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Abstract: Calcium is the most abundant mineral in the body. Calcium regulates many cellular processes and has important structural
roles in living organisms. Skeletal muscle structure and function, polymerisation of fibrin and the conduction of impulses in the
nervous system are regulated by calcium. Calcium is an important intracellular messenger in protozoa, plants, and animals. Calcium-
transporting systems which are located in the plasma membrane and in the organelles, regulate the ionic concentration of calcium
in various compartments according to the different demands of the physiological cycle and these systems upregulate calcium entry
by the action of several hormones and calcium binding proteins. Opening of calcium influx channels increases the cytosolic calcium
concentrations but high calcium concentrations are toxic to the cell. Because of this toxicity; calcium is rapidly removed from the
cytosol by calcium pumps and exchangers. Changes in cytosolic calcium concentrations cause a wide range of cellular responses.
Cellular calcium is known to play an important role in apoptosis and the accumulation of calcium can induce various apoptotic
pathways in the cell. Maintenance of the cellular calcium homeostasis has various benefil's for human health and the deficiency of

calcium causes many pathological conditions.
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Introduction

Cytoplasmic calcium (Ca2+) concentration modulates
various cellular functions, such as gene expression,
metabolism, proliferation, secretion, neural excitation and
fertilization (1, 2). The recommended intake of calcium is
approximately 1000 mg/day, this requirement increases
during childhood growth, lactation and pregnancy (3).
The intracellular Ca™* is sequestered into intracellular
organelles; mitochondria, endoplasmic/sarcoplasmic
reticulum (ER/SR), nucleus, lysosomes, and Golgi
apparatus (4). These structures provide both an internal
Ca®* regulation and distribution system, and a scaffold for
the synthesis, targeting, and insertion of channels and
receptors (5).

Parathyroid hormone, calcitonin and 1, 25
dihydroxyvitamin D, and some systemic (thyroid, sex
steroid, glucocorticoid) hormones or humoral factors
(cytokines, growth factors) are involved in the regulation
of the Ca®* level in blood and in bone metabolism (6).

Ca®* homeostasis is also very important in the aging
process, cancer, heart disease, and muscle and
neurodegenerative diseases (7), as well as descent of the
testis (8, 9).

Calcium signalling

Ca* signalling plays an important role in exocrine and
hormonal secretion, muscular and non-muscular motility,
and the activity and regulation of several metabolic
pathways (10). The majority of intracellular Ca** is stored
in the ER and once Ca*" is released from the ER, specific
plasma membrane Ca®* channels are activated, resulting
in a 10-100 fold increase in intracellular Ca®*
concentration of (3, 11). Stimulation of cell surface
receptors that increase phosphatidylinositol 4, 5-
bisphosphate hydrolysis leads to intracellular Ca®* release
and activation of plasma membrane Ca®*entry channels
(12). The Ca®*-binding protein, calmodulin, activates
protein kinase C (PKC) by phosphorylation, analogous to
cAMP and diacylglycerol activating protein kinases, and
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protein kinase C may activate cytoplasmic enzymes or
affect gene transcription by phosphorylating the kinases
in the MEK-MAPK signalling pathway (3).

Brain aging is associated with a dysregulation of
intracellular Ca** homeostasis, which leads to deficits in
Ca2+—dependent signalling pathways (13). Associative
learning behaviours of living animals have been correlated
with changes of neuronal voltage-dependent K* currents,
PKC-mediated phosphorylation and synthesis of the Ca®*
and GTP-binding proteins. Some of these molecular
events have been found to be dysfunctional in Alzheimer’s
disease (14).

Ca®* is also an important intracellular messenger in
plants. Free Ca®* concentration in the cytoplasm is
influenced by extracellular signals such as light, gravity,
and hormones, various physiological processes such as
cell elongation, abscission, senescence, tuberization,
stomatal control, chloroplast movement, and secretion
(15). Calcium signalling and Ca®*-dependent protein
kinases play pivotal roles in some protozoa, including the
malaria parasites and in algal species (16, 17). Ciliary and
flagellar motility is regulated by changes in intraflagellar
Ca®* (18). Also Ca®* may be an appropriate candidate as a
second messenger during the morphogenetic
transformation of Leishmenia donovani (19).

Calcium pumps

Cells use both active and passive mechanisms to
maintain Ca®* within a narrow range for intracellular
signalling and other metabolic processes. Active
mechanisms include plasma membrane and ER/SR-Ca*-
ATPases, Na'/ Ca**exchangers (NCX), while the passive
mechanisms include Ca®* channels (4, 10).

