Explanationsin Software Engineering: The Pragmatic Point of View

Jan De Winter

Abstract This article reveals that explanatory practicedftvgare engineering is in accordance
with pragmatic explanatory pluralism, which statieat explanations should at least partially be
evaluated by their practical usability. More spieallly, | offer a defense of the idea that several
explanation-types are legitimate in software engiimg, and that the appropriateness of an
explanation-type depends on a) the engineer'saster and b) the format of the explanation-
seeking question he asks, with this format dependim his interests. This idea is defended by
considering examples that are representative fptaaatory practice in software engineering.
Different kinds of technological explanation areelgd out, and the dependence of their
appropriateness on interests and question-forrmatstensively illustrated.

Keywords explanation explanatory pluralismexplanatory powerepistemic interests
engineering

1. Introduction

Research on scientific explanation shows that tlsen@t one kind of explanation that guarantees
maximal explanatory power. Different kinds of expéion are legitimate (e.g., Pettit 1996;
Weber and Van Bouwel 2002). A question that thésear is whether one can randomly choose a
kind of explanation without running the risk of dsing a deficient explanation-type (‘anything
goes’). If not, one can wonder what the nature ihe factors that determine which explanation-
type is best. Philosophical analyses indicate that following factors can influence the
appropriateness of an explanation-type: the inftiondooked for (Pettit, 1996), the explanation-
seeking question (e.g., van Fraassen 1980; Van 8loamd Weber 2008; De Langhe 2009), and
the function the explanation should serve (e.g.,b&/el1999; Weber, Van Bouwel and
Vanderbeeken 2005; Weber and Vanderbeeken 2005).

This article is dedicated to the question of howlaration-types, formats of explanation-
seeking questions, and interests are related to@her in software engineering. An examination
of these relations contributes to our understandingow humans acquire knowledge, and will
reveal that the pragmatic explanatory pluralistéefework, which states that explanations should

2 J. De Winter

at least partially be evaluated by their practioafbility, can be expanded to technological
explanatory practices.

2. Theoretical background
2.1.Formats of explanation-seeking questions

According to the erotetic model of explanation, evhl will take for granted here, explanations
can be thought of as answers to why-questionsamémwork of question formats that will cover
all explanation-seeking questions we will meethia hext sections, is formulated in Van Bouwel
and Weber (2002), and contains the following fosr{@ach accompanied by an example):

(P-contrast)Why does objezhave property P, rather than property'P'?
e.g., Why does the software proceduenerateSchedulbave a very long worst-case
execution time, rather than a short worst-caseldgi@ctime?

(T-contrast) Why does objeathave property P at tintg but property P’ at timg?
e.g., Why does the software procedusenerateScheduldhave a very long worst-case
execution time, while ten minutes ago, it had g &#rort worst-case execution time?

(O-contrast) Why does objeathave property P, while objebthas property P’?

e.g., Why does the software proced@enerateSchedulehave a very long worst-case
execution time, while the software proced@enerateSchedule?as a very short worst-case
execution time?

(plain fact) Why does objeethave property P?
e.g., Why does the software procedusenerateScheduldhave a very long worst-case
execution time?

Questions that fit one of the first three formate contrastive questions. According to Van
Bouwel and Weber (2008), such questions can bevatetl by (amongst others) surprise and a
therapeutic or preventive need. A question is nabvéidd by surprise if the reason for asking it, is
that one wants to explain why things turn out tadifgerent from what we expected. A question
Is motivated by a therapeutic or preventive neetlig motivated by a desire to know why things
are different from how we want them to be, and iy heed to know how the correspondence
between the actual and the desired state of affamde achieved. Possible incentives for asking
a plain fact question, are sheer intellectual @ityp and a desire to causally connect obgect
having property P to events with which we are nfamiliar (Van Bouwel and Weber 2008, p.
170). Later in this article, we will meet more pibss incentives for raising explanation-seeking
questions.

2.2.Pragmatic explanatory pluralism

Since engineering is a task-oriented disciplingt (001), we can expect the explanatory power
of explanations in this discipline to depend ongpmatic criteria. An engineer starts with a

! P and P’ are mutually exclusive properties.

