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Entropy, Adiabats and Potential Temperatures

A lecture held by Virmo VArsiri at a meeting of the Geophysical
Society of Finland

The following paper has its basis in my earlier paper on the entropy
of atmospheric air [1] to which reference may be made for the derivation
of formulas and for the constants used.

For the analysis of air masses the quasi-conservative quantities are of
importance. We think an air parcel separated from the surrounding air
by an imagined boundary surface. Supposing
1. that no mass exchange through the boundary of the parcel occur

(a closed system) the mixing ratio of H,O will be maintained constant;
2. that no heat exchange through the boundary of the parcel occur

(adiabatic process) the entropy of the parcel will be maintained constant

if, furthermore, the processes can be considered reversibel.

A mass exchange which implies heat exchange also occurs, e.g., in the
form of rain. Supposing the rain amount as known the corresponding
change in mixing ratio and in entropy can be taken into account. — In
most cases the meteorological processes can be regarded very closely
reversibel.

In synoptic investigations, generally, alongside the mixing ratio,
different »potential temperaturesy are used as conservative quantities.
We are of the standpoint that the primary quantity, entropy, for certain
reasons would be of interest when used instead of these »temperatures»
which must be regarded as secondary quantities.

Entropy. We have made the following main suppositions:

1. dry air and water vapor are perfect gases,
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2. the specific heat of water and ice are constant,
3. the entropy of a mixture is equal to the sum of partial entropies.
The used notations and the base equations are as follows1):

Atmospheric air

Dry part H,0
of air Vapor Water I Ice Total

Indices a v I w l i
Sy Clear air kg |- m, — — = 14+ m (13)
% § Water cloud 1y my, 4+ my — = » (1b)
% ;E:J Mixed » 1y my, + my - om = > (19)
©= Ice » 1 » 4 my, — + mp = » (d)
Pressures Pa + e = p (2)
Entropies Sq —+ S 4+ S + S = s 3)
> Sa + Sy = 5 @

(%)
()

(7)

(8)

s = specific entropy, § = some other entropy,

Pn = 1000 mb = zero pressure for entropy,

I = 152.26° K = zero temperature for entropy,

u = relative humidity, o <u <1, saturation u — 1,

E resp. M = partial pressure resp. mixing ratio of saturated
yapor in respect of water,

e = uk,

m, = uﬂ{: SE , €=0.622,
Pa
u' = u 4 o.0415 (u In 1) = »virtualy humidity,
n
u'—u=Au<o.o15,

o(T) = ¢, In Z 4 E = specific entropy of saturated vapor,
n

! = heat of evaporation at T°K,

1) The notations used here are not the same as in [1].
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(9) s, = 0 (T) — R,Inu = specific entropy of water vapor,
R, = gas constant of water vapor,
E(T

(10) G(T)= ¢ ( )O'(T),

N

T . .
(11) S;=m; ¢;In- = partial entropy of ice,
(12) Spy=my cyln_ = » » » water,
(13) S,=m,s,=1u Pr g (Ny= » » » vapor,

Pa

T P .

(14) 5p=Cqp In 7 RyIn"® =» » » dry air,
n PH

Sy= s, + S, = entropy of gaseous parts of air.
5, is a function of p, and T only, m,, S, S, are functions of p,,
T and u.

The computation of the entropies can be made graphically or by
means of a special slide rule [1, p. 48].

An isentrope resp. isentropic surface is a curve resp. surface on which a
named entropy (s, S,, S, S) has a constant value. In the atmosphere they
belong to a momentary (synoptic) state of air and change with time. Mostly,
instead of isentropes the isolines of different potential temperatures are used
in meteorological investigations. Usually the isolines of the ordinary poten-
tial temperature are in brief called isentropes and coincide with the isentro-
pes of dry air. We use the expressions entropy and isentrope in their ex-
tended senses. lsentropes can be drawn on the aerological diagrams also
[1, p. 23] These isentropes are coordinate lines as well as isobars, isotherms,
adiabats etc. and have no connection with the actual weather situation.

We consider equations of the most important isentropes on an aero-
logical diagram. They are:

(152) Isentrope of dry air 5P T) = 5,1
(15b) » » saturated vapor S (p,, T, 1) = §,?
(150) » » » air Sop Ty 1) = 5,3)

where s, §,, S, are constant.

1) This is a dry adiabat as well.
2) This is almost the same as an isoline of the saturation mixing ratio M = const.
3) This resembles a condensation adiabat but differs notably therefrom.,
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Because of (4.) the curves (15c) are diagonal curves of the isentropes
(152) and (1gb). Supposing fg = s, + S, the three curves (1) intersect
in the same point. A network of isentropes (15) is shown in fig. 1.1)
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An universal isentrope of the total entropy can be written as
(16) S (pp T, m,, m,, m;) = const.
The entropy here is given by (3). To obtain a single group of curves

1) In the fig. 1 s;, p; and Sg respectively denote s4, pgq and 3,
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we must have three more conditions. These usually concern the amount
of H,0 in the air. The formula (16) contains all the possibilities.

