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Abstract. The hash function FSB is one of the candidates submitted
to NIST’s competition to find the new standard hash function, SHA-3.
The compression function of FSB is based on error correcting codes. In
this paper we show how to use Wagner’s generalized birthday attack to
find collisions in FSB’s compression function. In particular, we present
details on our implementation attacking FSB48, a toy version of FSB
which was proposed by the FSB submitters as a training case for FSB.
Our attack does not make use of any properties of the particular linear
code used within FSB. FSB48 was chosen as a target where generalized
birthday attacks would be one of the strongest attacks and which could
be attacked in practice.

We show how to adapt this attack so that it runs on our computer
cluster of only 10 PCs which provides far less memory than the usual
implementation of generalized birthday attacks would require. This sit-
uation is very interesting for estimating the security of systems against
distributed attacks using contributed off-the-shelf PCs.

For the SHA-3 competition this result is meaningful in that it allows to
assess the security of FSB against the strongest non-structural attack; it
does not provide any insight in the security of this particular choice of
linear code.
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1 Introduction

NIST’s SHA-3 competition is attracting a lot of attention. Currently there are 51
submissions in the first round. This paper describes an attack against the SHA-
3 candidate FSB [1]. FSB’s compression function is based on error-correcting
codes. It has been shown before for other code-based hash functions that Wag-
ner’s generalized birthday attack [11] is an efficient tool for finding collisions in
the compression function. Unless structural attacks using properties of the spe-
cific linear code are possible, generalized birthday attacks are the most powerful
attacks known against code-based hash functions.

In this paper we describe an implementation of the generalized birthday
attack against a reduced-size version FSB48 which was suggested as a training
case by the designers of FSB. The attack has not finished at the time of writing
this document but we give performance figures for running the code for this
attack. Our results allow to estimate how expensive a similar attack would be
for full-size FSB.

We will show that a straightforward implementation of the attack would
need more than 20 TB of storage. However, we are running the attack on the
Coding and Cryptography Computer Cluster (CCCC) at Technische Universiteit
Eindhoven which has a total hard-disk space of only 7 TB. We detail how we
deal with this restricted background storage, by applying ideas described by
Bernstein in [5] and introducing a compression technique of partial results.

We also explain the algorithmic measures we took to make the attack run
as fast as possible, carefully balancing our code to use available RAM, network
throughput, hard-disk throughput and computing power.

We are to the best of our knowledge the first to describe a full implementation
of Wagner’s generalized birthday attack. We plan to put all code described in
this paper into the public domain to maximize reusability of our results.

Organization of the paper. In Section 2 we give a short introduction to
Wagner’s generalized birthday attack and Bernstein’s adaptation of this attack
to storage-restricted environments. Section 3 describes the FSB hash function
to the extent necessary to understand our attack methodology. In Section 4 we
describe our attack strategy which has to match the restricted hard-disk space
of our computer cluster. Section 5 details the measures we applied to make
the attack run as efficiently as possible dealing with the bottlenecks mentioned
above. We evaluate the overall cost of our attack in Section 6, and give cost
estimates for a similar attack against full-size FSB in Section 7.

Naming conventions. Throughout the paper we will denote list j on level i as
Li,j . For both levels and lists we start counting at zero.

Logarithms denoted as lg are logarithms to the base 2.
Additions of list elements or constants used in the algorithm are additions

modulo 2.
In units such as GB, TB, PB and EB we will always assume base 1024 instead

of 1000. In particular we give 700 GB as the size of a hard disk advertised as
750 GB.
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2 Wagner’s Generalized Birthday Attack

The generalized birthday problem, given 2i−1 lists containing B-bit strings, is
to find 2i−1 elements — exactly one in each list— whose xor equals 0.

The special case i = 2 is the classic birthday problem: given two lists con-
taining B-bit strings, find two elements — exactly one in each list— whose xor
equals 0. In other words, find an element of the first list that equals an element
of the second list.

This section describes a solution to the generalized birthday problem due to
Wagner [11]. Wagner also considered generalizations to operations other than
xor, and to the case of k lists when k is not a power of 2.

2.1 The tree algorithm

Wagner’s algorithm builds a binary tree as described in this subsection starting
from the input lists L0,0, L0,1, . . . , L0,2i−1−1. See Figure 1 in Section 4. The speed
and success probability of the algorithm are analyzed under the assumption that
each list contains 2B/i elements chosen uniformly at random.

