; a; qmax; q) ·
[

+ q
︸︷︷︸

q branches · 1

N
︸︷︷︸

zt = jt−1

·Pc(L + 1; q − 1) · CA0

IR
(L + 1; q − 1; a− q; q)

+ (a − q)
︸ ︷︷ ︸

a − q branches ·Pc(L + 1; q) · CA1

IR
(L + 1; q; a− q; q)

+ (N − L − a)
︸ ︷︷ ︸remaining branches ·Pc(L + 1; q) · CA0

IR
(L + 1; q; a− q; q)

]

,when 1 ≤ L + a ≤ N, and 1 ≤ qmax ≤ a.

(21)
Complexity CA1

IR
(L; l; a; qmax) This case is similar to that of CA0

IR
, althoughthis case is divided into two subcases with respect to the number of processedequations.

CA1

IR
(L; l;a; qmax) =

a−1∑

δ=0

(
a − 1

δ

)
M(l; δ; qmax) · M(N − L − l; a − δ; qmax)

M(N − L; a; qmax)·
︸ ︷︷ ︸probability of processing δ equations, except �special� one

× Pc(L + l; δ) ·
{

CB

IR
(L + l + δ; a − δ; qmax), δ = 0, a − 1

CA1

IR
(L + l; δ; a − δ; qmax), otherwise

}

+
a−1∑

δ=0

(
a − 1

δ

)
M(l; δ + 1; qmax) · M(N − L − l; a− δ − 1; qmax)

M(N − L; a; qmax)·
︸ ︷︷ ︸probability of processing δ + 1 equations, including �special� one

× 1

N
· Pc(L + l; δ) ·







CMC(L + l; a − 1; qmax), δ = 0

CK(L + l + a − 1), δ = a − 1

CA0

IR
(L + l; δ; a− δ − 1; qmax), otherwise







,(22)where by �special� equation we refer to the one for which the value of S[j] isknown.



Complexity CB

IR
(L; a; qmax) This is the IR block where one equation (associ-ated with time t) has St[jt] known. There could be three cases similar to CMC.However, these cases are not chosen by us as in MC, but instead one of themappears with some probability. The probability that the value zt is in the cliqueof size q + 1 is

PA1(L; a; qmax; q) =

(
a − 1

q

)
(N − L) · M(N − L − 1; a − q − 1; qmax)

M(N − L; a; qmax)
, (23)and the target complexity is

CB

IR
(L; a;qmax) =

qmax−1
∑

q=0

PA1(L; a; qmax; q) ×
[

q

N
︸︷︷︸

S−1[z]is oneof the q

· 1

N
︸︷︷︸No contra-diction inthe cliqueof size q

·Pc(L + 1; q − 1) · CA0

IR
(L + 1, q − 1, a − q − 1, qmax)

+
a − q − 1

N
· Pc(L + 1; q) · CA1

IR
(L + 1; q; a − q − 1; qmax)

+
N − L − a + 1

N
· Pc(L + 1; q) · CA0

IR
(L + 1; q; a − q − 1; qmax)

]

. (24)C.4 How to Apply the Complexities?When the pattern is known and ∆thr 6= 0, the complexity function should beapplied at the point where the MC block is called. In this case CMC(L; a; qmax)is added to the total complexity counter, where L and a are known, and qmaxis the size of the maximum clique that had been previously found during thesimulation.When the pattern is unknown (∆thr = 0) but its parameters d, w, l, bα, bβ , bγ , bθare given, the upper bound of the total complexity is calculated as
CRand < Pc(d, bγ) · CA0

IR
(0; d + bγ ; w − l − bθ; w − l − bθ), for random keystream,

CTrue < CA0∗
IR

(bγ ; d; w − l; 1), for true keystream,(25)where CA0∗
IR

is the same as CA0

IR
except that the �rst call of the IR block may nothave contradictions 6.C.5 Restricted Veri�cation Tests on Random KeystreamA set of patterns for restricted veri�cation tests were chosen such that practicalsimulations of the attack would have as close conditions to the assumptions inSection C.2 as possible. We set ∆thr = 0, CK(L) = 0, switch o� the WE and GSiblocks, take patterns with bα = bβ = 0, and test them on a random keystream.6 Brief boundings that need only d and w are CA0

IR (0; d;w;w) and CA0∗

IR (0; d;w; 1).