3 J. De Winter

predetermined purpose, and when he has to chodsedye different options (such as which
explanation-type to use), he should select theooptiat best serves this purpose. Therefore, it
should not come as a surprise that | will defequlaymatic point of view regarding explanation-
types in software engineering. More specificallwill defend a pragmatic explanatory pluralism
that is committed tthree theses:

1. There is more than one legitimate kind of explamath software engineerirfg.

2. Which kind of explanation should be preferred byoftware engineer, depends on a) his
reasons for seeking an explanation (his interemts) b) the format of the explanation-
seeking question he asks.

3. The format of the explanation-seeking question fanswe engineer asks, depends on his
interests.

3. Example

An example | consider representative of softwargirexering tasks, is the following. There are
two conferences in a sports league, each contaihirgge teams, as is depictedScheme la
Every team has to play at least one game agaiesy ether team. Teams of the same conference
have to play two times against each other, while teams of different conferences have to
compete only oncélb presents all the games that have to be played.

Scheme 1 — Teams and games

a Conference 1 Conference 2
A D
B E
C F
b _ _ _ _ _

|
|
mm
T T

0w w
I
TMO OO

I
|

000

|
Mmoo
?DDD

[
Mmmm

>>>>>>>
|
TMOOO®TwW

A schedule has to be generated that meets theviatjoconditions: 1) the schedule contains no
more and no less than the gameSaheme 1b2) a team cannot play more than one game per
day, and 3) the games are distributed over as &w ds possible (1 and 2 take priority over 3).

A software procedure should fulfill the task of geamting the schedule. This software
procedure should do this in such a way that theerdrof the schedule is as random as possible.
In other words: if n is the number of schedules thaet conditions 1 to 3, then for any schedule
that meets conditions 1 to 3, the chance that gerserated by the procedure should be equal to

2| consider an explanation-type to be legitimatiéaére is at least one interest that is best sdsyeth explanation of
that type.

4 J. De Winter

1/n. The user should be able to execute the proedoly pressing a button, but only after all
games on the current schedule have been finishedn\t¥ie current schedule contains games that
haven’t been played yet, pressing the button shoalde the appearance of the message “You
can only generate a new schedule after finishingashes on the current schedule.”

Several problems might occur while developing sactomputer program, and a strategy |
consider very useful in solving some of these mold, is to ask certain explanation-seeking
questions. The usefulness of this strategy is n@el® in the next sections, in which | give
examples of interests and explanation-seeking munssthat might turn up in the process of
writing and debugging software, and pay attentmthe nature of the explanations that answer
these questions.

4. Contrastive questions

In order to come to a first explanation-seekingstioa, | suggest an algorithm that might allow
our software procedure to randomly generate a sibethat satisfies the three conditions
mentioned earlier. The first step of the algoritisnthe random permutation of the set of games
presented irscheme 1B We can call the resulting array of gandesayl. The second step fills a
calendar with days on which games will be playeat. #ach dayD, the procedure runs through
Array1l, checking for each element whether it can be adldB®d An element can only be added if
two requirements are met. The first is that it game, and the second is that for both teams, this
game should be the first they have to playorf and only if these two requirements are meg, th
game is added tb and removed fromrrayl (replaced by something that is not a game). When
all elements oArrayl have been checkeD, is added to the calendar, and\ifayl still contains
games, a new day is created. This process is expeatil all games are part of the calendar.
Then, the calendar is converted into a schedutdglaccessible for users.

It is possible that one has made some mistakesphementing this algorithm. In that case,
the procedure will probably not have the anticigatesult. Suppose an engineer has tried to
implement the algorithm, but made a typing errothi@ program line that should bring about the
adding of a game to ddy if possible. When he tests his procedure, he foudghat it does not
work properly. Of course, the engineer does notnkmdat causes the perceived error (otherwise,
he would have corrected the typing error beforértgps In order to debug the procedure, he asks
why the procedure led to the error, and not todésred result (P-contrast question). The answer
to this question is that the procedure should ¢ordggorogram line that actually adds a game to
the calendar if possible, while his procedure doet This explanation is complete if the
explainer assumes that the procedure would havkedqsroperly if it contained such a program
line. It has the following format:

Objecta has property P, rather than P’ because it doekawa the propertiesiD..., D, (with
n>1).

It is assumed that objeatwould have property P’ if it had properties,D.., D,. | will call the
combination of this assumption and the explandtomat, the P-contrast explanation-tygethe
PCE-type.

% An algorithm that can be used to shuffle the ganselénuth’s modern version of the Fisher-Yateatym (Radu
2008).

