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Abstract. When computing scalar multiples on Koblitz curves, the Frobenius
endomorphism can be used to replace the usual doublings on the curve. This
involves digital expansions of the scalar to the complex base τ = (±1±

√
−7)/2

instead of binary expansions. As in the binary case, this method can be sped
up by enlarging the set of valid digits at the cost of precomputing some points
on the curve. In the binary case, it is known that a simple syntactical condition
(the so-called w-NAF-condition) on the expansion ensures that the number of
curve additions is minimised. The purpose of this paper is to show that this
is not longer true for the base τ and w ∈ {4, 5, 6}. Even worse, it is shown
that there is no longer an online algorithm to compute an optimal expansion
from the digits of some standard expansion from the least to the most signifi-
cant digit, which can be interpreted as chaotic behaviour. The proofs heavily
depend on symbolic computations involving transducer automata.
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1. Introduction

The principle of elliptic curve cryptography is that scalar multiples of a point can
be computed quickly, whereas the inverse operation, the discrete logarithm prob-
lem, is believed to be hard. It is a natural aim to optimise the scalar multiplication.

In [15], Koblitz discussed the curves (since then associated with his name)

Ea : Y 2 + XY = X3 + aX2 + 1, with a ∈ {0, 1},
which are defined over F2 and whose point group Ea(F2n) over F2n is considered.
The Frobenius automorphism τ : F2n → F2n , which sends an element to its square,
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can be extended to an endomorphism of Ea(F2n). It turns out [15] that τ satisfies
the equation

τ2 − µτ + 2 = 0 (1)

where µ = (−1)1−a. This implies that τ can be identified with the complex number

µ +
√
−7

2
.

According to the classification of Kátai and Kovács [12], the imaginary qua-
dratic number τ is the basis of a canonical number system (cf. Kátai and Szabó [13])

in Z[τ ], i.e., every element z ∈ Z[τ ] can be represented as z =
∑ℓ

j=0 ηjτ
j for digits

ηj ∈ {0, 1}. Using this representation, a scalar multiple n · P with n ∈ Z (or even
n ∈ Z[τ ]) and P ∈ Ea(F2n) can be computed as

n · P =
ℓ∑

j=0

ηjτ
j(P ). (2)

The latter sum can be evaluated efficiently using Horner’s scheme. This is a gener-
alisation of the double-and-add scheme (cf. Knuth [14]) on arbitrary elliptic curves,
where a digit expansion to the base of 2 is used. The attractive feature is that an
application of the Frobenius endomorphism is much cheaper (or even almost free
when normal bases are used) than doubling.

The number of elliptic curve additions required to calculate n · P using (2)
almost (i.e., one addition less is required) equals the Hamming weight of (ηℓ . . . η0),
i.e., the number of nonzero digits ηj .

On an elliptic curve, subtraction of a point is (almost) as cheap as addition
of a point. Therefore, Morain and Olivos [17] proposed (in the binary case) to
allow digits −1, too. This can be carried over to Koblitz curves. Since there are

many representations z =
∑ℓ

j=0 ηjτ
j with digits ηj ∈ {0, 1,−1}, one can choose

a representation that minimises the Hamming weight. It turns out that every z ∈
Z[τ ] has a unique representation such that ηj ·ηj+1 = 0 for all j (cf. Solinas [23, 24]),
called the τ -Non-Adjacent Form (or τ -NAF)1, and that the τ -NAF minimises the
Hamming weight (cf. Gordon [7] and Avanzi, Heuberger and Prodinger [2, 3]). In
the binary case, the same has already be shown by Reitwiesner [22].

If one allows still larger digit sets, the Hamming weight can be further de-
creased. This comes at the cost of precomputing and storing ηj ·P for all digits ηj .
Solinas [24] proposed the following set of digits: Fix a positive integer w and for
each residue class modulo τw coprime to τ , choose the element of minimal norm
to be a digit. Furthermore, 0 is a digit. This construction is called the digit set
of minimal norm representatives modulo τw . Solinas proved that every element

z ∈ Z[τ ] admits a unique representation z =
∑ℓ

j=0 ηjτ
j such that among every w

consecutive digits, there is at most one non-zero digit. This representation is called
the τ -w-NAF of z. For w = 1, this corresponds to the canonical number system

1This name comes from the fact that ηjηj+1 = 0 implies that a τ -NAF does not have adjacent

non-zeros.
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representation with digits from {0, 1}. The τ -2-NAF is just the τ -NAF described
above.