(Logarithms of the complexities)Tests show that theoretical complexitiesbehave adequately Tests show that the real complexity de-pends on a certain pattern usedPattern G
2
G
3a
G
4a
G
4b
G
5
G
6
G
7

G
3b
G
3c
G
3d

G
4c
G
4d

G
4e

d 2 3 4 4 5 6 7 3 3 3 4 4 4
N w 5 8 11 13 16 20 25 7 7 7 9 9 9

16 Pract 10.16 4.74 0.60 � � � � 5.87 5.09 6.09 1.09 1.26 1.19Theor 9.76 4.65 0.98 � � � � 5.96 5.96 5.96 2.14 2.14 2.14
30 Pract 19.90 24.22 21.22 17.90 8.71 1.84 � 22.69 22.73 22.90 22.50 22.87 22.27Theor 19.32 23.50 20.49 17.06 7.65 1.92 � 22.41 22.41 22.41 21.99 21.99 21.99
38 Pract � � � � 25.73 12.25 2.66 � � � � � �Theor � � � � 24.78 11.54 2.59 � � � � � �Table 5. Results of restricted veri�cation tests.The results of the tests are given in Table 5. The �rst group of tests showsthat the theoretical complexities are close to the complexities achieved throughsimulations. The second group of tests shows that the actual complexity of theattack depends on a certain pattern, and it may vary.C.6 Why Is Part-1 Needed?Consider the pattern A = {0, 0, {3, 1}, {1, 2}} and N = 28, qmax = 1. The lengthof the window is w = 5. The probability of exactly one equation to be solvedduring the �rst iteration of the IR block is 0.3042, then a new value of S[j] isreceived. In theory the probability that no contradiction would occur is (N −L−

l)/N ≈ 0.928, whereas in practice it is around 0.6, and this is a large deviation.This simple example shows that no assumptions could cover all peculiaritiesof an actual pattern used. Therefore, when a precise pattern is given, it wouldbe advised to run partial simulations of the attack in order to test top levelbranches of the recursion with the depth 1-3, since the case of the remainingsubtrees becomes well compliant with the assumptions. This solution can attunetheoretical complexity signi�cantly in some cases.C.7 Full Veri�cation Tests on True KeystreamIn order to verify reliability of complexity functions a set of full veri�cation testsfor three attack scenarios were carried out. For all scenarios N = 64, the patternsare M
8
, M

9
, and M

10
, and a true keystream is generated randomly. The fourblocks in practice and the part with Knudsen's attack in theory are switched on.Figure 9 shows the results of the tests for the three scenarios. Real com-plexities received via simulations of the state recovery algorithm are horisontallines, wherease the curves are corresponding theoretical upper bounds of averagecomplexities for various ∆thr, respectively. When ∆thr = 0, points on the curvesare pattern independent upper bounds.
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Fig. 9. Three patterns, true keystream, full attack, N = 64. The results of full veri�-cation tests of complexity functions of the new state recovery attack.D Patterns Used in This Paper



Reference levelofanalysis Pattern description order generative de�nitive α

-predictive

β

-predictive

θ

-predictive cumulativedist
ance

chaindistance intersection newguesses P
r{
E

i
n
t
}

P
r{
E

e
x
t
}Ref. A.l. i, j P, V d w l bα bβ bθ Πθ σ ξ ψ Int Ext(a) Trade-o� between w and l, the �rst level of analysis

X
2

1st -3, 0 P ={-2, -1}, V ={0, 1} 2 4 2 2 0 0 0 � � � N−3 N−2

X
3

1st -6, -7 P ={-5, -3, -2}, V ={3, 2, -1} 3 10 3 3 0 0 0 � � � N−4 N−3

X
4

1st -10, -11 P ={-9, -7, -6, -2}, V ={3, 2, -4, -1} 4 14 3 3 0 0 0 � � � N−5 N−3

X
5

1st -7, -2 P ={-6, -5, -3, -1, 1}, V ={-2, 4, 7, -1, 1} 5 16 5 4 0 0 0 � � � N−6 N−4

X
6

1st -8, -10 P ={8, 9, -7, -5, -4, -3}, V ={2, -1, 4, 3, -2, 1} 6 23 4 4 0 1 2 � � � N−7e−4/N N−5

