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Abstract. Let E be an elliptic curve de�ned over a �nite �eld. Balasubrama-
nian and Koblitz have proved that if the `th roots of unity µ` is not contained
in the ground �eld, then a �eld extension of the ground �eld contains µ` if
and only if the `-torsion points of E are rational over the same �eld extension.
We generalize this result to Jacobians of genus two curves. In particular, we
show that the Weil- and the Tate-pairing are non-degenerate over the same

�eld extension of the ground �eld.
From this generalization we get a complete description of the `-torsion

subgroups of Jacobians of supersingular genus two curves. In particular, we
show that for ` > 3, the `-torsion points are rational over a �eld extension of
degree at most 24.

1. Introduction

In [10], Koblitz described how to use elliptic curves to construct a public key
cryptosystem. To get a more general class of curves, and possibly larger group
orders, Koblitz [11] then proposed using Jacobians of hyperelliptic curves. After
Boneh and Franklin [2] proposed an identity based cryptosystem by using the Weil-
pairing on an elliptic curve, pairings have been of great interest to cryptography [6].
The next natural step was to consider pairings on Jacobians of hyperelliptic curves.
Galbraith et al [7] survey the recent research on pairings on Jacobians of hyperel-
liptic curves.

The pairing in question is usually the Weil- or the Tate-pairing; both pairings
can be computed with Miller's algorithm [14]. The Tate-pairing can be computed
more e�ciently than the Weil-pairing, cf. [5]. Let C be a smooth curve de�ned over
a �nite �eld Fq, and let JC be the Jacobian of C. Let ` be a prime number dividing
the number of Fq-rational points on the Jacobian, and let k be the multiplicative
order of q modulo `. By [8], the Tate-pairing is non-degenerate on JC(Fqk)[`]. By
[20, Proposition 8.1, p. 96], the Weil-pairing is non-degenerate on JC [`]. So if JC [`]
is not contained in JC(Fqk), then the Tate pairing is non-degenerate over a possible
smaller �eld extension than the Weil-pairing. For elliptic curves, in most cases
relevant to cryptography, the Weil-pairing and the Tate-pairing are non-degenerate
over the same �eld: let E be an elliptic curve de�ned over Fp, and consider a prime
number ` dividing the number of Fp-rational points on E. Balasubramanian and
Koblitz [1] proved that

(1) if ` - p− 1, then E[`] ⊆ E(Fpk) if and only if ` | pk − 1.
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By Rubin and Silverberg [19], this result also holds for Jacobians of genus two
curves in the following sense: if ` - p − 1, then the Weil-pairing is non-degenerate
on U × V , where U = JC(Fp)[`], V = ker(ϕ − p) ∩ JC [`] and ϕ is the p-power
Frobenius endomorphism on JC .

The result (1) can also be stated as: if ` - p− 1, then E(Fpk)[`] is bicyclic if and

only if ` | pk−1. In [17], the author generalized this result to certain CM reductions
of Jacobians of genus two curves. In this paper, we show that in most cases, this
result in fact holds for Jacobians of any genus two curves. More precisely, the
following theorem is established.

Theorem 6. Consider a genus two curve C de�ned over a �nite �eld Fq. Write
the characteristic polynomial of the qm-power Frobenius endomorphism of the Jaco-
bian JC as

Pm(X) = X4 + 2σX3 + (2qm + σ2 − τ)X2 + 2σqmX + q2m,

where 2σ, 4τ ∈ Z. Let ` be an odd prime number dividing the number of Fq-rational
points on JC , and with ` - q and ` - q − 1. If ` - 4τ , then

(1) JC(Fqm)[`] is of rank at most two as a Z/`Z-module, and
(2) JC(Fqm)[`] is bicyclic if and only if ` divides qm − 1.

If ` is a large prime number, then most likely ` - 4τ , and Theorem 6 applies. In
the special case ` | 4τ we get the following result.

Theorem 7. Let notation be as in Theorem 6. Furthermore, let ωm be a qm-Weil
number of JC (cf. de�nition 4), and assume that ` is unrami�ed in K = Q(ωm).
Now assume that ` | 4τ . Then the following holds.

(1) If ωm ∈ Z, then ` | qm − 1 and JC [`] ⊆ JC(Fqm).
(2) If ωm /∈ Z, then ` - qm − 1, JC(Fqm)[`] ' (Z/`Z)2 and JC [`] ⊆ JC(Fqmk) if

and only if ` | qmk − 1.