5 J. De Winter

In order to solve P-contraguestions, it can sometimes be useful to ask ahplanation-
seeking questions. To demonstrate this, we can &dkow our engineer attains a button that
allows the user to generate a new schedule if ahdiball games on the current schedule have
been finished. Suppose a button with the label égate schedule’ has already been inserted.
Suppose further that when the last game of thelaegeason is finished, the value of a variable
V stocked at a certain location in a database,stdrom O into 1. When a new schedule is
generated, the value of V turns from 1 into 0. Bseaup till now, all cases in which the value of
V is equal to 1, correspond to the cases in whicgaames on the schedule have been finished,
and all cases in which the value of V differs frdmcorrespond to the cases in which the
schedule still contains games that have not beayegl yet, the consequences of pressing the
button can be determined on the basis of whethrobthe value of V is equal to 1. The engineer
knows this and assigns to the pressing of the bwtprocedure that generates a new schedule if
and only if the value of V is equal to 1. Whiletteg his program, he finds out that the pressing
of the button has the desired consequences.

Later, the engineer decides to extend his progré&imseme post-season events. The games at
the post-season events should be added to theudehadd only when all these games are over,
the user should be able to generate a new schddulag a first attempt at implementing the
extension, the engineer deletes the program liaesthifts the value of V from 0 into 1 when the
last game of the regular season is finished, ngiets to insert a line that brings about this shift
when the last game of the last post-season evéinisked. He discovers that the pressing of the
‘generate schedule’ button never leads to a newddh, even when there are no non-played
games on the schedule remaining. An answer to {bentrast question ‘Why does the program
have, at this momertp, the property of never generating a new schedilienwthe ‘generate
schedule’ button is pressed, while at timéefore extending the program), it had the propeft
generating a schedule if 1) the ‘generate schedw#bn was pressed and 2) all games on the
schedule were finished?’ can help him solve thadbjam.

The T-contrast can be explained by the fact that, @ program line that leads to the shift of
V’s value when the last game on the schedule istfed, was present, while such a program line
is absent at;. This explanation can be fitted into the followif@grmat (without changing its
meaning)’*

Objecta has property P at tinte but P’ at timet; because it had properties,D.., D, (with n
> 1) atty, while these properties were abserti.at

In combination with the assumption that objactvould have property P at tinte if it had
properties D, ..., Dy atty, | will call this format the TCE-type of explanati (with TCEstanding
for T-contrast explanation).

The explanation of the TCE-type brings the engirsd@ser to an answer to the question why
the pressing of the button does not lead to a méwdile when it should, that is, when all games
on the schedule are over (P-contrast question).afilsever is that the program should contain a
program line that changes the value of V into 1 mite last game on the schedule is finished,

* The explanation can be reformulated into: The mmghas, at this moment the property of never generating a
new schedule when the ‘generate schedule’ buttpreissed, while at timtg, it had the property of generating a new
schedule if 1) the ‘generate schedule’ button wasged and 2) all games on the schedule were dhjdiecause at
t,, it had the property of containing a program lthat leads to the shift of V's value when the lgaime on the
schedule is finished, while this property is abssit.

6 J. De Winter

while it doesn’t (PCE). The benefit in asking thedntrast question ‘Why doesn’t objectvork
properly at this momertg, while it did at timet,?’, is that it draws attention to those factord tha
have been changed during intervig] {;]. Since the program worked properly at titacthese
factors are more likely to cause the malfunctionemgis illustrated by the previous example. The
fact that the value of V did not get changed anynoaused the malfunctioning, and not, say, a
typing error in the program line that converts tladendar into an accessible schedule. One need
not pay attention to this last possibility becaufs¢his program line would not perform its
function, the program would not have worked at tigneither, while it did. A T-contragjuestion

can thus function as a tool to address the endmatention to those factors that are most likely
to be part of an accurate answer to a P-contrasttigun’

An O-contrasiguestion can serve the same purpose. Supposedireeendid not extend the
original program with some post-season eventsstarted a new program, in which he reuses
the program code that allows for the random gereraif a schedule. The same error as with the
T-contrast might arise (a button does not lead new schedule when it should). Given that the
engineer now has two programs, one that does lat &br the generation of a schedule at the
appropriate times, and one that does, he can a&slOtbontrasguestion ‘Why does the new
programa have the property P of never allowing for the gatien a new schedule, while the
original programb has the property P’ of allowing for the generatadna new schedule at the
appropriate times?’ This question draws the engisedtention to those factors theatandb do
not share (and makes abstraction of all other fagtahich are the factors that are most likely to
be part of an accurate answer to the P-contragtiqne’'Why does objech have property P,
rather then the ideal property P’?" Thus, both Thd @-contrast questions can facilitate the
debugging process.