On level 0 take the first two lists L0,0 and L0,1 and compare their list elements
on their least significant B/i bits. Given that each list contains about 2B/i

elements we can expect 2B/i pairs of elements which are equal on those least
significant B/i bits. We take the xor of both elements on all their B bits and
put the xor into a new list L1,0. Similarly compare the other lists — always two
at a time — and look for elements matching on their least significant B/i bits
which are xored and put into new lists. This process of merging yields 2i−2 lists
containing each about 2B/i elements which are zero on their least significant B/i
bits. This completes level 0.

On level 1 take the first two lists L1,0 and L1,1 which are the results of
merging the lists L0,0 and L0,1 as well as L0,2 and L0,3 from level 0. Compare
the elements of L1,0 and L1,1 on their least significant 2B/i bits. As a result of
the xor’ing in the previous level, the last B/i bits are already known to be 0, so
it suffices to compare the next B/i bits. Since each list on level 1 contains about
2B/i elements we again can expect about 2B/i elements matching on B/i bits.
We build the xor of each pair of matching elements and put it into a new list
L2,0. Similarly compare the remaining lists on level 1.

Continue in the same way until level i − 2. On each level j we consider the
elements on their least significant (j+1)B/i bits of which jB/i bits are known to
be zero as a result of the previous merge. On level i−2 we get two lists containing
about 2B/i elements. The least significant (i−2)B/i bits of each element in both
lists are zero. Comparing the elements of both lists on their 2B/i remaining bits
gives 1 expected match, i.e., one xor equal to zero. Since each element is the
xor of elements from the previous steps this final xor is the xor of 2i−1 elements
from the original lists and thus a solution to the generalized birthday problem.
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2.2 Wagner in memory-restricted environments

A 2007 paper [5] by Bernstein includes two techniques to mount Wagner’s attack
on computers which do not have enough memory to hold all list entries. Various
special cases of the same techniques also appear in a 2005 paper [3] by Augot,
Finiasz, and Sendrier and in a 2009 paper [8] by Minder and Sinclair.

Clamping through precomputation. Suppose that there is space for lists of
size only 2b with b < B/i. Bernstein suggests to generate 2b·(B−ib) entries and
only consider those of which the least significant B − ib bits are zero.

This idea can be generalized as follows: The least significant B − ib bits can
have an arbitrary value, this clamping value does not even have to be the same on
all lists as long as the sum of all clamping values is zero. This will be important
if an attack does not produce a collision. We can then simply restart the attack
with different clamping values.

Clamping through precomputation may be limited by the maximal number
of entries we can generate per list. Furthermore, halving the available storage
space increases the precomputation time by a factor of 2i.

Note that clamping some bits through precomputation might be a good idea
even if enough memory is available as we can reduce the amount of data in later
steps and thus make those steps more efficient.

After the precomputation step we apply Wagner’s tree algorithm to lists
containing bit strings of length B′ where B′ equals B minus the number of
clamped bits. For performance evaluation we will only consider lists on level 0
after clamping through precomputation and then use B instead of B′ for the
number of bits in these entries.

Repeating the attack. Another way to mount Wagner’s attack in memory-
restricted environments is to carry out the whole computation with smaller lists
leaving some bits at the end “uncontrolled”. We can then deal with the lower
success probability by repeatedly running the attack with different clamping
values.

In the context of clamping through precomputation we can simply vary the
clamping values used during precomputation. If for some reason we cannot clamp
any bits through precomputation we can apply the same idea of changing clamp-
ing values in an arbitrary merge step of the tree algorithm. Note that any solution
to the generalized birthday problem can be found by some choice of clamping
values.

Expected number of runs. Wagner’s algorithm, without clamping through
precomputation, produces an expected number of exactly one collision. However
this does not mean that running the algorithm necessarily produces a collision.

In general, the expected number of runs of Wagner’s attack is a function of
the number of remaining bits in the entries of the two input lists of the last
merge step and the number of elements in these lists.

Assume that b bits are clamped on each level and that lists have length 2b.
Then the probability to have at least one collision after running the attack once
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is

Psuccess = 1 −

(

2B−(i−2)b − 1

2B−(i−2)b

)22b

,

and the expected number of runs E(R) is

E(R) =
1

Psuccess
. (2.1)

For larger values of B− ib the expected number is about 2B−ib. It is common
to model the total time for one run as being linear in the total list size; i.e.,
(i−1)2i−12B−ib2b. Here i−1 is the number of levels, 2i−1 is the number of lists,
2B−ib is approximately the number of runs, and 2b is the number of entries per
list.