By Theorem 6 and 7 we get the following corollary.

Corollary 10. Consider a genus two curve C de�ned over a �nite �eld Fq. Let ` be
an odd prime number dividing the number of Fq-rational points on the Jacobian JC ,
and with ` - q. Let q be of multiplicative order k modulo `. If ` - q − 1, then the
Weil-pairing is non-degenerate on JC(Fqk)[`]× JC(Fqk)[`].

For the 2-torsion part, we prove the following theorem.

Theorem 11. Consider a genus two curve C de�ned over a �nite �eld Fq of odd
characteristic. Let

Pm(X) = X4 + sX3 + tX2 + sqmX + q2m

be the characteristic polynomial of the qm-power Frobenius endomorphism of the
Jacobian JC . Assume |JC(Fqm)| is even. Then

JC [2] ⊆

{
JC(Fq4m), if s is even;

JC(Fq6m), if s is odd.

Now consider a supersingular genus two curve C de�ned over Fq; cf. section 6.
Again, let ` be a prime number dividing the number of Fq-rational points on the
Jacobian and let k be the multiplicative order of q modulo `. We know that k ≤ 12,
cf. Galbraith [5] and Rubin and Silverberg [18]. If `2 - |JC(Fq)|, then in many
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cases JC [`] ⊆ JC(Fqk), cf. Stichtenoth [21]. Zhu [23] gives a complete description
of the subgroup of Fq-rational points on the Jacobian. Using Theorem 6 we get
the following explicit description of the `-torsion subgroup of the Jacobian of a
supersingular genus two curve.

Theorem 14. Consider a supersingular genus two curve C de�ned over Fq. Let `
be a prime number dividing the number of Fq-rational points on the Jacobian JC ,
and with ` - q. Depending on the cases in table 1 we get the following properties
of JC .

Case i: −q2 ≡ q4 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq4). If ` 6= 2, then JC(Fq)[`]
is cyclic.

Case ii: q3 ≡ 1 (mod `), JC [`] ⊆ JC(Fq6) and JC(Fq) is cyclic. If ` 6= 3,
then q 6≡ 1 (mod `).

Case iii: −q3 ≡ q6 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq6). If ` 6= 3, then JC(Fq)[`]
is cyclic.

Case iv: q 6≡ q5 ≡ 1 (mod `), JC [`] ⊆ JC(Fq10) and JC(Fq) is cyclic.
Case v: q 6≡ q5 ≡ 1 (mod `), JC [`] ⊆ JC(Fq10) and JC(Fq) is cyclic.
Case vi: −q6 ≡ q12 ≡ 1 (mod `), JC [`] ⊆ JC(Fq24) and JC(Fq) is cyclic.
Case vii: q ≡ 1 (mod `) and JC [`] ⊆ JC(Fq2). If ` 6= 2, then JC(Fq)[`] is

bicyclic.
Case viii: −q ≡ q2 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq2). If ` 6= 2, then JC(Fq)[`]

is bicyclic.
Case ix: If ` 6= 3, then q 6≡ q3 ≡ 1 (mod `), JC [`] ⊆ JC(Fq3) and JC(Fq)[`]

is bicyclic.

In particular, it follows from Theorem 14 that if ` > 3, then the `-torsion points
on the Jacobian JC of a supersingular genus two curve de�ned over Fq are rational
over a �eld extension of Fq of degree at most 24, and JC(Fq)[`] is of rank at most
two as a Z/`Z-module.

Assumption. In this paper, a curve is an irreducible nonsingular projective variety
of dimension one.

2. Genus two curves

A hyperelliptic curve is a projective curve C ⊆ Pn of genus at least two with a
separable, degree two morphism φ : C → P1. It is well known, that any genus two
curve is hyperelliptic. Throughout this paper, let C be a curve of genus two de�ned
over a �nite �eld Fq of characteristic p. By the Riemann-Roch Theorem there exists
a birational map ψ : C → P2, mapping C to a curve given by an equation of the
form

y2 + g(x)y = h(x),

where g, h ∈ Fq[x] are of degree deg(g) ≤ 3 and deg(h) ≤ 6; cf. [3, chapter 1].
The set of principal divisors P(C) on C constitutes a subgroup of the degree zero

divisors Div0(C). The Jacobian JC of C is de�ned as the quotient

JC = Div0(C)/P(C).
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Let ` 6= p be a prime number. The `n-torsion subgroup JC [`n] ⊆ JC of points of
order dividing `n is a Z/`nZ-module of rank four, i.e.