An adiabat belongs to changings of the air state with time. The
adiabats are drawn on aerological diagrams, so-called adiabat charts.
During adiabatic reversibel changings of the state of a closed air parcel
the entropy thereof remains constant. 1f the aiy parcel is not closed but
looses (or gains) mass, especially water in the form of rain, the entropy
brought off (resp. on) with the lost (gained) water must be taken into
account as change of the entropy. When again letters with bar denote
constant values we get following adiabats:

Dry adiabats:

Clear air, no condensation, m, = m,,

(179) Sg (Pas T, u) = gg
Dry air, mg = o,
(17b) Sa (P> 1) = 500

The adiabats (17a) and (17b) are practically identic.

Condensation adiabats:

Cloud adiabat: S, + S, = §,

(18a) u=r1, mv+mw:£,,
No precipitation.

Rain adiabat: S, + S, + S, = §,

(18b) u=1, m, 4 my, + m, = m,

dm, = rain amount along the adiabat between

S}
R
[
N~

condensation point (T) and the point considered (T).
T
S, = ¢y Tf dm, In ?H = entropy of rain.

Pseudo-adiabat: S, + S, = §,
(18¢c) u= 1, m, = o, mv—l—mr:EU

The entropy of rain on the pseudo-adiabat can be written also as
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T T’ T

(19) S, =c¢, (Mln- —Mln—)—cijdln T.
\ Tll Tll T

We supposed the cloud and precipitation to consist of water.

We consider now an adiabatically rising air parcel, the original (non
saturated) state of which (A) possesses the entropies s,, S, fg. The
air parcel rises first along the dry adiabat (17a) (which can be substituted
with 17b) up to the condensation point (K). At K the three entropies
have the same values 5o Sy fg as in A. Above K the state of the air
parcel changes along one of the condensation adiabats (18). If no preci-
pitation occurs, the adiabat is (18a), the cloud adiabat. This is, in the
beginning of condensation, mostly the case in reality. If all the condensed
water immediately also precipitates we have the pseudo-adiabat (18¢).
This never happens in nature. In other cases where the condensed water
precipitates in part only we have one of the rain adiabats (18b). This
adiabat will be defined only when the law of precipitation is known,

We computed in fig. 2 some isentropes and adiabats with the entropy
8oo J/°C, namely

A. the dry adiabat s, = 800, which also is a dry air isentrope,

B. the saturated air isentrope S, = 8oo,

C. the cloud adiabat Sy + Sy = 8oo0,

D. the pseudo-adiabat §, + S, = 8oo.

The following table contains pressure coordinates of these curves (except
the first one) at some temperatures :

°C 18.5 | 14.7 | 10.4 | 5.4 |—o0.8]—8.7 —19.5—35.5[—60.0]—84.¢

B mb 1000 | 900 8oo joo 600 foo 400 300 200 130
C » Tooo [ 910.4; 819.4) 726.5| 632.2] 534.4] 432.7| 325%.0 213.3( 135.%
D » Tooo | 910.4| 819.6) 727.5| 634.3| 538.3| 438.6] 333.4 223.4| 145.3
C

D—C » o o.0 0.2 1.0 2.1 3.9 5.9 8.4 | 10.1 9.8

We supposed here that the air of the cloud adiabat is just saturated
with vapor at 1000 mb but does not contain liquid water. This point,
+ 18.5°C at 1000 mb, is the condensation point. We note that a cloud
adiabat is not uniformly defined by means of only one temperature-
pressure point through which it goes on the diagram, nor by means of
the entropy sum S, + S,. It depends also on the total H,0 amount in
the air and this varies with the condensation point. For an air parcel
with given p,, T, u without condensation products the cloud adiabat is,
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Fig. 2.

of course, uniformly defined, but if we wish to draw on the diagram
paper cloud adiabats without considering a given state of air we get an
infinite group of curves through each point (p,, T), the different curves
depending on the total water amount. — Each pseudo-adiabat is uniformly
defined by one point (p,, T) through which it goes.

Fig. 2 and the preceding table show that the cloud adiabat and the
pseudo-adiabat follow very close to one another from the ground to a
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height of about 4—r5 kms and here we still have a case with a rather
great HyO amount. All the rain adiabats lie between these two. Thus,
we can see that the use of one or the other of the infinitely many con-
densation adiabats is practically the same up to 4—6 km. — Because the
pseudo-adiabats are uniformly defined curves on the thermodynamic
diagram their use is well motivated. The reason why the cloud adiabat
and the pseudo-adiabat so closely follow one another lies in the small
difference of entropies for cloud water on the cloud adiabat and for the
precipitated rain along the pseudo-adiabat, at the beginning of the curves.