The preferential answers to O-contragtestions are O-contrast explanations (OCE). An
explanation of the OCE-type has the following forma

Objecta has property P, while objebthas property P’ becausehas properties D ..., D,
(with n> 1) which object does not have.

An explanation that fits this format, is of the O®fpe if it is assumed that objeztwould have
property P if it had properties;D..., D..

5. Plain facts

Not only contrastiveguestions can help one to solve P-contgasstions. To illustrate this, we
can return to an earlier stage in the developménihe computer program, that is, before our
engineer assigned a procedure to the button wehlabel ‘generate schedule’, and after he
corrected the typing error in the program line sfatuld bring about the adding of a game to the
calendaiif possible. At this stage, the engineer is séifiting the (alleged) implementation of the
algorithm | described at the beginning of sectiomile doing this, he faces a problem: in two
tests, his generator generates the two scheduésenied inScheme 2BecauseSchedule a

® The fact that a T-contrast explanation helps tipagner to answer a P-contrast question, doesneain that a P-
contrast explanation is in itself insufficient tosaver such a question. The P-contrast explanaticm ¢omplete
answer to the P-contrast question, and this anstveuld not contain any additional information. Theontrast
explanation is the preferential and complete answanother context, that is, when a T-contraststjoe is under
consideration.

7 J. De Winter

contains less days th&thedule pthe engineer knows that his procedure cannotagiee that a
generated schedule meets the third condition (Hreeg are distributed over as few days as
possible).

Scheme 2 — Schedules

Schedule a

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

E-F C-E A-E A-D D-F A-C B-C

C-D D-F C-F E-F A-C D-E D-F

A-B A-B B-D B-C B-E B-F A-E

Schedule b

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day|8 Day
B-C B-E A-C A-B A-D A-C A-E B-F AB-
D-E C-D E-F D-E E-F D-H D-F C-E
A-F B-D C-F B-C

The P-contrast question arises: ‘Why does the swévwprocedure, when executed several
times, occasionally result in schedules with mb@ntseven days, instead of always resulting in
schedules with exactly seven daysPo know where to search for an answer to this tipresthe
engineer wonders what causes the malfunctioningohllem with the algorithm, or a problem
with the conversion of the algorithm into a softev@rocedure. If the algorithm is problematic, he
should develop a new algorithm, if not, he showdect the implementation error(s). So in order
to know how to continue the debugging process, éhgineer needs to know whether his
algorithm is problematic. This he can find out byirig to explain the shortcomings 8thedule
b by clarifying how the execution of the algorithnowtd have caused them. If such an
explanation is possible, the algorithm is problemat not, there’s something wrong with its
implementation.

One of the shortcomings &fchedule bs that the second day contains only two gafriEise
engineer then asks the plain fgetestion ‘Why does the second daySahedule kwontain only
two games?’, and tries to answer it by an explanathat clarifies how the execution of the
algorithm led to this plain fact (explanation byg@aiithm or EA). The format of such an
explanation is:

Objecta has property P because:

At step n, eveng, occurred

(Step n + 1 was the next step because conditier was satisfied)
At step n + 1, evergy,.1) occurred

® Seven days is the minimum of days in a schedineesach team has to play seven gamesskeme Iband a
team cannot play more than one game per day (semmmdition). The fact that a schedule containingesedays is
possible, is shown bgchedule a

" Each day should contain three games. We knowbiiause 21 games (sBeheme Ibshould be distributed over
seven days (see previous note), and one day caant#tin more than three games. If there would beertiean three
games (each between two teams) on a day, therédsheumore than six teams, since one team canagtmpbre
than one game per day (second condition), andgimst the case (s&cheme la

8 J. De Winter

(Step n + 2 was the next step because condifies) was satisfied)
At step n + 2, everd.2) occurred

(Step n + m was the next step because conditiom, was satisfied)
At step n + m, everd,.m) occurred
(with n>1; and nm> 0)

An explanation by algorithm presumes that the etteswof a certain algorithm caused the fact
that objecta has property P, and explains this fact by refertmgvents that 1) were instructed
by the algorithm, and 2) are relevant to obja'st acquiring property P. The reason why the
sentences that explain why a certain step was aexthracketed, is that they are only necessary
in cases in which a condition, specified by theoatgm, had to be satisfied for this step to be
next.