JC [`n] ' Z/`nZ× Z/`nZ× Z/`nZ× Z/`nZ;

cf. [12, Theorem 6, p. 109].
The multiplicative order k of q modulo ` plays an important role in cryptography,

since the (reduced) Tate-pairing is non-degenerate over Fqk ; cf. [8].

De�nition 1 (Embedding degree). Consider a prime number ` 6= p dividing the
number of Fq-rational points on the Jacobian JC . The embedding degree of JC(Fq)
with respect to ` is the least number k, such that qk ≡ 1 (mod `).

Closely related to the embedding degree, we have the full embedding degree.

De�nition 2 (Full embedding degree). Consider a prime number ` 6= p dividing
the number of Fq-rational points on the Jacobian JC . The full embedding degree
of JC(Fq) with respect to ` is the least number κ, such that JC [`] ⊆ JC(Fqκ ).

Remark 3. If JC [`] ⊆ JC(Fqκ ), then ` | qκ−1; cf. [4, Corollary 5.77, p. 111]. Hence,
the full embedding degree is a multiple of the embedding degree.

A priori, the Weil-pairing is only non-degenerate over Fqκ . But in fact, as we
shall see, the Weil-pairing is also non-degenerate over Fqk .

3. The Weil- and the Tate-pairing

Let F be an algebraic extension of Fq. Let x ∈ JC(F)[`] and y =
∑

i aiPi ∈ JC(F)
be divisors with disjoint supports, and let ȳ ∈ JC(F)/`JC(F) denote the divisor class
containing the divisor y. Furthermore, let fx ∈ F(C) be a rational function on C
with divisor div(fx) = `x. Set fx(y) =

∏
i f(Pi)ai . Then e`(x, ȳ) = fx(y) is a

well-de�ned pairing

e` : JC(F)[`]× JC(F)/`JC(F) −→ F×/(F×)`,

it is called the Tate-pairing ; cf. [6]. Raising the result to the power |F
×|
` gives a

well-de�ned element in the subgroup µ` ⊆ F̄ of the `th roots of unity. This pairing

ê` : JC(F)[`]× JC(F)/`JC(F) −→ µ`

is called the reduced Tate-pairing. If the �eld F is �nite and contains the `th roots
of unity, then the Tate-pairing is bilinear and non-degenerate; cf. [8].

Now let x, y ∈ JC [`] be divisors with disjoint support. The Weil-pairing

e` : JC [`]× JC [`]→ µ`

is then de�ned by e`(x, y) = ê`(x,ȳ)
ê`(y,x̄) . The Weil-pairing is bilinear, anti-symmetric

and non-degenerate on JC [`]× JC [`]; cf. [15].

4. Matrix representation of the endomorphism ring

An endomorphism ψ : JC → JC induces a linear map ψ̄ : JC [`] → JC [`] by
restriction. Hence, ψ is represented by a matrix M ∈ Mat4(Z/`Z) on JC [`]. Let
f ∈ Z[X] be the characteristic polynomial of ψ (see [12, pp. 109�110]), and let
f̄ ∈ (Z/`Z)[X] be the characteristic polynomial of ψ̄. Then f is a monic polynomial
of degree four, and by [12, Theorem 3, p. 186],

f(X) ≡ f̄(X) (mod `).
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Since C is de�ned over Fq, the mapping (x, y) 7→ (xq, yq) is a morphism on C.
This morphism induces the q-power Frobenius endomorphism ϕ on the Jacobian JC .
Let P (X) be the characteristic polynomial of ϕ. P (X) is called the Weil polynomial
of JC , and

|JC(Fq)| = P (1)
by the de�nition of P (X) (see [12, pp. 109�110]); i.e. the number of Fq-rational
points on the Jacobian is P (1).

De�nition 4 (Weil number). Let notation be as above. Let Pm(X) be the charac-
teristic polynomial of the qm-power Frobenius endomorphism ϕm on JC . Consider
a number ωm ∈ C with Pm(ωm) = 0. If Pm(X) is reducible, assume furthermore
that ωm and ϕm are roots of the same irreducible factor of Pm(X). We identify ϕm

with ωm, and we call ωm a qm-Weil number of JC .

Remark 5. A qm-Weil number is not necessarily uniquely determined. In general,
Pm(X) is irreducible, in which case JC has four qm-Weil numbers.