This paper deals with the question whether the τ -w-NAF of an element
z ∈ Z[τ ] minimises the Hamming weight over all representations of z with the same
digits, but without the non-adjacency condition. For w = 1, this is trivially true.
As mentioned above, for w = 2, optimality has been shown in [7, 2, 3]. For w = 3,
optimality has been shown in Avanzi, Heuberger and Prodinger [2, 3] in a slightly
different language. In this paper, we show that the τ -w-NAF (with the minimal
norm representatives as digits) is not optimal for w ∈ {4, 5, 6}. This is in sharp
contrast to the binary case, where the digit set of minimal norm representatives
simply consists of zero and all odd integers of absolute value less than 2w−1 and
where w-NAFs with this digit set minimise the Hamming weight, cf. Avanzi [1],
Muir and Stinson [19] and Phillips and Burgess [20].

This raises the question whether the concept of the τ -w-NAF is the “right”
concept. Is it possible to choose another syntactic condition which also ensures
uniqueness of the representation and, at the same time, minimises the Hamming
weight? On of the attractive features of the τ -w-NAF is the fact that it can be
computed by an online algorithm from any representation with a pre-specified
set of digits from right to left, i.e., starting with the least significant digit. This
is equivalent to the existence of a finite deterministic transducer automaton to
compute the τ -w-NAF from right to left.

The—perhaps surprising—answer given in this paper is that it is impossible
to construct an online algorithm (or, equivalently, a finite deterministic trans-
ducer automaton) to compute an optimal representation from right to left for
w ∈ {4, 5, 6}. In particular, we will exhibit examples of pairs of integers which are
congruent modulo arbitrarily high powers of τ , but whose least significant digits
in their optimal expansions have to different. One would conjecture a similar be-
haviour for higher values of w, but at present, the required symbolic computations
seem to be out of reach with current computers. We note that a similar behaviour
has also been found by the author [9] for bases of canonical number systems in
the Gaussian integers. One may interpret this as chaotic behaviour, since knowing
the input arbitrarily precisely (in a τ -adic sense) does not allow to determine the
least significant digit of optimal expansions.

The digit set of minimal norm representatives is not the only useful one, cf.
Avanzi, Heuberger and Prodinger [4, 5]. We also provide examples of chaos for
other digit sets considered in that paper.

In some cryptosystems, e.g., ECDSA, it is required to compute linear com-
binations m · P + n · Q for integers m and n and points P , Q ∈ Ea(F2n). As
remarked by Straus [26], one can do better than simply adding the results of the

scalar multiplications m · P and n · Q: Using a joint expansion
(

m
n

)
=
∑ℓ

j=0 ηj2
j

where ηj ∈ {0, 1}2 are digit vectors and precomputing P + Q, one can compute
the linear combination by ℓ doublings and H(ηℓ, . . . , η0) − 1 additions, where
H(ηℓ, . . . , η0) denotes the joint Hamming weight, i.e., the number of nonzero digit
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vectors. This procedure is also known as Shamir’s trick. As in the one-dimensional
case, one can allow digits −1 to introduce redundancy. Solinas [25] introduced the
Joint Sparse Form by syntactical conditions, which is unique and minimises the
joint Hamming weight. Generalisations have been made in Grabner, Heuberger
and Prodinger [8], Proos [21] and Heuberger and Muir [10].

For the case of base τ , the same syntactical condition can be imposed (cf.
Ciet, Lange, Sica and Quisquater [6]). Uniqueness is preserved, but minimality
is not. In fact, more complicated syntactical properties have been proposed by
Zhu, Kuang and Zhang [27], where the average joint Hamming weight could be
reduced, but which are still non-optimal. After the above announced results on
chaotic behaviour of τ -w-NAF, one may wonder whether the same is true for joint
expansions in base τ . The answer is affirmative and is proved in Theorem 3.

We now turn to the methods employed in this paper. At first glance, comput-
ing optimal expansions of an element seems to be a difficult task with exponential
running time, because for each digit, one has a certain number of choices. A closer
analysis, however, shows that only a finite number of carries can actually occur,
which is encoded by the transducer automaton translating any expansion with the
given digit set to the “canonical” representation, i.e., the τ -w-NAF or the τ -JSF.
This results in an algorithm to compute optimal expansions which is linear in the
length of the expansions—but beware, the implicit constant (depending on w and
the digit set) is huge.