Using Pollard iteration. If because of memory restrictions the number of
uncontrolled bits is high, it may be more efficient to use a variant of Wagner’s
attack that uses Pollard iteration [7, Chapter 3, exercises 6 and 7].

Assume that L0 = L1, L2 = L3, etc., and that combinations x0 + x1 with
x0 = x1 are excluded. The output of the generalized birthday attack will then
be a collision between two distinct elements of L0 + L2 + · · · .

We can instead start with only 2i−2 lists L0, L2, . . . and apply the usual Wag-
ner tree algorithm, with a nonzero clamping constant to enforce the condition
that x0 6= x1. The number of clamped bits before the last merge step is now
(i− 3)b. The last merge step produces 22b possible values, the smallest of which
has an expected number of 2b leading zeros, leaving B − (i − 1)b uncontrolled.

Think of this computation as a function mapping clamping constants to the
final B− (i− 1)b uncontrolled bits and apply Pollard iteration to find a collision
between the output of two such computations; combination then yields a collision
of 2i−1 vectors.

As Pollard iteration has square-root running time, the expected number of
runs for this variant is 2B/2−(i−1)b/2, each taking time 2b, so the exptected run-
ning time is

t = 2B/2−(i−1)b/2+b (2.2)

The Pollard variant of the attack becomes more efficient than plain Wagner
with repeated runs if B > (i + 2)b.

3 The FSB Hash Function

In this section we briefly describe the construction of the FSB hash function.
Since we are going to attack the function we omit details which are necessary
for implementing the function but do not influence the attack. The second part
of this section gives a rough description of how to apply Wagner’s generalized
birthday attack to find collisions of the compression function of FSB.
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3.1 Details of the FSB hash function

The Fast Syndrome Based hash function (FSB) was introduced by Augot, Fini-
asz and Sendrier in 2003. See [2], [3], and [1]. The security of FSB’s compression
function relies on the difficulty of the “Syndrome Decoding Problem” from cod-
ing theory.

The FSB hash function processes a message in three steps: First the message
is converted by a so-called domain extender into suitable inputs for the compres-
sion function which digests the inputs in the second step. In the third and final
step the Whirlpool hash function designed by Barreto and Rijmen [4] is applied
to the output of the compression function in order to produce the desired length
of output.

Our goal in this paper is to investigate the security of the compression func-
tion. We do not describe the domain extender, the conversion of the message to
inputs for the compression function, or the last step involving Whirlpool.

The compression function. The main parameters of the compression func-
tion are called n, r and w. We consider n strings of length r which are chosen
uniformly at random and can be written as an r×n binary matrix H . Note that
the matrix H can be seen as the parity check matrix of a binary linear code. The
FSB proposal [1] actually specifies a particular structure of H for efficiency; we
do not consider attacks exploiting this structure.

An n-bit string of weight w is called regular if there is exactly a single 1 in
each interval [(i−1) n

w , i n
w −1]1≤i≤w. We will refer to such an interval as a block.

The input to the compression function is a regular n-bit string of weight w.
The compression function works as follows. The matrix H is split into w

blocks of n/w columns. Each non-zero entry of the input bit string indicates
exactly one column in each block. The output of the compression function is an
r-bit string which is produced by computing the xor of all the w columns of the
matrix H indicated by the input string.

Preimages and collisions. A preimage of an output of length r of one round
of the compression function is a regular n-bit string of weight w. A collision
occurs if there are 2w columns of H — exactly two in each block —which add
up to zero.

Finding preimages or collisions means solving two problems coming from
coding theory: finding a preimage means solving the Regular Syndrome Decod-
ing problem and finding collisions means solving the so-called 2-regular Null-
Syndrome Decoding problem. Both problems were defined and proved to be
NP-complete in [3].

Parameters. We follow the notation in [1] and write FSBlength for the version
of FSB which produces a hash value of length length. Note that the output of
the compression function has r bits where r is considerably larger than length.