Assume Pm(X) is reducible. Write Pm(X) = f(X)g(X), where f, g ∈ Z[X] are
of degree at least one. Since Pm(ϕm) = 0, either f(ϕm) = 0 or g(ϕm) = 0; if not,
then either f(ϕm) or g(ϕm) has in�nite kernel, i.e. is not an endomorphism of JC .
So a qm-Weil number is well-de�ned.

5. Non-cyclic torsion

Consider a genus two curve C de�ned over a �nite �eld Fq. Let Pm(X) be
the characteristic polynomial of the qm-power Frobenius endomorphism ϕm of the
Jacobian JC . Pm(X) is of the form Pm(X) = X4 + sX3 + tX2 + sqmX + q2m,
where s, t ∈ Z. Let σ = s

2 and τ = 2qm + σ2 − t. Then

Pm(X) = X4 + 2σX3 + (2qm + σ2 − τ)X2 + 2σqmX + q2m,

and 2σ, 4τ ∈ Z.
Theorem 6. Consider a genus two curve C de�ned over a �nite �eld Fq. Write
the characteristic polynomial of the qm-power Frobenius endomorphism of the Jaco-
bian JC as

Pm(X) = X4 + 2σX3 + (2qm + σ2 − τ)X2 + 2σqmX + q2m,

where 2σ, 4τ ∈ Z. Let ` be an odd prime number dividing the number of Fq-rational
points on JC , and with ` - q and ` - q − 1. If ` - 4τ , then

(1) JC(Fqm)[`] is of rank at most two as a Z/`Z-module, and
(2) JC(Fqm)[`] is bicyclic if and only if ` divides qm − 1.

Proof. Let P̄m ∈ (Z/`Z)[X] be the characteristic polynomial of the restriction of
ϕm to JC [`]. Since ` divides |JC(Fq)|, 1 is a root of P̄m. Assume that 1 is a root of
P̄m of multiplicity ν. Since the roots of P̄m occur in pairs (α, qm/α), also qm is a
root of P̄m of multiplicity ν.

If JC(Fqm)[`] is of rank three as a Z/`Z-module, then ` divides qm − 1 by [4,
Proposition 5.78, p. 111]. Choose a basis B of JC [`]. With respect to B, ϕm is
represented by a matrix of the form

M =


1 0 0 m1

0 1 0 m2

0 0 1 m3

0 0 0 m4

 .
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Now, m4 = detM ≡ degϕm = q2m ≡ 1 (mod `). Hence, P̄m(X) = (X − 1)4. By
comparison of coe�cients it follows that 4τ ≡ 0 (mod `), and we have a contradic-
tion. So JC(Fqm)[`] is of rank at most two as a Z/`Z-module.

Now assume that JC(Fqm)[`] is bicyclic. If qm 6≡ 1 (mod `), then 1 is a root of
P̄m of multiplicity two, i.e. P̄m(X) = (X − 1)2(X − qm)2. But then it follows by
comparison of coe�cients that 4τ ≡ 0 (mod `), and we have a contradiction. So
qm ≡ 1 (mod `), i.e. ` divides qm− 1. On the other hand, if ` divides qm− 1, then
the Tate-pairing is non-degenerate on JC(Fqm)[`], i.e. JC(Fqm)[`] must be of rank
at least two as a Z/`Z-module. So JC(Fqm)[`] is bicyclic. �

If ` is a large prime number, then most likely ` - 4τ , and Theorem 6 applies. In
the special case ` | 4τ we get the following result.

Theorem 7. Let notation be as in Theorem 6. Furthermore, let ωm be a qm-
Weil number of JC , and assume that ` is unrami�ed in K = Q(ωm). Now assume
that ` | 4τ . Then the following holds.

(1) If ωm ∈ Z, then ` | qm − 1 and JC [`] ⊆ JC(Fqm).
(2) If ωm /∈ Z, then ` - qm − 1, JC(Fqm)[`] ' (Z/`Z)2 and JC [`] ⊆ JC(Fqmk) if

and only if ` | qmk − 1.

Remark 8. A prime number ` is unrami�ed in K if and only if ` divides the dis-
criminant of the �eld extension K/Q; see e.g. [16, Theorem 2.6, p. 199]. Hence,
almost any prime number ` is unrami�ed in K. In particular, if ` is large, then ` is
unrami�ed in K.