A computer search exhibits candidates for pairs of integers which are ar-
bitrarily close, but whose least significant digits in their optimal expansions are
different. The above mentioned linear time algorithm is then tweaked to deal with
those candidates, which is possible due to the essentially periodic patterns in their
canonical representations. This leads to heavy symbolic computations with trans-
ducer automata. These result in a shortest path calculation in a large directed
graph. All shortest paths correspond to all optimal expansions of the given inte-
gers.

The remaining paper is structured as follows: In Section 2, we fix the no-
tations and introduce the digit sets used in this paper. The following Section 3
collects all results in the one-dimensional case. The transducer automata forming
the base of the remaining proofs are introduced in Section 4. Section 5 is devoted to
the asymptotically efficient computation of optimal expansions of single elements
of Z[τ ], whereas Section 6 deals with the computation of optimal expansions of
families of integers given by essentially periodic D-w-NAFs, which leads to the
proof of the results in the one-dimensional case. Finally, Section 7 discusses the
case of higher dimensions.

2. D-expansions

Let µ ∈ {±1} and τ be a root of the equation (1). It is well known that Z[τ ] is an
Euclidean domain and that τ is a prime element in this ring. For w ≥ 1, the prime
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residue classes modulo τw are those residue classes modulo τw that are relatively
prime to τ .

We now collect the basic definitions and notations used in the first part of this
paper. We use standard notations for finite and infinite words, automata and trans-
ducer automata, cf. for instance Lothaire [16]. However, our infinite words will be
left-infinite, i.e., . . . η3η2η1η0, and all automata will process their arguments from
right to left. The length of a finite word will be denoted by length(ηℓ−1 . . . η0) := ℓ.
In order to avoid any confusion, we write

w(ℓ) = w . . . w︸ ︷︷ ︸
ℓ repetitions

for the ℓth power of the finite word w with respect to concatenation and reserve
superscripts without parentheses for powers of complex numbers with respect to
the usual multiplication in C.

Definition 2.1. Let D be a (finite) subset of Z[τ ] containing 0. A D-expansion of
z ∈ Z[τ ] is a left infinite word η = . . . η2η1η0 ∈ Dω over the alphabet D such that

1. only a finite number of the digits ηj is nonzero,
2. value(η) :=

∑
j≥0 ηjτ

j = z, i.e., η is indeed an expansion of z.

The Hamming weight weight(η) of η is the number of nonzero digits ηj .
The length of the expansion2 η is defined as

length(η) := 1 + max{j : ηj 6= 0}.
A D-expansion η of z is called an optimal D-expansion of z if its Hamming

weight is minimum amongst all D-expansions of z. The set of optimal D-expansions
of z is denoted by

opt(z) := {η ∈ Dω : η is an optimal D-expansion of z}.
Let w ≥ 1 be an integer. A D-expansion of z is called a D-w-Non-Adjacent-

Form (D-w-NAF) of z, if

3. each factor ηj+w−1 . . . ηj of length w, i.e., each block of w consecutive digits,
contains at most one nonzero digit ηk, j ≤ k ≤ j + w − 1.

A {0,±1}-2-NAF is also called a τ-NAF.
A set D which consists of zero and exactly one representative of every prime

residue class modulo τw and such that each z ∈ Z[τ ] admits a D-w-NAF is called
a w-Non-Adjacent-Digit-Set (w-NADS).

It is easily seen that if D is a w-NADS, then each z ∈ Z[τ ] has a unique
D-w-NAF, which will be denoted by

NAF(z).

Furthermore, if z ≡ z′ (mod τk+w) for some integer k, then the k least significant
digits of their D-w-NAFs agree.

2We use the same notation as for the length of finite words, where we also count leading zeros,

which would be meaningless in the case of an infinite word.
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The following families of digit sets D will be considered in this paper.

2.1. Minimal Norm Representatives modulo τw

In Avanzi, Heuberger and Prodinger [4], it has been shown that every prime residue
class modulo τw indeed contains exactly one element of minimal norm.

Definition 2.2. Let w ≥ 2. Then the set MNR(w) consisting of 0 and the unique
element of minimal norm for every prime residue class modulo τw is called the set
of minimal norm representatives modulo τw.

Solinas [24] proved that for w ≥ 1, MNR(w) is indeed a w-NADS.

2.2. Short τ -NAF Representatives

Definition 2.3. Let w ≥ 2. Then the set SNR(w) is defined as

SNR(w) = {0} ∪ {value(η) : η is a τ -NAF of length at most w

with η0 6= 0 and ηw−1 ∈ {0, η0}}
and is called the set of short τ-NAF representatives.