NIST demands hash lengths of 160, 224, 256, 384, and 512 bits, respectively.
Therefore the SHA-3 proposal contains five versions of FSB: FSB160, FSB224,
FSB256, FSB384, and FSB512. The proposal also contains FSB48, which is a
reduced-size version of FSB and the main attack target in this paper. The binary
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matrix H for FSB48 has dimension 192×3 ·217; i.e., r equals 192 and n is 3 ·217.
In each round a message chunk is converted into a regular 3 · 217-bit string of
Hamming weight w = 24. The matrix H contains 24 blocks of length 214. Each
1 in the regular bit string indicates exactly one column in a block of the matrix
H . The output of the compression function is the xor of those 24 columns.

3.2 Attacking the compression function of FSB48

Coron and Joux pointed out in [6] that Wagner’s generalized birthday attack
can be used to find preimages and collisions in the compression function of FSB.
The following paragraphs present a slightly streamlined version of the attack of
[6] in the case of FSB48.

Determining the number of lists for a Wagner attack on FSB48. A
collision for FSB48 is given by 48 columns of the matrix H which add up to
zero; the collision has exactly two columns per block. Each block contains 214

columns and each column is a 192-bit string.
We choose 16 lists to solve this particular 48-sum problem. Each list entry

will be the xor of three columns coming from one and a half blocks. This ensures
that we do not have any overlaps, i.e., more than two columns coming from
one matrix block in the end. We assume that taking sums of the columns of H
does not bias the distribution of 192-bit strings. Applying Wagner’s attack in a
straightforward way means that we need to have at least 2⌈192/5⌉ entries per list.
By clamping away 39 bits in each step we expect to get at least one collision
after one run of the tree algorithm.

Building lists. We build 16 lists containing 192-bit strings each being the xor
of three distinct columns of the matrix H . We select each triple of three columns
from one and a half blocks of H in the following way:

List L0,0 contains the sums of columns i0, j0, k0, where columns i0 and j0
come from the first block of 214 columns, and column k0 is picked from the
following block with the restriction that it is taken from the first half of it.
Since we cannot have overlapping elements we get 227 sums of columns i0 and
j0 coming from the first block. These two columns are then added to all possible
columns k0 coming from the first 213 elements of the second block of the matrix
H . In total we get roughly 240 elements for L0,0.

We note that by splitting every second block in half we neglect several solu-
tions of the 48-xor problem. For example, a solution involving two columns from
the first half of the second block cannot be found by this algorithm. We justify
our choice by noting that fewer lists would nevertheless require more storage and
a longer precomputation phase to build the lists.

The second list L0,1 contains sums of columns i1, j1, k1, where column i1 is
picked from the second half of the second block of H and j1 and k1 come the
third block of 214 columns. This again yields about 240 elements.

Similarly, we construct the lists L0,2, L0,3,. . . , L0,15.
For each list we generate more than twice the amount needed for a straight-

forward attack as explained above. In order to reduce the amount of data for
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the following steps we note that about 240/4 elements are likely to be zero on
their least significant two bits. Clamping those two bits away should thus yield
a list of 238 bit strings. Note that since we know the least significant two bits
of the list elements we can ignore them and regard the list elements as 190-bit
strings. Now we expect that a straightforward application of Wagner’s attack to
16 lists with about 2190/5 elements yields a collision after completing the tree
algorithm.

Note on complexity in the FSB proposal. The SHA-3 proposal estimates
the complexity of Wagner’s attack as described above as 2r/ir where 2i−1 is the
number of lists used in the algorithm. This does not take memory into account,
and in general is an underestimate of the work required by Wagner’s algorithm;
i.e., attacks of this type against FSB are more difficult than claimed by the FSB
designers.

Note on information-set decoding. The FSB designers say in [1] that Wag-
ner’s attack is the fastest known attack for finding preimages, and for finding
collisions for small FSB parameters, but that another attack — information-set
decoding — is better than Wagner’s attack for finding collisions for large FSB
parameters.

In general information-set decoding can be used to find an n-bit string of
Hamming weight 48. Information-set decoding will not take into account that
we look for a regular n-bit string; it has to be run repeatedly until its output
happens to be regular. Thus, the running times given in [1] provide certainly
lower bounds for information-set decoding, but in practice they are not likely to
hold.

4 Attack Strategy

This section we will discuss the necessary measures we took to mount the attack
on our cluster. We will start with an evaluation of available and required storage.