X
7

1st -13,-2 P ={8, 9, -12, -11, -10, -9, -7} 7 28 4 4 0 2 4 � � � N−8e−8/N N−6

V ={2, -1, -2, 1, -5, 3, 4}
X

8
1st -18,-5 P ={8 9 -17 -16 -15 -14 -13 -9} 8 33 5 5 0 2 4 � � � N−9e−8/N N−7

V ={2, -1, -5, -2, 1, 4, 5, 3}
X

9
1st -20, -23 P ={0, 1, 5, -19, -17, -16, -15, -14, -7} 9 41 5 4 0 2 4 � � � N−10e−8/N N−6

V ={-5, 8, 3, 5, 4, -2, -1, 2, 1}
X

10
1st -25, -25 P ={6, 8, -24, -22, -20, -19, -18, -17, -3, -2 } 10 47 6 5 0 2 4 � � � N−11e−8/N N−7

V ={3, 4, 2, 8, -3, -2, 1, 7, 0, -5}
X

11
1st -37, -37 P ={-36, -35, -34, -33, -30, -29, -28, -15, -13, -10, 5} 11 49 11 9 0 . . � � � N−12 N−9

V ={10, -4, -1, 11, 3, -2, 1, 9, -3, -7, 2}(b) Good detection through the second level of analysis
Y

4
1st -7, -7 P ={-6, -5, -3, -1}, V ={3, 2, -1, 0} 4 9 4 4 0 . . � � � N−5 N−42nd -2, -1 P ′ ={0, 2, -1}, V ′ ={0, -1, 2} 3 4 3 3 0 . . -4 3 0 N−6e−3 N−7

Y
7

1st -24, -19 P ={1, -23, -22, -20, -18, -10, -3} 7 26 6 5 0 . . � � � N−8 N−5

V ={-3, -2, 4, 5, 1, 0, -1}2nd -5, -2 P ′ ={0, 1, -4, -3, -2}, V ′ ={2, -1, 1, 0, -2} 5 6 5 5 0 . . -7 4 1 N−10e−4 N−10

Y
8

1st -26, -27 P ={-25, -24, -23, -20, -19, -18, -16, -4} 8 29 6 4 1 0 0 � � � N−9 N−5

V ={5, 1, 4, -3, -1, 2, 3, -2}2nd -7, 2 P ′ ={0, 3, -6, -5, -4, -3, -2}, V ′ ={-2, 3, 0, -1, 1, -3, 2} 7 10 7 7 0 0 0 -10 6 1 N−12e−6 N−12Table 6. Various patterns that were achieved by our simulations (part I).