In [5] it is shown that SNR(w) is a w-NADS for all w ≥ 2. In fact, SNR(w) =
MNR(w) for w ∈ {2, 3} as well as for (w, µ) = (4, 1). For w ≥ 4, the rule ηw−1 ∈
{0, η0} is somewhat arbitrary (cf. [5]), but in this paper, we stick to this definition.

2.3. Powers of τ̄

Definition 2.4. Let w ≥ 2. Then the set Pτ̄(w) is defined as

Pτ̄ (w) = {0} ∪ {±τ̄k : 0 ≤ k < 2w−2}
and is called the set of powers of τ̄ .

For w ≥ 2, Pτ̄(w) contains exactly one representative of every prime residue
class modulo τw, cf. [5]. For w ∈ {2, 3, 4, 5, 6}, Pτ̄ (w) is even a w-NADS, for w ∈
{7, 8, 9, 10, 11, 12} it is not a w-NADS, cf. [5]. It turns out that MNR(w) = Pτ̄(w)
for w ∈ {2, 3, 4}. As explained in [5], this digit set can be used for a sub-linear
scalar multiplication algorithm on Koblitz curves, the key ingredient is a relation
between multiplication by τ̄ and point halving on the curve.

3. Results in the one-dimensional case

Avanzi, Heuberger and Prodinger [2, 3] showed that for w ∈ {2, 3} a D-w-NAF
with D being the set of minimal norm representatives modulo τw is actually always
an optimal D-expansion. The same result is also trivially true for w = 1.

In the binary case (where τ is replaced by 2), it turns out that the analogous
result is true for all positive w, cf. Avanzi [1] and Muir and Stinson [18]. So one
might conjecture that the same is also true for our choice of τ .

We show that this conjecture is false by considering the following example.
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Example 3.1. Consider µ = −1, w = 4, and the set D = MNR(4), i.e., D =
{0,±1,±1± τ,±(3 + τ)} (all signs are independent). We note that

value(0ω1000(−1− τ)000(1 − τ)) = −9 = value(0ω(−3 − τ)00(−1)).

The first expansion is the D-w-NAF and has Hamming weight 3, whereas the
second expansion does not satisfy the D-w-NAF-condition, has Hamming weight
2 and is even shorter.

Examples for other values of w and D can easily be extracted from Table 1.

Even worse, we exhibit chaotic behaviour in the following sense: for every
positive integer ℓ, we exhibit a pair of numbers which are congruent modulo τ ℓ,
but whose optimal D-expansions must differ even at the least significant position.
Thus it is impossible to compute an optimal D-expansion of z by a deterministic
transducer automaton or an online algorithm.

We remark that such chaotic behaviour has previously been found to occur
in {0,±1}-expansions in Z[i], cf. Heuberger [9].

Theorem 1. Let

• w = 4 and D ∈ {MNR(4), SNR(4), Pτ̄(4)} or
• w = 5 and D ∈ {MNR(5), SNR(5), Pτ̄(5)} or
• w = 6 and D ∈ {MNR(6), SNR(6)}.

For every positive integer ℓ, there exist elements zℓ, z′ℓ ∈ Z[τ ] given in Table 1 with
the following two properties:

1. The numbers zℓ and z′ℓ are congruent modulo τ ℓ.
2. For all optimal D-expansions η and η′ of zℓ and z′ℓ, respectively, the least

significant digits η0 and η′
0 differ.

For clarity, we state the result for w = 4 explicitly:

Example 3.2. Let w = 4 and D = MNR(4) = {0,±1,±1± τ,±(3−µτ)}. For every
nonnegative integer ℓ, we define

zℓ := value
(

0ω(µ − τ)(000(−3µ + τ))(ℓ)0000(1 − µτ)000(−1)
)
,

z′ℓ := value
(
0ω(−µ)000(µ − τ)(000(−3µ + τ))(ℓ)0000(1 − µτ)000(−1)

)
,

(3)

where (000(−3µ + τ))(ℓ) means that this 4 digit block is repeated ℓ times.
Then zℓ ≡ z′ℓ (mod τ4ℓ+13). All D-optimal expansions of zℓ are given by

0ω(000(3 − µτ))(ℓ2)00(µ− τ)(000(−3µ + τ))(ℓ1)0000(1− µτ)000(−1), (4)

where ℓ1 and ℓ2 are nonnegative integers summing up to ℓ. There is only one
D-optimal expansion of z′ℓ, it is given by

0ω(000(−3 + µτ))(ℓ+1)0000(−3µ + τ)00(1 + µτ). (5)

In particular, the least significant digit of all optimal expansions of zℓ is −1,
whereas the unique optimal expansion of z′ℓ has least significant digit (1 + µτ).