4.1 Storage requirements

How large is a list entry? The obvious way of representing a list entry is as a
192-bit string, the xor of three columns of the matrix. Bits we already know to
be zero of course do not have to be stored so in each level of the tree the number
of bits per entry decreases by the number of bits clamped in the previous level.
Ultimately we are not interested in the value of the entry —we know already
that in a successful attack it will be all-zero at the end — but in the column
positions in the matrix that lead to this all-zero value. So we have to store the
positions alongside the value; unlike storage requirements for values the number
of bytes for positions increases with increasing levels, and becomes dominant for
higher levels.
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We have considered two strategies to reduce the number of bits per entry:
compressed positions and dynamic recomputation. The compressed-positions ap-
proach does not store full positions but e.g. positions modulo 256. After the
attack has successfully finished the full position information can be computed
by checking which of the possible positions lead to the appropriate intermediate
results on each level.

Dynamic recomputation reduces the storage requirements by not storing the
entry value at all but recomputing it every time it is needed from the positions.

For our implementation we decided to use this second approach: As discussed
in Section 3 we have 240 possibilities to choose columns to produce entries of a
list, so we can encode the positions in 40 bits (5 bytes).

In each level the size of a single entry doubles (because the number of po-
sitions doubles), the expected number of entries per list remains the same but
the number of lists halves, so the total amount of data is the same on each level
when using dynamic recomputation.

What list size can we handle? As described in Section 3.2 we can start
with 16 lists of size 238, each containing bit strings of length r′ = 190. However,
storing 16 lists with 238 entries, each entry encoded in 5 bytes requires 20480 GB
of storage space. The Coding and Cryptography Computer Cluster at Eindhoven
University of Technology only has a total hard disk space of 7 TB, so we have
to adapt our attack strategy to this limitation.

On the first level we have 16 lists and as we need at least 5 bytes per list
entry we can handle at most 7 ·240/24/5 = 1.36×236 entries per list. Some of the
disk space is used for operating system and so a straight-forward implementation
would use lists of size 236.

We can generate at most 240 entries per list so following [5] we could clamp
4 bits during list generation, giving us 236 values for each of the 16 lists. These
values have a length of 188 bits represented through 5 bytes holding the positions
from the matrix. Clamping 36 bits in each of the 3 steps leaves two lists of length
236 with 80 non-zero bits. According to (2.1) we thus expect to run the attack
256.5 times until we find a collision.

We could compensate for this relatively low success probability by repeatedly
running the attack with different clamping constants but that would make the
attack very inefficient. Instead we will now describe how we can handle lists of
size 237.

4.2 The strategy

The idea is to first use 8 nodes to compute list L3,0 (see Figure 1), the result list
of the left half tree. During this computation we can use lists with 237 entries
which need a total storage of 5120 GB. This means that during list generation
we only clamp 3 bits and then during each merge clamp 37 bits yielding a list
L3,0 containing entries with 78 non-zero bits.

Each entry in the resulting list L3,0 contains 24 positions from the matrix
and thus needs 40 bytes. We can however compress this data by now storing the
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value instead of the positions. The remaining number of non-zero bits per entry
is 78 (10 bytes), so we can compress list L3,0 by a factor of four and send the
resulting 1280 GB of compressed data to the two remaining nodes to sort and
store.

Then we proceed with the right half-tree until we have list L3,1 and for the
final merge compare with the values stored on the two remaining nodes. If we find
a collision we have to do the left half-tree computation again to reconstruct the
positions from the value. Observe that during this final merge we now only have
4 uncontrolled bits (two lists of length 237 containing entries with 78 non-zero
bits), so this approach decreases the expected number of runs to 16.5.

If we do not find a collision in the final merge we could start again with
computation of the left half-tree with different clamping constants. A more effi-
cient approach is to keep the data of the left half-tree and just change clamping
constants in the right half-tree in a way that they add up to zero until we find
a collision with the values from the left half-tree. So we need to compute L3,0

just once at the beginning and again after finding a collision. We expect to have
16.5 computations of L3,1, each using different clamping constants, and expect
to have 16.5 final merge steps.

5 Implementing the Attack

The computation platform for this particular implementation of Wagner’s gener-
alized birthday attack on FSB is a ten-node cluster of conventional desktop PCs.
Each node has an Intel Core 2 Quad Q6600 CPU with a clock rate of 2.40GHz
and direct fully cached access to 8 GB of RAM. About 700 GB mass storage are
provided by a Western Digital SATA hard disk with 20 GB reserved for system
and user data. The nodes are connected via switched Gigabit Ethernet using
Marvell PCI-E adapter cards.