Changes in the transport activity of the plasma
membrane calcium ATPase (PMCA) occur during aging
(7). PMCA is regulated by calmodulin, which stimulates
PMCA activity by binding to an autoinhibitory domain of
PMCA (20). Sarcoplasmic reticulum Ca®" ATPases
(SERCA) are encoded by three genes. SERCA1 is
expressed largely in skeletal muscle and SERCAZa is
expressed largely in cardiac muscle. SERCAZb is
ubiquitous and functions to maintain the ER stores loaded
with Ca®*. The expression pattern and specialized function
of SERCA3 are not fully understood (21).

Secretory pathway calcium ATPase (SPCA) activities
from a number of tissues have been studied and shown to
be particularly high in the brain, aorta, heart, fat pads
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and testis (22). SPCA supplies the Golgi apparatus, and
possibly other more distal compartments of the secretory
pathway, with the Ca®* and Mn®* necessary for the
production and processing of secretory proteins. (23),
SPCAT1 is induced in lactating mammary tissue (24). It
could also play a role in detoxification of cells overloaded
with Mn** (25).

The Ca®* channel mediates the penetration of Ca®*
into cells. They are not completely selective and transport
Ba®* and Sr** in preference to Ca®* (10). There are Ca**
channels in the plasma membrane and also the SR
membrane (26).

The Na*/Ca®* exchanger is expressed in the plasma
membrane of virtually all animal cells especially in the
excitable cells. As a reversible transporter, it also
mediates Ca®* entry in parallel with various ion channels.
In cardiac myocytes, and probably other cell types, the
exchanger serves a housekeeping role by maintaining a
low intracellular Ca** concentration (27).

Calcium in apoptosis

Calcium and Ca®* binding proteins induce apoptosis via
extrinsic and intrinsic pathways. An extrinsic pathway,
activated through cell death receptors such as Fas,
proceeds via initiator caspases 8 or 10 (28), which in turn
convert the major executioner enzyme, caspase 3 (29). In
some cases the extrinsic pathway can intersect with an
intrinsic mitochondrial apoptotic pathway. In this intrinsic
pathway, an apoptosome complex is formed when direct
or indirect cell death signals cause the release of
mitochondrial cytochrome ¢ (30), which then complexes
with apaf-1 and pro-caspase 9 in the presence of dATP
(31). Caspase 9 is activated in the complex and then
triggers caspase 3, cleaving target proteins, and
apoptosis ensues (28, 32).

Mitochondria contain several proteins that are
liberated through the outer membrane in order to
participate in the degradation phase of apoptosis (33).
Soluble proteins are released from the intermembrane
space such as the proapoptotic cytochrome c¢ (34),
procaspase 2, 3 and 9, the apoptosis inducing factor (AIF)
(33) and Smac/Diablo (35, 36) initiating the caspase
cascade leading to the cleavage of a large quantity of
proteins and eventually to the ordered disassembly of the
cell. Irreversible opening of the mitochondrial
permeability transition pore and the collapse of the
mitochondria membrane potential is controlled by



members of the Bcl-2 family and induction of uncoupling
protein-3 (33, 37, 38). A second intrinsic pathway does
not involve the formation of an apoptosome complex.
This pathway requires the formation of an ER complex
involving caspases 7, 9, and 12 (39). ALG-2 appears to
mediate ER stress-induced apoptosis as a member of the
ER complex in response to aberrant concentrations of
intracellular Ca ** (28). The ER also contains several Bcl-
2 binding proteins, and Bcl-2 has been reported to exert
part of its cytoprotective effect within the ER.
Overexpression of Bcl-2 in Hela cells reduces the Ca®*
concentration in the ER by increasing passive Ca™* leak
from the organelle. Bcl-2-dependent reduction of Ca™ is
an important component of the anti-apoptotic program
controlled by this oncogene (40).

The dysregulation of mitochondrial Ca® homeostasis
is now recognized to play a key role in several pathologies
that enhance generation of reactive oxygen species,
triggering of the permeability transition pore, and
cytochrome c¢ release, leading to apoptosis (41).
Inhibition of caspase activity in the hippocampus blocked
long-term, but not short-term, spatial memory. These
results suggest that caspase-mediated cellular events in
hippocampal neurons are critical for long-term spatial
memory storage (42).

Clinical importance

Osteoporosis is a significant problem in women and
men. Ca** and vitamin D have a good safety profile and
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