Note that the D-optimal expansion of z′ℓ has Hamming weight ℓ+3, whereas
the D-w-NAF of z′ℓ given in (3) has Hamming weight ℓ + 4.
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w µ D
4 µ MNR NAF(zℓ) = 0ω(µ − τ) (000(−3µ + τ))

(ℓ)
0000(1− µτ)000(−1)

(ℓ ≥ 0) opt(zℓ) = {0ω (000(3 − µτ))
(ℓ2)

00(µ − τ) (000(−3µ + τ))
(ℓ1)

0000(1− µτ)000(−1) | ℓ1, ℓ2 ≥ 0 and ℓ1 + ℓ2 = ℓ}
NAF(z′ℓ) = 0ω(−µ)000(µ− τ) (000(−3µ + τ))

(ℓ)
0000(1− µτ)

000(−1)

opt(zℓ) = {0ω (000(−3 + µτ))
(ℓ+1)

0000(−3µ + τ)00(1 + µτ)}
4 −1 SNR NAF(zℓ) = 0ω(−1) (0000(−3 + τ)0)

(ℓ)
00(3 − τ)

(ℓ ≥ 0) opt(zℓ) = 0ω (00000(−3 + τ))(ℓ) 001

NAF(z′ℓ) = 0ω (00000(−3 + τ))
(ℓ)

000(3 − τ)

opt(zℓ) = 0ω (00000(−3 + τ))
(ℓ)

000(3 − τ)

5 −1 MNR NAF(zℓ) = 0ω(1 − 2τ) (00000(−3− τ))
(ℓ)

0000(1 + 3τ)

(ℓ ≥ 1) opt(zℓ) = {0ω(1 − 2τ) (00000(−3− τ))(ℓ) 0000(1 + 3τ)}
NAF(z′ℓ) = 0ω(−1) (0000(−3− τ)0)

(ℓ)
000(1 + 3τ)

opt(z′ℓ) = {0ω (00000(1 + 3τ))
(ℓ)

000(−1)}
5 1 MNR NAF(zℓ) = 0ω(−1 + 2τ)00 (00000(3− τ))(ℓ) 0000(1− 3τ)

(ℓ ≥ 1) opt(zℓ) = {0ω(−1 + 2τ)00 (00000(3− τ))
(ℓ)

0000(1 − 3τ)}
NAF(z′ℓ) = 0ω(−1) (0000(3 − τ)0)

(ℓ)
000(1 − 3τ)

opt(z′ℓ) = {0ω (00000(1− 3τ))
(ℓ)

000(−1)}
5 −1 SNR NAF(zℓ) = 0ω(−1 − τ) (0000(−5− 4τ)000000(−5− 4τ))

(ℓ)

(ℓ ≥ 0) 0000(−5− 4τ)0000(3 + 3τ)

opt(zℓ) = {0ω (000000(−5− 4τ)0000(−5 − 4τ))(ℓ)

000000(−3− 3τ)0001}
NAF(z′ℓ) = 0ω (0000(−5− 4τ)000000(−5− 4τ))(ℓ)

0000(−5− 4τ)0000(3 + 3τ)

opt(z′ℓ) = {0ω (0000(−5− 4τ)000000(−5− 4τ))
(ℓ)

0000(−5− 4τ)0000(3 + 3τ)}
5 1 SNR NAF(zℓ) = 0ω1 (000000(5− 4τ)0000(−5 + 4τ))(ℓ)

(ℓ ≥ 1) 0000(−3 + τ)0000(3 − 3τ)

opt(zℓ) = {0ω (0000000(−5 + 4τ)000(−5 + 4τ))
(ℓ)

0000000(−5 + 4τ)00(3 + τ)}
NAF(z′ℓ) = 0ω(−1 + τ) (0000(5− 4τ)0000(−5 + 4τ)00)

(ℓ)

00(−3 + τ)0000(3 − 3τ)

opt(z′ℓ) = {0ω(1 − τ) (0000000(−5 + 4τ)000(−5 + 4τ))
(ℓ)