We chose MPI as communication model for the implementation. This choice
has several virtues:

– MPI provides an easy interface to start the application on all nodes and to
initialize the communication paths.

– MPI offers synchronous message-based communication primitives.
– MPI is a broadly accepted standard for HPC applications and is provided

on a multitude of different platforms.

We decided to use MPICH2 which is an implementation of the MPI 2.0
standard from the University of Chicago. MPICH2 provides an Ethernet-based
back end for the communication with remote nodes and a fast shared-memory-
based back end for local data exchange.

We implemented two micro-benchmarks to measure hard disk and network
throughput. The results of these benchmarks are shown in Figure 2. Note that we
measure hard disk throughput directly on the device, circumventing the filesys-
tem, to reach peak performance of the hard disk. We measured both sequential
and randomized access to the disk.
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Fig. 2. Micro-benchmarks measuring hard disk and network throughput.

The rest of this section explains how we parallelized and streamlined Wag-
ner’s attack to make the best of the available hardware.

5.1 Parallelization

Most of the time in the attack is spent computing the list entries for one half tree.
This is done by initially generating the list entries with the current clamping
constant on level 0. Then each list is sorted and afterwards merged with its
neighboring list giving the entries for the next level. The sorting and merging is
repeated until level 3 produces one final list.

This algorithm is parallelized by distributing fractions of lists over the nodes
in a way that each node can perform sort and merge locally on two lists. On
each level of the computation, each node contains fractions of two lists; on level 0
each node contains two half-lists, on level 1 each node contains two quarter-lists,
etc. The lists on level j are split between the nodes according to (j + 1) bits of
the value. For example, on level 0, node 0 contains all entries of lists 0 and 1
ending with a zero bit (in the bits not controlled by initial clamping), and node
1 contains all entries of lists 0 and 1 ending with a one bit.

Therefore from the view of one node, on each level the fractions of both lists
are loaded from hard disk, the entries are sorted and the two lists are merged.
The newly generated list is split into its fractions and these fractions are sent
over the network to their associated nodes. There the data is received and stored
onto the hard drive. All this is implemented in a way that allows a continuous
data stream to be generated and processed (see Figure 3).
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To be able to perform the sort in memory, incoming data is presorted into
one of 512 parts looking at the nine least significant bits of the current sort
range. This leads to an expected part size of 640 MB (0.625 GB) which can be
loaded into main memory at once to be sorted further. The benefit of presorting
the entries before storing them is:

1. We can sort a whole fraction, that exceeds the size of the memory, by sorting
its presorted parts independently.

2. Two adjacent parts of the two lists on one node (with the same presort-bits)
can be merged directly after they are sorted.

The merge is implemented straightforwardly. If blocks of entries in both lists
share the same value then all possible combinations are generated: specifically,
if a b-bit string appears in the compared positions in c1 entries in the first list
and c2 entries in the second list then all c1c2 xors appear in the output list.

5.2 Efficient implementation

Cluster computation imposes three main bottlenecks:

– the computational power and memory latency of the CPUs for computation-
intensive applications

– limitations of network throughput and latency for communication-intensive
applications

– hard disk throughput and latency for data-intensive applications

Wagner imposes hard load on all of these components: a large amount of data
needs to be sorted, merged and distributed over the nodes occupying as much
storage as possible. Therefore demand for optimization is primarily determined
by the slowest component in terms of data throughput; latency generally can be
hidden by pipelining and data prefetch.

Our benchmarks show that, for sufficiently large packets, the performance of
the system is mainly bottlenecked by hard-disk throughput. Since the through-
put of MPI over Gigabit Ethernet is higher than the hard-disk throughput for
packet sizes larger than 216 bytes and since the same amount of data has to be
sent that needs to be stored, no performance penalty is expected by the network
for this size of packets.

Therefore our first implementation goal was to design an interface to the
hard disk that allows for maximum hard-disk throughput. The second goal was
to optimize the implementation of sort and merge algorithms up to a level where
the hard disks are kept busy at peak throughput.