An explanation by algorithm of the fact that the@®d day ofSchedule lxontains only two
games, might go as follows. After the second garae added to the second day of the calendar,
the focus moved to the next gameAofayl. Because this game could not complete the second
day without leading to a schedule that doesn't nketthree aforementioned conditidhi,
wasn’t added to the second day. Then, the focusthtw the next game éfrrayl. This game
could not complete the second day either, so thgatna the focus moved to the next game
without the second day being extended with a thache. This process continued until all games
of Arrayl had been checked, after which the compositiomefthird day started. Thus, no third
game was added to the second day before the protesmstituting this day ended. Similar
explanations can elucidate why days 6 to 9 conéss than three games.

Because the shortcomings can be explained by tBeuggn of the original algorithm, our
engineer does not have to control whether his swévprocedure is a correct implementation of
the original algorithm, and can refine his P-costtcuestion into ‘Why does the algorithm, when
executed several times, occasionally result in dales with more than seven days, instead of
always resulting in schedules with exactly seveys@a An answer to this question is that the
algorithm permits that games that together exchirdepossibility of a third or a second game
being added to one of the days that do not yetagorthree days, are added to the definitive
calendar. For example, the first two games of #wsd day oSchedule kexclude together with
the third game of the first day, that a third gasadded to the second day.

An algorithm that avoids this mistake, is the faliog. First, the interconference games are
randomly shuffled. Next, for each game of the masglarray, it is checked whether it can be
added to the first day. If so, the game will beetitb the first day, if not, it will be the firsame
of a day that does not contain games yet. Thisre®ts in a calendar consisting of seven days,
with the first day containing three interconferemmzames, and the next six days containing each
only one (interconference) game. Then, days 2 re7fcampleted by those inconference games
that can be added to them without leading to a didbethat does not meet the three
aforementioned conditions. Next, for each day,thiee games on it are randomly shuffled, and
so are the days of the calendar. This calendaorigested into a schedule that is accessible for

8 All games other than A — F could not completesheond day because they contain teams that alheatig game
to play on the second day. A — F could not compietesecond day either, because it was added firshday, and
interconference games should appear only onceesdedule.

° Notice that by answering this question, one aiswers the original, non-refinétcontrastquestion.

9 J. De Winter

users. When this algorithm is implemented correatiye obtains a software procedure that
satisfies the requirements stated in section 3.

Answering plain fact questions can also serve othgposes than satisfying the desire to
know whether a certain algorithm caused an errane Guch purpose is related to the
development of a new program by using componenianobutdated program. If our engineer
prefers creating a new prograarover updating an old program and he wants to reuse those
components ob that together have the function of generating & sehedule, he has to know
which part of the original programfulfills this function. The corresponding knowledgeeking
question can be reformulated into the plain faxplanation-seeking question ‘Why does the
original progranb have the property P’ of allowing for the generatafra new schedule?’

The answer the engineer is looking for, is a seeafable software components that are non-
redundant parts of the set of all factors thatdbout the explanandum. The reason why he
wants his answer to contain only reusable softwarsponents, and not, say, physical laws, non-
reusable software, etc., is that he wants to olstaftware that he can use while writing the new
program. The reason why the software componentsiéimmt be redundant, is that the engineer
does not want to reuse more than needed.

In most (if not all) cases in which the questiornwdfy programb has property P’, is motivated
by the desire to pass on property P’ to a new @airagby reusing parts dd, the optimal answer
will be a Mackie-like explanation (ME). According Mackie, “what is typically called a cause,
Is an inus condition, or an individual instanceaof inus condition ...” (Mackie, 1974, p. 64),
with an inuscondition being an ‘insufficient but non-redundagdrt of an unnecessary but
sufficient condition’ for the effect to occur. Fexkample, if (Q O D,) O (D3 O Dy) is necessary
for objectb to have property P’, while both;D1 D, and 3 [0 D, are sufficient forb to have
property P’, then B D,, D3 and O) are possible causes of the fact that odpeehs property P’.
An explanation of the ME-type consists of indicgtsome of the factors that are insufficient but
non-redundant parts of a conjunction that is ndy amnecessary and sufficient for objdxcto
have property P’, but also true. The format of sl of explanation is:

Objectb has property P’ because of factors D., D, (with n> 1).