Ref. i, j P, V d w l bα bβ bγ bθ Πθ(a) Maximum generative patterns (w → max)
M

2
0, -1 P ={1, 3}, V ={3, -1} 2 6 0 0 0 0 1 1

M
3
0, -1 P ={1, 3, 4}, V={3, 2, -1} 3 10 3 0 1 2 0 0

M
4
0, -2 P ={1, 3, 4, 5}, V={4, 3, -2, 1} 4 15 1 0 0 1 1 2

M
5
0, -2 P ={1, 2, 4, 6, 8}, V={5, 2, -3, 6, -1} 5 21 0 0 0 0 0 0

M
6
0, 0 P ={1, 2, 3, 4, 5, 20}, V={7, -1, 5, -3, 2, -9} 6 27 3 0 1 2 0 0

M
7
0, 5 P ={1, 2, 4, 6, 8, 9, 16}, V={-2, 4, 7, 1, 3, -3, 8} 7 31 4 0 0 4 1 2

M
8
0, 5 P ={1, 2, 4, 6, 14, 18, 19, 25} 8 37 6 0 1 5 0 0

V ={-2, 4, 5, 1, 3, -3, 2, -1}
M

9
0, 9 P ={1, 2, 3, 6, 7, 8, 11, 20, 24} 9 42 6 0 1 5 1 2

V ={-4, -1, 10, 3, -2, 11, 1, 4, -6}
M

10
0, 3 P ={1, 2, 3, 5, 8, 10, 18, 21, 22, 23} 10 50 4 1 1 2 1 2

V ={1, 5, -3, 8, -7, 3, -2, -5, 9, -1}
M

11
0, -1 P ={1, 2, 3, 4, 6, 9, 11, 13, 21, 30, 33} 11 55 10 0 1 9 0 0

V ={6, 5, -3, 1, 4, -4, 7, -1, 2, -9, 8}
M

12
0, 6 P ={1, 2, 3, 4, 5, 9, 15, 17, 34, 35, 43, 45 } 12 59 8 1 0 7 2 4

V ={2, -2, 1, 12, -7, 7, 8, -3, 0, -5, 3, 4}
M

13
0, 0 P ={1, 3, 5, 6, 7, 8, 22, 23, 31, 32, 34, 44, 52} 13 68 9 0 2 7 2 4

V ={2, 8, -3, -2, 1, 7, 4, -9, 5, 10, -14, -5, 3}
M

14
0, 15 P ={1, 2, 3, 4, 5, 11, 13, 30, 31, 39, 40, 42, 52, 60} 14 76 10 0 2 8 2 4

V ={-7, -2, 1, 2, 7, 8, -3, 4, -9, 5, 10, -14, -5, 3}(b) Patterns with all St[jt] di�erent to test complexity functions
G
2

0, 0 P ={3, 1}, V ={1, 2} 2 5 0 0 0 0 0 0
G
3a

0, -2 P ={1, 3, 4}, V ={4, -1, 3} 3 8 0 0 0 0 0 0
G
3b

0, -4 P ={2, 1, 3}, V ={1, 8, -7} 3 7 0 0 0 0 0 0
G
3c

0, -3 P ={2, 1, 3}, V ={1, 7, -6} 3 7 0 0 0 0 0 0
G
3d

0, 0 P ={3, 1, 2}, V ={3, 5, -1} 3 7 0 0 0 0 0 0
G
4a

0, -4 P ={1, 3, 4, 5}, V ={6, -2, 1, 4} 4 11 0 0 0 0 0 0
G
4b

0, 5 P ={1, 2, 4, 6}, V ={-2, 4, 5, 1} 4 13 0 0 0 0 0 0
G
4c

0, -3 P ={2, 3, 1, 4}, V ={1, 3, 8, -10} 4 9 0 0 0 0 0 0
G
4d

0, -1 P ={5, 3, 1, 2}, V ={1, 5, 7, -2} 4 9 0 0 0 0 0 0
G
4e

0, 7 P ={4, 3, 5, 1}, V ={1, 9, -8, -5} 4 9 0 0 0 0 0 0
G
5

0, -6 P ={1, 3, 4, 5, 8}, V ={8, -3, -1, 7, 5} 5 16 0 0 0 0 0 0
G
6

0, -2 P ={2, 8, 1, 6, 5, 12}, V ={1, 2, 5, 7, -3, -1} 6 20 0 0 0 0 0 0
G
7

0, -2 P ={2, 8, 21, 1, 6, 5, 12}, V ={1, 2, 4, 5, 7, -3, -1} 7 25 0 0 0 0 0 0(c) Patterns to support assumptions
A

1
0, -10 P ={5, 2, 1, 4}, V ={3, 4, 9, -1} 4 9 0 0 0 0 0 0

A
2
0, -3 P ={2, 3, 1, 4}, V ={1, 3, 8, -10} 4 9 0 0 0 0 0 0

A
3
0, -1 P ={5, 3, 1, 2}, V ={1, 5, 7, -2} 4 9 0 0 0 0 0 0

A
4
0, 0 P ={3, 1, 6, 9}, V ={1, 2, 6, -5} 4 9 0 0 0 0 0 0

A
5
0, 7 P ={4, 3, 5, 1}, V ={1, 9,-8, -5} 4 9 0 0 0 0 0 0

A
6
0, 9 P ={2, 4, 1, 6}, V ={2, 8,-6, -1} 4 9 0 0 0 0 0 0

B1 0, -1 P ={8, 1, 7, 3}, V ={1, 3,-9, -1} 4 9 0 0 0 0 1 1
B2 0, 0 P ={3, 1, 9, 6}, V ={1, 2, 3, -8} 4 9 0 0 0 0 2 10
B3 0, 0 P ={1, 3, 8, 5}, V ={2, 3,-6, -3} 4 9 0 0 0 0 2 11
B4 0, 5 P ={4, 2, 8, 1}, V ={1, 4,-7, -2} 4 9 0 0 0 0 1 2
B5 0, 7 P ={2, 3, 1, 8}, V ={1, 4,-3, -2} 4 9 0 0 0 0 2 4
B6 0, 9 P ={2, 4, 3, 1}, V ={1, 4,-3, -2} 4 9 0 0 0 0 3 15
B7 0, 10 P ={5, 3, 1, 2}, V ={1, 5,-4, -2} 4 9 0 0 0 0 2 11Table 7. Various patterns that were achieved by our simulations (part II).