The special case of Theorem 7 does occur; cf. the following example 9.

Example 9. Consider the polynomial P (X) = (X2+X+3)2 ∈ Q[X]. By [13] and [9]
it follows that P (X) is the Weil polynomial of the Jacobian of a genus two curve C
de�ned over F3. The number of F3-rational points on the Jacobian is P (1) = 25,
so ` = 5 is an odd prime divisor of |JC(F3)| not dividing q = p = 3. Notice that
P (X) ≡ X4 + 2σX3 + (2p+ σ2)X2 + 2σpX + p (mod `) with σ = 1. The complex

roots of P (X) are given by ω = −1+
√
−11

2 and ω̄, and ` is unrami�ed in K = Q(ω).
Since 3 is a generator of (Z/5Z)×, it follows by Theorem 7 that JC(F3) ' (Z/`Z)2

and JC [`] ⊆ JC(F81).

By Theorem 6 and 7 we get the following corollary.

Corollary 10. Consider a genus two curve C de�ned over a �nite �eld Fq. Let ` be
an odd prime number dividing the number of Fq-rational points on the Jacobian JC ,
and with ` - q. Let q be of multiplicative order k modulo `. If ` - q − 1, then the
Weil-pairing is non-degenerate on JC(Fqk)[`]× JC(Fqk)[`].

Proof. Let

Pk(X) = X4 + 2σX3 + (2qk + σ2 − τ)X2 + 2σqkX + q2k

be the characteristic polynomial of the qk-power endomorphism on the Jacobian JC .
If ` | 4τ , then JC [`] = JC(Fqk)[`] by Theorem 7, and the corollary follows.

Assume ` - 4τ . Let U = JC(Fq)[`] and V = ker(ϕ− q) ∩ JC [`], where ϕ is the q-
power Frobenius endomorphism on JC . Then the Weil-pairing eW is non-degenerate
on U × V by [19]. By Theorem 6, we know that V = JC(Fqk)[`] \ JC(Fq)[`] and
that

JC(Fqk)[`] ' U ⊕ V ' Z/`Z× Z/`Z.
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Now let x ∈ JC(Fqk)[`] be an arbitrary Fqk -rational point of order `. Write x = xU +
xV , where xU ∈ U and xV ∈ V . Choose y ∈ V and z ∈ U , such that eW (xU , y) 6= 1
and eW (xV , z) 6= 1. We may assume that eW (xU , y)eW (xV , z) 6= 1; if not, replace
z with 2z. Since the Weil-pairing is anti-symmetric, eW (xU , z) = eW (xV , y) = 1.
Hence,

eW (x, y + z) = eW (xU , y)eW (xV , z) 6= 1.

�

Proof of Theorem 7. We see that

Pm(X) ≡ (X2 + σX + qm)2 (mod `);

since Pm(1) ≡ 0 (mod `), it follows that

Pm(X) ≡ (X − 1)2(X − qm)2 (mod `).

Assume at �rst that Pm(X) is irreducible in Q[X]. Let OK denote the ring of
integers of K. By [16, Proposition 8.3, p. 47], it follows that `OK = L2

1L
2
2, where

L1 = (`, ωm − 1)OK and L2 = (`, ωm − q)OK . In particular, ` rami�es in K, and
we have a contradiction. So Pm(X) is reducible in Q[X].

Let f ∈ Z[X] be the minimal polynomial of ωm. If deg f = 3, then it follows as
above that ` rami�es in K. So deg f < 3. Assume that deg f = 1, i.e. that ωm ∈ Z.
Since ω2

m = qm, we know that ωm = ±qm/2. So f(X) = X ∓ qm/2. Since f(X)
divides P (X) in Z[X], either f(X) ≡ X − 1 (mod `) or f(X) ≡ X − qm (mod `).
It follows that qm ≡ 1 (mod `). Thus, ωm ≡ ±1 (mod `). If ωm ≡ −1 (mod `),
then ϕm does not �x JC(Fqm)[`]. This is a contradiction. Hence, ωm ≡ 1 (mod `).
But then ϕm is the identity on JC [`]. Thus, if ωm ∈ Z, then JC [`] ⊆ JC(Fqm).

Assume ωm /∈ Z. Then deg f = 2. Since f(X) divides P (X) in Z[X], it follows
that

f(X) ≡ (X − 1)(X − qm) (mod `);

to see this, we merely notice that if f(X) is equivalent to the square of a polynomial
modulo `, then ` rami�es in K. Notice also that if qm ≡ 1 (mod `), then ` rami�es
in K. So qm 6≡ 1 (mod `).