0000(3− 3τ)}
5 −1 Pτ̄ NAF(zℓ) = 0ω(1 + τ) (00000(5− τ))

(ℓ)
0000(−1− 3τ)

(ℓ ≥ 0) opt(zℓ) = {0ω (00000(−1− 3τ))
(ℓ2)

000(1 + τ)

(00000(5− τ))(ℓ1) 0000(−1− 3τ)

Table 1. Explicit elements zℓ and z′ℓ for Theorem 1. For w = 4,
µ = 1 we have SNR(4) = MNR(4). For w = 5, µ = 1, D =
Pτ̄ (5), opt(zℓ) is given by a regular expression, where “‖” denotes
alternatives and ∗ denotes the Kleene star.
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w µ D
| ℓ1, ℓ2 ≥ 0 and ℓ1 + ℓ2 = ℓ}

NAF(z′ℓ) = 0ω(1 + τ)0000(1 + τ) (00000(5− τ))(ℓ)

0000(−1− 3τ)

opt(z′ℓ) = {0ω (00000(−3 + 7τ))
(ℓ)

00000(−3 + 7τ)00(−1 + τ)}
5 1 Pτ̄ NAF(zℓ) = 0ω(−1) (000000(−7 + 5τ))

(ℓ+1)

00000(−3 + τ)0000(−1 + 3τ)
(ℓ ≥ 0) opt(zℓ) = {η ∈ 0ω

(
0000000000(5+ τ)00(3 − τ)

‖ 000000000(3− τ)000(−5 − τ)
‖ 000000000000(−3+ τ)(−3 − 7τ)

‖ 000000(−1 + τ)
)∗

0000000000000(−3− 7τ)00000(−3− 7τ)(−1)
| length(η) = 23 + 7ℓ}

NAF(z′ℓ) = 0ω (000000(−7 + 5τ))(ℓ) 00000(−3 + τ)
0000(−1 + 3τ)

opt(z′ℓ) = {0ω (000000(−7 + 5τ))(ℓ) 000000000(3 + 7τ)(−3 + τ),

0ω (000000(−7 + 5τ))
(ℓ)

00000(−3 + τ)
0000(−1 + 3τ)}

6 −1 MNR NAF(zℓ) = 0ω100000(1 + 3τ) (00000(5 + 3τ))
(ℓ)

00000(3 + 4τ)

(ℓ ≥ 1) opt(zℓ) = {0ω(3 + 4τ) (00000(5 + 3τ))
(ℓ)

0000(−1− 2τ)}
NAF(z′ℓ) = 0ω(1 + 3τ) (00000(5 + 3τ))

(ℓ)
00000(3 + 4τ)

opt(z′ℓ) = {0ω(1 + 3τ) (00000(5 + 3τ))
(ℓ)

00000(3 + 4τ)}
6 1 MNR NAF(zℓ) = 0ω(1 − 3τ) (00000(5− 3τ))

(ℓ)
00000(3− 4τ)

(ℓ ≥ 1) opt(zℓ) = {0ω(1 − 3τ) (00000(5− 3τ))
(ℓ)

00000(3− 4τ)}
NAF(z′ℓ) = 0ω100000(1− 3τ) (00000(5− 3τ))

(ℓ)
00000(3− 4τ)

opt(z′ℓ) = {0ω(−3 + 4τ) (00000(−5 + 3τ))(ℓ) 0000(−1 + 2τ)}
6 −1 SNR NAF(zℓ) = 0ω (000000(1− 2τ))

(ℓ)
00000(−5− τ)

(ℓ ≥ 1) opt(zℓ) = {0ω (000000(1− 2τ))
(ℓ)

00000(−5− τ)}
NAF(z′ℓ) = 0ω(−1)(00000(1− 2τ)0)(ℓ)0000(−5− τ)

opt(z′ℓ) = {0ω (000000(−5− 4τ))
(ℓ)

00001}
6 1 SNR NAF(zℓ) = 0ω(3 − τ) (00000000900000000(−9))

(ℓ)

(ℓ ≥ 1) 000000(1− 3τ)00000(7− τ)

opt(zℓ) = {0ω(3 − τ) (00000000900000000(−9))(ℓ)

000000(1− 3τ)00000(7− τ)}
NAF(z′ℓ) = 0ω100000(1− 3τ) (0000000900000000(−9)0)

(ℓ+1)

00000(1− 3τ)00000(7 − τ)

opt(z′ℓ) = {0ω(−9) (00000000(9− 2τ)00000000(−9 + 2τ))
(ℓ)