We can now indicate why in most cases in whichdhestion ‘Why does prograim have
property P'?’ is motivated by the desire to pasgooperty P’ to a new programby reusing
parts ofb, the optimal answer will be of the ME-type. Weealdy saw why the explanation
should only refer to reusable software componeh&d are not redundant. These software
components will not be sufficient for the programnwork in a certain way, because there will
always be some non-software-related backgrounditonsl (e.g., certain physical laws being
active) that have to be met for any computer pnogi@work. The software components are part
of a sufficient condition for the occurrence of theplanandum, because, if otherwise, the
explanandum would not occur (while it does). In tra@ses, this sufficient condition will not be
necessary to cause the explained effect, sinceeffest could also be caused by using other
algorithms, or other implementations of the samgorthm. The software components that
constitute the explanation can thus be considerdx tinsufficient but non-redundant parts of an
unnecessary but sufficient condition for the oradiprogram to have the property one wants to
pass on to the new program. That the unnecessargufiicient condition should be true, is
evident, since the engineer wants his explanatopaoint at factors that actually (and not just
possibly) caused the fact that progriaimas property P’.

10 J. De Winter

6. Summary

Based on the examples | offered in sections 4 gnde5can construcécheme 3Each row
connects three elements with each other: an infexdsrmat of an explanation-seeking question,
and an explanation-type. The scheme demonstraaéselieral explanation-types are legitimate,
since the third column, that indicates which kiricegplanation has most explanatory power in a
certain case, contains different explanation-types.

Scheme 3 - Interests, question-formats and exjtemptpes

Format of explanation

Interest seeking question Kind of explanation

Debugging P-contrast PCE
 Answering P-contrast queston | T-contrast | TCE
 Answering P-contrast question | O-contrast | | OCE

Knowing whether the algorithm caused the
error (in order to refine P-contrast question)

Knowing which parts of a computer program
b with property P’ should be reused to pass Plain fact ME
on P’ to prograna

& Other interests can be added to each row. Toiteerbw can be added ‘designing a computer progtiaat
satisfies certain demands’, to the second ‘desggainomputer program that satisfies certain demaiadbugging’,
and so on. To keep the scheme clear however, | &dded only those interests | consider to be thst ximate
cause of the explanation-seeking question.

The examples show that the format of the explanat&eking question that an engineer asks,
depends on his reasons for asking that questisnirftérests). For instance, if an engineer wants
to debug a software procedure, this will naturédlgd him to asking a P-contragiestion. The
format of this question influences the appropriassn of different explanation-types. For
instance, the chance that the best answer to atPastguestion is of the PCE kind, is much (if
not infinitely) larger than the chance that it i§ say, the EA kind, while the EA kind of
explanation has more chance of being preferentlanwvthe question asked is a plain fact
question.

Further, the examples show that which kind of exaleon will have most explanatory power,
depends on the engineer’s interests. The facta&A kind of explanation is to be preferred in
one case, while an ME kind of explanation is tepbeferred in another, can be explained by the
different interests in both cases. The &#le will best satisfy the desire of knowing whatlan
algorithm caused an error, while the ME style Wkt satisfy the desire of knowing which parts
of a computer programwith property P’ should be reused to pass on Prégrama.

7. Further research

In order to avoid misunderstandings, | want to edtention to a restriction of the survey of
explanation-types | offered. Some technologicall@xgtion-types have been presented in Kroes

11 J. De Winter

(1998), and de Ridder (2007). Both Kroes and del®idtudy technological explanations to get
a grip on the relation between an artifact’'s fumetand its physical structure. While Kroes
reflects on explaining the function of an artifdwy referring to a with structural-physical
concepts described structure (including not onby diesign of the artifact, but also the relevant
physical phenomena, and the actions necessarkidartifact to perform its function), de Ridder
concentrates on explaining the behavior of artfabie Ridder offers two explanatory strategies:
top-down (TD) and bottom-up (BU). Because the gpoading explanation-types are a bit more
complicated than the explanation-type proposed e | will not fully explicate them here. It
suffices to say that both kinds of explanation @minthough in a quite different way, an
artifact’'s overall behavior to physical componeatsthe artifact. De Ridder states that “[t]he
appropriateness of a TD or BU explanation depemdsantext and the specific explanatory
guestion being asked” (de Ridder 2007, p. 234).