Now let U = ker(ϕm − 1)2 ∩ JC [`] and V = ker(ϕm − qm)2 ∩ JC [`]. Then U and
V are ϕm-invariant submodules of the Z/`Z-module JC [`] of rank two, and JC [`] '
U ⊕ V . Now choose x1 ∈ U , such that ϕm(x1) = x1, and expand this to a basis
(x1, x2) of U . Similarly, choose a basis (x3, x4) of V with ϕm(x3) = qx3. With
respect to the basis (x1, x2, x3, x4), ϕm is represented by a matrix of the form

M =


1 α 0 0
0 1 0 0
0 0 qm β
0 0 0 qm

 .
Let qm be of multiplicative order k modulo `. Notice that

Mk =


1 kα 0 0
0 1 0 0
0 0 1 kqm(k−1)β
0 0 0 1

 .
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Hence, the restriction of ϕk
m to JC [`] has the characteristic polynomial (X − 1)4.

Let Pmk(X) be the characteristic polynomial of the qmk-power Frobenius endo-
morphism ϕmk = ϕk

m of the Jacobian JC . Then

Pmk(X) ≡ (X − 1)4 (mod `).

Since ωm is a qm-Weil number of JC , we know that ωk
m is a qmk-Weil number of JC .

Assume ωk
m /∈ Q. Then K = Q(ωk

m). Let h ∈ Z[X] be the minimal polynomial
of ωk

m. Then it follows that h(X) ≡ (X − 1)2 (mod `), and ` rami�es in K. So
ωk

m ∈ Q, i.e. h is of degree one. But then h(X) ≡ X − 1 (mod `), i.e. ωk
m ≡ 1

(mod `). So ϕk
m is the identity map on JC [`]. Hence, Mk = I, i.e. α ≡ β ≡ 0

(mod `). Thus, ϕm is represented by a diagonal matrix diag(1, 1, qm, qm) with
respect to (x1, x2, x3, x4). The theorem follows. �

For the 2-torsion part, we get the following theorem.

Theorem 11. Consider a genus two curve C de�ned over a �nite �eld Fq of odd
characteristic. Let Pm(X) = X4 + sX3 + tX2 + sqmX + q2m be the characteristic
polynomial of the qm-power Frobenius endomorphism of the Jacobian JC . Assume
|JC(Fqm)| is even. Then

JC [2] ⊆

{
JC(Fq4m), if s is even;

JC(Fq6m), if s is odd.

Proof. Since q is odd,

Pm(X) ≡ X4 + sX3 + tX2 + sX + 1 (mod 2).

Assume at �rst that s is even. Since Pm(1) is even, it follows that t is even; but
then

Pm(X) ≡ (X − 1)4 ≡ X4 − 1 (mod 2).

Hence, JC [2] ⊆ JC(Fq4m) in this case.
Now assume that s is odd. Again t must be even; but then

Pm(X) ≡ (X2 − 1)(X2 +X + 1) (mod 2).

Since f(X) = X2 +X + 1 has the complex roots ξ = − 1
2 (1± i

√
3), and ξ3 = 1, it

follows that JC [2] ⊆ JC(Fq6m) in this case. �

6. Supersingular curves

Consider a genus two curve C de�ned over a �nite �eld Fq of characteristic
p. C is called supersingular, if JC has no p-torsion. From [13] we have the following
theorem.

Theorem 12. Consider a polynomial f ∈ Z[X] of the form

f(X) = fs,t(X) = X4 + sX3 + tX2 + sqX + q2,

where q = pa. If f is the Weil polynomial of the Jacobian of a supersingular genus
two curve de�ned over the �nite �eld Fq, then (s, t) belongs to table 1.

Remark 13. By [9], in each of the cases in table 1 we can �nd a q such that fs,t(X)
is the Weil polynomial of the Jacobian of a supersingular genus two curve de�ned
over Fq.
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Table 1. Conditions for f = X4 + sX3 + tX2 + sqX + q2 to be
the Weil polynomial of the Jacobian of a supersingular genus two
curve de�ned over Fq, where q = pa.