00000000(9− 2τ)000000(3 + τ)
0000000(−9 + 2τ)000(−1 + 3τ)}

Table 1. Explicit elements zℓ and z′ℓ for Theorem 1 (continued).
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w µ D = MNR(w) D = SNR(w) D = Pτ̄ (w)
2 ±1 13 13 13
3 ±1 89 89 89
4 ±1 575 575 575
5 ±1 2469 4609 17051
6 −1 10191 15309
6 1 10191 21159

Table 2. Size #V (T ) of the transducer automaton constructed
in Lemma 4.1

4. Computing D-w-NAFs by Transducer Automata

As an auxiliary result, we show that it is possible to compute a D-w-NAF by
a transducer automaton. This result is similar to Heuberger and Prodinger [11,
Section 3].

Lemma 4.1. Let w ≥ 1 and D be a w-NADS. Then there is a transducer T on the
alphabet D transforming an arbitrary D-expansion 0ω

d to NAF(value(0ω
d)) from

right to left.

More precisely, there is a constant c depending on D such that for any finite
words d, η over the alphabet D, the words 0(c)

d and η are the input and output
labels of a successful path in T if and only if 0ωη = NAF(value(0ω

d)).

The number of states for this transducer T in the case of the digits sets
introduced in Section 2 are shown in Table 2.

Proof. We first define a possibly larger transducer T̃ and remove unnecessary
states and transitions afterwards.

Set M := max{|d| : d ∈ D} and

C := M

(
1√

2 − 1
+

1

2w/2 − 1

)
.

The sets Ṽ of states and Ẽ of transitions of T̃ are defined to be

Ṽ :=

{
(z, ℓ) : ℓ ∈ {0, . . . , w − 1}, z ∈ Z[τ ], |z| ≤ C + M

2ℓ/2 − 1√
2 − 1

, ℓ = 0

or τ does not divide z

}
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and Ẽ := Ẽ1 ∪ Ẽ2 ∪ Ẽ3 ∪ Ẽ4 with

Ẽ1 := {(z, 0)
d|0−−→ ((z + d)/τ, 0) : (z, 0) ∈ Ṽ , d ∈ D and τ divides (z + d)},

Ẽ2 := {(z, 0)
d|ε−−→ (z + d, 1) : (z, 0) ∈ Ṽ , d ∈ D, and τ does not divide (z + d)},

Ẽ3 := {(z, ℓ)
d|ε−−→ (z + dτ ℓ, ℓ + 1) : (z, ℓ) ∈ Ṽ , d ∈ D, 0 < ℓ < w − 1},

Ẽ4 := {(z, w − 1)
d|0(w−1)η−−−−−−→ ((z + dτw−1 − η)/τw , 0) : (z, w − 1) ∈ Ṽ , d ∈ D,

η ∈ D with z + dτw−1 ≡ η (mod τw)}
(6)

respectively. Here, the symbol ε stands for the empty word. The set of initial states
and the set of terminal states are both defined to consist of state (0, 0) only.

A routine verification shows that for all (z, ℓ)
d|η−−→ (z′, ℓ′) ∈ Ẽ, the pair (z′, ℓ′)

is indeed an element of Ṽ and the invariants

z + dτ ℓ = value(η) + z′τ length(η),

ℓ + 1 = length(η) + ℓ′

hold for finite words η ∈ D∗.

By induction, these invariants extend to paths in T̃ , too: For a path from
(z, ℓ) to (z′, ℓ′) with input and output labels d and η, respectively, we have

z + value(d)τ ℓ = value(η) + z′τ length(η), (7a)

ℓ + length(d) = length(η) + ℓ′. (7b)

The labels of the path are concatenated from right to left. We note that by con-
struction, η satisfies the w-NAF condition.

Consider a successful path (i.e., a path from the unique initial state (0, 0) to
the unique terminal state (0, 0)) with input and output labels d and η, respectively.
Then (7a) simply states that 0ωη = NAF(value(0ω

d)).

We also claim that for each (z, ℓ) ∈ Ṽ , there is a path from (z, ℓ) to the
terminal state (0, 0) whose input label is a word consisting of zeros only. This
can be proved by induction on the length3 of the D-w-NAF θ of z which has

been assumed to exist. The main fact is that transitions in Ẽ1 output the least

significant digit of θ, whereas transitions in Ẽ4 output the w least significant digits
of θ.