However, even though the explanation-types propbgdtroes and de Ridder may serve their
philosophical functions very well, | do not thinkely have a significant role to play in software
engineering practice (because a software devetmredo his job perfectly well without knowing
anything about the physical basis of software),cwhis why | did not mention them in the
previous sections. This does not mean that | definreject the idea that explanations of these
types are most suited to fulfill certain functioms software development. Nor do | want to
exclude the possibility that other kinds of explamas that have not been mentioned in the
previous sections (e.g., teleological and caugalla@ation of product information as described in
Taura and Kubota 1999, Hempel's covering law moeét,), are useful tools for software
engineers. My omission of spelling out all explamatypes that can be legitimate in software
engineering, is justified because it was beyondstiope of this article to offer more explanation-
types than necessary to prove my point, that iaf g8oftware engineering is a pragmatic
explanatory pluralistidiscipline in the way outlined above. | do not ddes this restriction to be
problematic, for one can easily accept explanatypes that were not included in my analysis,
without discarding my version of pragmatic explamgtpluralism.

My version of pragmatic explanatory pluralism can deneralized to the idea that several
epistemic guidelines are legitimate, and that hr@priateness of a guideline depends on a) the
interests of the person that seeks knowledge, gnthé format of the knowledge-seeking
question he asks, with this format depending onittisrests. Further research should reveal
whether this more general pragmatic idea is aceuvdath respect to epistemic practices in
disciplines ranging from software engineering atigep technological endeavors to the natural
sciences.

Acknowledgements This research was supported by the Researchdation - Flanders. | am very grateful to
Erik Weber and Jeroen Van Bouwel for helping mémprove this paper. Special thanks to Dries De @fintor
guiding me into the world of computer programmiagg for reviewing this paper.

References

De Langhe, R. (2009). Trading off explanatory vétuln Weber, E., Libert, T., Marage, P., and Vampal, G.
(eds.),Logic, Philosophy and History of Science in Belgilfmoceedings of the Young Researchers Days
2008 Brussels: Koninklijke Vlaamse Academie van Belgié

De Ridder, J. (2007Reconstructing Design, Explaining Artifaci3octoral thesis, Delft University of Technology,
Delft.

12 J. De Winter

Kroes, P. (1998). Technological Explanations: ThelaRon between Structure and Function of Techricdg
Objects.Techné, &), 18-34.

Mackie, J. (1974)The Cement of the Universe: A Study of Causa@uxford: Clarendon Press.

Pettit, P. (1996)The Common Mind\New York: Oxford University Press.

Pitt, J. C. (2001). What Engineers Kndkechné, 8), 17-30.

Radu, S. (2008)The Fisher-Yates shuffle algorithrPaper presented at the Mini Conference on Comguti
Algorithms, Bryn Mawr.

Taura, T., and Kubota, A. (1999). A Study on Engireg History BaseResearch in Engineering Design,(1), 45-
54.

Van Bouwel, J., and Weber, E. (2002). Remote CauBed ExplanationsJournal for the Theory of Social
Behaviour, 394), 437-449.

Van Bouwel, J., and Weber, E. (2008). A Pragmdistense of Non-relativistic Explanatory PluralismHistory
and Social Sciencélistory & Theory, 4(2), 168-182.

Van Fraassen, B. C. (1980he Scientific ImageDxford: Clarendon Press.

Weber, E. (1999). Unification: What Is It, How DoéNReach it and Why Do We Want Bynthese, 118), 479-
499.

Weber, E., and Van Bouwel, J. (2002). Symposiunrplanations and Social Ontology 3: Can We Dispemitie
Structural Explanations of Social FacEB&nomics and Philosophy, (23, 261-277.

Weber, E., Van Bouwel, J., and Vanderbeeken, ROFp0Forms of Causal Explanatiofoundations of Science,
10(4), 437-454.

Weber, E., and Vanderbeeken, R. (2005). The Fumstf Intentional Explanations of ActionBehavior and
Philosophy, 331-16.