Potential temperatures (see e.g. Bleeker [2]) used as conservative quan-
tities in synoptic investigations are numerous. In fact, it is possible to
define an infinite number of different potential temperatures using the
infinite number of adiabats.?)

If we use the entropy and (total) mixing ratio (m) as conservative quan-
tities, we have in general

S :‘-S(pa’ T, m,, my,, m) = Sat Syt Sy + 5

m=m, + m, 4 m;
If we are able to measure or estimate the amounts m, and m; there
are no difficulties in computing all the entropies and m. In the case of
clear air, m, = m; = o, we have S=s, + S, = Sg+ The entropy
of water or ice in clouds amounts in the most unfavorable cases to about
25 J/° C, but in most cases it is much smaller. The accuracy of determining
s, and S, is not better than + 1 J/°C, as a rule. In any case, the entropy
of cloud water (and ice) should be taken into account. But so far this is
practically impossible. Therefore we must be contented with computing
the entropy of the gaseous parts, Sy, only. This agrees with the total
entropy in clear air, i.e. in most cases.

We can not imagine the above named potential temperatures to
afford any very important advantage when compared with entropies if
one think not that a »temperaturey is more familiar to be adapted for use
than an entropy. But it seems to us that when compared with potential
temperatures the entropy has some important properties: it is uniformly
detined by general physical laws while the potential temperatures have
been defined in many different ways; the entropies follow the simple
law of additivity (3) but the different potential temperatures do not
stand in such a simple relation to one another.

1) Furthermore, the reference pressure 1 ooo mb can be either total pressure (p) or
partial pressure of dry air (pg). We have used the latter.
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Taking in consideration a given state of clear air with the entropies
S Sp» Sw =0, §; =0, §, =5, + S, we can say that

(20a) s, corresponds to the (dry) potential temperature

(20b) S, » » » dew point » »
(20c) S, » » » wet-bulb  » »
(20d) S B » » » equivalent » »

Between entropies and the potential temperatures there is only in the
case (20a) a simple relation:

Sa

(21) Sa = Cap In % ord, =T,e Cap

n

The dew point temperature (1) is determined by means of
(22) E@) = e = u K(T)

and the dew point potential temperature (49,) by means of

(23) E(9,)=u f;— E (T)
Referring to (13) we then get

u S
2 E(#)= - 2 n
(24) ( " u' e a(T) P

Because u_, differs only slightly from 1 and because o(T) also varies
u

only slightly with temperature (with 20°C the change of ¢ is about 59%,)
we see that ¢, is nearly defined by means of S, only. Neglecting T and u,
the error in determining 4, is generally some tenths of a degree centigrade
only.

As to the mixing ratio m, compared with §, we have

(25) m, = —

This relationship shows that on neglecting T and u, m, is determined by
means of §, generally with an accuracy of some percents.

Isentropic potential temperatures. It is possible to define potential tempe-
ratures which are related to the many potential temperatures defined
earlier but are uniform functions of entropies. There may be given a
state ofair: (p,, 7, u) in case of unsaturated (clear) air or (p,, T, m,, m,, m,)
in case of cloud air. The entropies may be s,, S,, S,, S;, §g, S. We
define the following potential temperatures:
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#, = isentropic potential dry air temperature
D, = » » vapor »
Py = » » saturation temperature
Py = » » equivalent »
by means of the relations:
(26a) Sa P> ) = 54 B _ 3 _
(26b) So (Pr> Do 1) = ED resp. = S;u + S + 5
(26¢) Sg (P> Py ) =S, » = S
(26d) Sa (P> 0e) = S, » = S.

These temperatures have the same properties of invariance as the
entropies and are uniformly defined by means of the equations (26).
They agree, with some accuracy, with the usual potential temperatures.
If water and ice in the cloud are not measured or estimated they must
be left off from the equations (26). 4, is the usual potential temperature.
— The argument 1 in (26b and €) means saturation, u = 1.

Invariants. 1t can be shown that in adiabatic-processes of a closed-system
not only the total mixing ratio (m) and the total entropy (S) but also s,
and S(H,0) = S, + S, + S; remain constant with great accuracy.
Therefore it seems acceptable to us to use instead of the total mixing
ratio m the entropy of H,0, namely S, + S, + S, as conservative
quantity and further instead of total entropy (S) the partial entropy of
dry air 5,. Then, because of the additivity (3), the total entropy is given by

(27) S = s, + S(ILO).
The entropy of H,O will also very well represent the mixing ratio and
the partial entropy of dry air will describe the common potential tem-

perature. If it is desired to draw curves of total entropy also they are,
according to (27), diagonal curves of the two foregoing curves.

Institute of Meteorology, University of Helsinki.
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