Since we do not need any caching-, journaling- or even filing-capabilities of
conventional filesystems, we implemented a primitive filesystem, which we call
AleSystem, which provides fast and direct access to the hard disk. Each cluster
node has one large unformatted data partition sda1, which is directly opened
by the AleSystem using native Linux file I/O. Caching is deactivated by using
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the open flag O DIRECT: data is not read for a long time and does not benefit
from caching. Data is stored in portions of ales, all administrative information is
stored directly in RAM. On sequential access, the throughput of the AleSystem
reaches about 90 MB/s which is roughly the maximum that the hard disk allows
for.

Since our cluster nodes are driven by quad-core CPUs, the speed of the
computation is primarily based on multi-threaded parallelization. On the one
side, the receive-/presort-/store-, on the other side, the load-/sort-/merge-/send-
tasks are pipelined. At the current state of the implementation, we have several
threads for sending/receiving data and for running the AleSystem. The core of
the implementation is given by five threads which process the main computation.
There are two threads which have the task to presort incoming data (one thread
for each list). Furthermore, sorting is parallelized with two threads (one thread
for each list) and for the merge task we have one more thread.

Given this task distribution, the size of necessary buffers can be defined. The
micro-benchmarks show that bigger buffers generally lead to higher throughput.
However, the sum of all buffer sizes is limited by the size of the available RAM.
For the list parts we need 6 buffers, each 640MB, adding up to 3.75 GB. We
need two times 2×8 network buffers for double-buffered send and receive, which
results in 32 network buffers. To presort the entries double-buffered into 512
parts of two lists, we need 2048 ales. The size of network packets as well as ales
must be a multiple of 5 bytes because the size of each entry is a multiple of 5
bytes. Therefore we chose a size of 5 MB for the network packets summing up to
160 MB and a size of 1.25 MB for the ales giving a memory demand of 2.5 GB.
Over all, our implementation requires about 6.5 GB of RAM leaving enough
space for the system and additional data as stack and the administrative data
for the AleSystem.

Using our rough splitting of tasks to threads, we reach an average CPU usage
of about 60% up to 80% peak. At the current optimization state, our average
hard disk throughput is about 40 MB/s. The hard disk micro-benchmark (see
figure 2) shows, that an average throughput between 45 MB/s and 50 MB/s
should be feasible for packet sizes of 1.25 MB. Since sorting is the most complex
task, we will further parallelize sorting to be able to use 100% of the CPU if the
hard disk allows for higher data transfer. We expect that further parallelization
of the sort task will increase CPU data throughput on sort up to about 50 MB/s.
That should suffice for maximum hard disk throughput.

6 Results

Based on benchmarks of the current state of the implementation we will give
estimates of how long the whole attack against FSB48 will take on the Coding
and Cryptography Computer Cluster.

We have not yet implemented compression of list L3,0 and the final merging
step. The rest of the implementation described in Sections 4 and 5 is complete.
In under 33 hours the implementation successfully generated one half tree and
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stored list L3,1 on disk. This total time was divided as follows: List generation
took 2.54 hours, the first sort-and-merge step took 9.57 hours, the second sort-
and-merge step took 10.04 hours and the third sort-and-merge step took 10.77
hours.

As explained in Section 4 we expect 18.5 half-tree computations, accounting
for a total time of 610.5 hours. At the end of computation of the left half-tree we
have to compress the lists and send them to nodes 8 and 9 – this does not require
any more computation, network traffic or disk access than sending, presorting
and storing the data in the right half-tree, so we do not expect it to take any
longer.

During the last merge step we have fewer computations to perform because
we can skip dynamic recomputation of values in the left half-tree. As before,
network traffic and hard disk access is no larger than for the other merging
steps, so we expect this part to take no longer than 10 hours. Even if we take
a pessimistic estimate of 12 hours, performing this last step 16.5 times will take
just 198 hours, yielding an expected total time of the attack of 808.5 hours, i.e.,
34 days.

6.1 Time-storage tradeoffs

As described in Section 4, the main restriction on the attack strategy was the
total amount of background storage.

If we had 12.8 TB of storage at hand we could handle lists of size 238, again
using the compression technique for the left half-tree. As described in Section
4 this would give us exactly one expected collision in the last merge step and
thus reduce the number of required half-tree computations from 18.5 to 3.58, the
expected number of last merge steps from 16 to 1.58 (see (2.1)). With a total
storage of 20.48 TB we could omit half-tree compression and thus further reduce
the expected number of half-tree computations to 2.58.