Case (s, t) Condition

i (0, 0) a odd, p 6= 2, or a even, p 6≡ 1 (mod 8).
ii (0, q) a odd.
iii (0,−q) a odd, p 6= 3, or a even, p 6≡ 1 (mod 12).
iv (±√q, q) a even, p 6≡ 1 (mod 5).
v (±

√
5q, 3q) a odd, p = 5.

vi (±
√

2q, q), a odd, p = 2.
vii (0,−2q) a odd.
viii (0, 2q) a even, p ≡ 1 (mod 4).
ix (±2

√
q, 3q) a even, p ≡ 1 (mod 3).

Using Theorem 6, 7 and 12 we get the following explicit description of the `-
torsion subgroup of the Jacobian of a supersingular genus two curve.

Theorem 14. Consider a supersingular genus two curve C de�ned over Fq. Let `
be a prime number dividing the number of Fq-rational points on the Jacobian JC ,
and with ` - q. Depending on the cases in table 1 we get the following properties
of JC .

Case i: −q2 ≡ q4 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq4). If ` 6= 2, then JC(Fq)[`]
is cyclic.

Case ii: q3 ≡ 1 (mod `), JC [`] ⊆ JC(Fq6) and JC(Fq) is cyclic. If ` 6= 3,
then q 6≡ 1 (mod `).

Case iii: −q3 ≡ q6 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq6). If ` 6= 3, then JC(Fq)[`]
is cyclic.

Case iv: q 6≡ q5 ≡ 1 (mod `), JC [`] ⊆ JC(Fq10) and JC(Fq) is cyclic.
Case v: q 6≡ q5 ≡ 1 (mod `), JC [`] ⊆ JC(Fq10) and JC(Fq) is cyclic.
Case vi: −q6 ≡ q12 ≡ 1 (mod `), JC [`] ⊆ JC(Fq24) and JC(Fq) is cyclic.
Case vii: q ≡ 1 (mod `) and JC [`] ⊆ JC(Fq2). If ` 6= 2, then JC(Fq)[`] is

bicyclic.
Case viii: −q ≡ q2 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq2). If ` 6= 2, then JC(Fq)[`]

is bicyclic.
Case ix: If ` 6= 3, then q 6≡ q3 ≡ 1 (mod `), JC [`] ⊆ JC(Fq3) and JC(Fq)[`]

is bicyclic.

Corollary 15. If ` > 3, then the full embedding degree with respect to ` of the
Jacobian JC of a supersingular genus two curve de�ned over Fq is at most 24,
and JC(Fq)[`] is of rank at most two as a Z/`Z-module.

Proof of Theorem 14. In the following we consider each case in table 1 separately.
Throughout this proof, assume that

f(X) = X4 + sX3 + tX2 + sqX + q2

is the Weil polynomial of the Jacobian JC of some supersingular genus two curve C
de�ned over the �nite �eld Fq of characteristic p, and let ` be a prime number
dividing f(1).
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The case s = 0. First consider the cases i, ii, iii, vii and viii of table 1.

Case i. If (s, t) = (0, 0), then f(1) = 1 + q2 ≡ 0 (mod `), i.e. q2 ≡ −1 (mod `).
So f(X) ≡ X4 − 1 (mod `), q4 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq4). τ = 2q in
Theorem 6, so if ` 6= 2, then JC(Fq)[`] is cyclic.

Case ii. If (s, t) = (0, q), then the roots of f modulo ` are given by ±1 and ±q.
Since f(1) = q2 + q + 1 ≡ 0 (mod `), we know that q ≡ 1

2 (−1±
√
−3) (mod `). It

follows that q3 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq6). If ` = 2, then p 6= 2, and f(1) is
odd. So ` 6= 2. τ = q in Theorem 6, so JC(Fq) is cyclic.

Case iii. If (s, t) = (0,−q), then the roots of f modulo ` are given by ±1 and ±q.
Since f(1) = q2 − q + 1 ≡ 0 (mod `), we know that q ≡ 1

2 (1 ±
√
−3) (mod `). It

follows that q6 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq6). As in case ii, ` 6= 2. Now τ = 3q,
so if ` 6= 3, then JC(Fq)[`] is cyclic.

Case vii. If (s, t) = (0,−2q), then q ≡ 1 (mod `) and f(X) = (X2−q)2. Since q is
an odd power of p, X2−q is irreducible over Q. So by [22, Theorem 2], JC ' E×E
for some supersingular elliptic curve E. It follows that JC [`] ⊆ JC(Fq2). τ = 4q, so
if ` 6= 2, then JC(Fq)[`] is bicyclic.