Increasing the size of the background storage even further would eventually
allow to store list entry values alongside the positions and thus eliminate the
need for dynamic recomputation. However, the performance of the attack is
bottlenecked by hard-disk throughtput rather than CPU time so we don’t expect
any improvement through this measure.

On clusters with even less background storage the computation time will
(asymptotically) increase by a factor of 16 with each halving of the storage size.
For example a cluster with 3.2 TB of storage can only handle lists of size 236.
The attack would then require 258.5 half-tree computations and 256.5 last merge
steps.

Of course the time required for one half-tree computation depends on the
amount of data. As long as the performance is bottlenecked mainly by hard-disk
(or network) throughput the running time is linearly dependent on the amount
of data, i.e. a Wagner computation involving 2 half-tree computations with lists
of size 238 is about 4.5 times as fast as a Wagner computation involving 18
half-tree computations with lists of size 237.
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7 Scalability Analysis

The attack described in this paper including the variants discussed in Section 6
are much more expensive in terms of time and especially memory than a brute-
force attack against the 48-bit hash function FSB48.

This section gives estimates of the power of Wagner’s attack against the
larger versions of FSB, demonstrating that the FSB design overestimated the
power of the attack. Table 1 gives the parameters of all FSB hash functions.

n w r

FSB48 3 × 217 24 192

FSB160 5 × 218 80 640

FSB224 7 × 218 112 896

FSB256 221 128 1024

FSB384 23 × 216 184 1472

FSB512 31 × 216 248 1987

Table 1. Parameters of all FSB hash functions

A straightforward Wagner attack against FSB160 uses 16 lists of size 2127

containing elements with 632 bits. The entries of these lists are generated as xors
of 10 columns from 5 blocks, yielding 2135 possiblities to generate the entries.
Precomputation includes clamping of 8 bits. Each entry then requires 135 bits of
storage so each list occupies more than 2131 bytes. For comparison, the largest
currently available storage systems offer a few petabytes (250 bytes) of storage.

To limit the amount of memory we can instead generate, e.g., 32 lists of size
260, where each list entry is the xor of 5 columns from 2.5 blocks, with 7 bits
clamped during precomputation. Each list entry then requires 67 bits of storage.

Clamping 60 bits in each step leaves 273 bits uncontrolled so the Pollard
variant of Wagner’s algorithm (see Section 2.2) becomes more efficient than the
plain attack. This attack generates 16 lists of size 260, containing entries which
are the xor of 5 columns from 5 distinct blocks each. This gives us the possibility
to clamp 10 bits through precomputation, leaving B = 630 bits for each entry
on level 0.

The number of bytes sorted by this attack is approximately 2220 (see (2.2)).
This is substantially faster than a brute-force collision attack on the compression
function, but is clearly much slower than a brute-force collision attack on the
hash function, and even slower than a brute-force preimage attack on the hash
function.

Similar statements hold for the other full-size versions of FSB. Table 2 gives
rough estimates for the time complexity of Wagner’s attack without storage
restriction and with storage restricted to a few hundred exabytes (260 entries
per list). These estimates only consider the number and size of lists being a
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power of 2 and the number of bits clamped in each level being the same. The
estimates ignore the time complexity of precomputation.

Although fine-tuning the attacks might give small speedups compared to the
estimates, it is clear that the compression function of FSB is oversized, assuming
that Wagner’s algorithm in a somewhat memory-restricted environment is the
most efficient attack strategy.

Number of lists Size of lists Bits per entry Total storage Total bytes sorted

FSB160 16 2127 632 17 · 2111 2127

16 (Pollard) 260 630 9 · 264 2220

FSB224 16 2177 884 24 · 2181 2177

16 (Pollard) 260 858 13 · 264 2339

FSB256 16 2202 1010 27 · 2206 2202

16 (Pollard) 260 972 14 · 264 2382

32 (Pollard) 256 1024 18 · 260 2400

FSB384 16 2291 1453 39 · 2295 2291

32 (Pollard) 260 1467 9 · 265 2613.5

FSB512 16 2393 1962 53 · 2397 2393

32 (Pollard) 260 1956 12 · 265 2858

Table 2. Estimates for the cost of generalized birthday attacks against the compression
function of FSB. Storage is measured in bytes. Time is modeled by the total number
of bytes sorted.
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