Case viii. If (s, t) = (0, 2q), then q ≡ −1 (mod `) and f(X) = (X2 + q)2. Since
X2 + q is irreducible over Q, it follows that JC ' E × E for some supersingular
elliptic curve E. So q2 ≡ 1 (mod `) and JC [`] ⊆ JC(Fq2). τ = 0 and ω = i

√
q

is a q-Weil number of JC . Since q is an even power of p, K = Q(ω) = Q(i) is of
discriminant dK = −4. Hence, if ` 6= 2, then JC(Fq)[`] is bicyclic by Theorem 7.

Case iv�vi. Now we consider the cases iv, v and vi of table 1.

Case iv. If (s, t) = (
√
q, q), then 4τ = 5q in Theorem 6. Since f(1) is odd, we know

that ` 6= 2. If ` divides 4τ , then ` = 5; ` - q, since C is supersingular. But then
f(1) = q2 + q

√
q + q +

√
q + 1 ≡ 0 (mod 5), i.e. q ≡ 2 (mod 5). Since a is even

and 2 is not a quadratic residue modulo 5, this is impossible. So ` - 4τ . If q ≡ 1
(mod `), then f(1) ≡ 5 (mod `), i.e. ` = 5. But then ` divides 4τ , a contradiction.
So JC(Fq) is cyclic by Theorem 6. From f(1) ≡ 0 (mod `) it follows that q5 ≡ 1
(mod `). Since the complex roots of f are of the form

√
qξ, where ξ is a primitive

5th root of unity, it follows that JC [`] ⊆ JC(Fq10). The case (s, t) = (−√q, q) follows
similarly.

Case v. If (s, t) = (
√

5q, 3q) and p = 5, then 4τ is a power of 5 in Theorem 6. Since
f(1) is odd, we know that ` 6= 2. If ` divides 4τ , then ` = 5. Since C is supersingular
and de�ned over a �eld of characteristic p = 5, this is a contradiction. So ` - 4τ .
If q ≡ 1 (mod `), then f(1) ≡ 5 + 2

√
5 ≡ 0 (mod `), and it follows that ` = 5.

So JC(Fq) is cyclic by Theorem 6. From f(1) ≡ 0 (mod `) it follows that q5 ≡ 1
(mod `). Since the complex roots of f are of the form

√
qξ, where ξ is a primitive

10th root of unity, it follows that JC [`] ⊆ JC(Fq10). The case (s, t) = (−
√

5q, 3q)
follows similarly.
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Case vi. If (s, t) = (
√

2q, q) and p = 2, then 4τ = 3 · 2a for some number a ∈ N.
Hence, if ` divides 4τ , then ` = 3. But 3 - f(1); thus, ` - 4τ . If q ≡ 1 (mod `),
then f(1) ≡ 3 + 2

√
2 ≡ 0 (mod `), and it follows that ` = 1. So JC(Fq) is cyclic

by Theorem 6. From f(1) ≡ 0 (mod `) it follows that q6 ≡ −1 (mod `). Since the
complex roots of f are of the form

√
qξ, where ξ is a primitive 24th root of unity,

it follows that JC [`] ⊆ JC(Fq24). The case (s, t) = (−
√

2q, q) follows similarly.

Case ix. Finally, consider the case ix. Assume that (s, t) = (−2
√
q, 3q). We see

that f(X) = g(X)2, where g(X) = X2−√qX+q. Since the complex roots of g are

given by 1
2 (1±

√
−3)
√
q, g is irreducible over Q. So by [22, Theorem 2], JC ' E×E

for some supersingular elliptic curve E. Hence, either JC(Fq)[`] is bicyclic or equals
the full `-torsion subgroup of JC .

Assume JC(Fq)[`] = JC [`]. Then q ≡ 1 (mod `), i.e.
√
q ≡ ±1 (mod `). But

then f(1) ≡ 9 ≡ 0 (mod `) or f(1) ≡ 1 ≡ 0 (mod `), i.e. ` = 3.
Since f(1) = (1 − √q + q)2 ≡ 0 (mod `), we know that q ≡ 1

2 (−1 ±
√
−3)

(mod `). So q3 ≡ 1 (mod `). Since ` 6= 3, it follows that q 6≡ 1 (mod `). Hence,
JC [`] ⊆ JC(Fq3) by the non-degeneracy of the Tate-pairing.

The case (s, t) = (2
√
q, 3q) follows similarly. �
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