Thus for any D-expansion 0ω
d of some z ∈ Z[τ ], there is a successful path

with input label 0(c)
d for a suitable number c of leading zeros. The exact number

of leading zeros is irrelevant since there is a transition (0, 0)
0|0−−→ (0, 0). The output

label is then—up to leading zeros—NAF(z).

3The length in the sense of Definition 2.1.
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Finally we define T with sets V and E of states and transitions, respectively,

to be the sub-transducer of T̃ spanned by the states which are actually reachable
from the initial state (0, 0). �

5. Computing Optimal D-Expansions

It is conceptually easy to compute an optimal D-expansion of some y ∈ Z[τ ]
recursively: If τ divides y, the least significant digit of any D-expansion of y equals
0. Otherwise, we consider an optimal expansion (calculated recursively) of (y−d)/τ
for all d ∈ D \ {0} and choose d ∈ D such that the Hamming weight of an
optimal expansion is minimum. Termination of this procedure can be enforced by
pruning all expansions with Hamming weight larger than the Hamming weight of
the corresponding D-w-NAF. From the description of the algorithm, we expect it
to have exponential running time.

However, this can be improved:

Theorem 2. Let w ≥ 1 and D be a w-NADS. Then there is an algorithm to compute
a D-optimal expansion of y ∈ Z[τ ] in O(log |y|) time, where the implicit constant
depends on D.

We remark that the implicit O-constant depends on the size of the transducer
T described in Lemma 4.1, so one cannot expect miracles from this result. However,
the idea will be used to prove Theorem 1.

Proof. Let y ∈ Z[τ ], θ = NAF(y) and K := length(θ). Note that K ∼ 2 log2 |y| by
an estimate of Solinas [24, Equation (53)].

We construct a new transducer Ty from the transducer defined in Lemma 4.1
whose underlying input automaton only accepts D-expansions of y. This can be
done by restricting the output of T : we only allow output which agrees with the
D-w-NAF θ of y. This corresponds to the concatenation of T with the automaton
accepting the word θ only, i.e., the output of T is used as input to this second
automaton. In order to achieve this explicitly, we must manage a pointer describing
the number of output digits already verified.

More precisely, we define the transducer Ty as follows. The set of states Vy is
defined to be

Vy := {(z, ℓ, k) : (z, ℓ) ∈ V, 0 ≤ k ≤ K}.
The only initial state is (0, 0, 0), the only terminal state is (0, 0, K).

The set of transitions Ey is defined to be

Ey :=
{
(z, ℓ, k)

d|ηm−1...η0−−−−−−−→ (z′, ℓ′, min{k + m, K}) : m ≥ 0, 0 ≤ k ≤ K,

(z, ℓ)
d|ηm−1...η0−−−−−−−→ (z′, ℓ′) ∈ E, (ηm−1, . . . , η0) = (θk+m−1, . . . , θk)

}
. (8)

The crucial invariant in this transducer is the following: There is a path
from (0, 0, 0) to (z, ℓ, k) in Ty with input and output labels d and η, respectively,
if and only if there is a path from (0, 0) to (z, ℓ) with the same labels in T ,
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k = min(K, length(η)), and η is a suffix of θ, i.e., ηj = θj for 0 ≤ j < length(η).
This can easily be proved by induction on the length of d.

At this point, a comment on the rôle of K seems to be adequate: intuitively,
the argument would be simpler if min{k + m, K} in the definition of Ey would be
replaced with k + m. Then we would have k = length(η) in the above invariant.
However, this would construct infinitely many states (z, ℓ, K + j), j ≥ 0, which
are all equivalent, since θK+j vanishes anyway. Therefore, the truncation at K has
been chosen in order to avoid equivalent states and to obtain a finite transducer.

The above invariant states that there is a successful path in Ty with input

label 0(c)
d if and only if value(0ω

d) = value(θ) = y. Here, c is the constant from
Lemma 4.1. In this case, the output label is a suffix of θ.

The cost of a transition is defined as the Hamming weight of its input la-
bel. Thus the optimal D-expansions of y are exactly the input labels of shortest
successful paths. From (8) and (6) we deduce that if there is a transition from
(z, ℓ, k) to (z′, ℓ′, k′) with k < K, the pair (k, ℓ) is lexicographically smaller than
(k′, ℓ′). This implies that the transducer is (w · K + 1)-partite with node classes
Vy,k,ℓ = {(z, k, ℓ) ∈ Vy}, 0 ≤ k < K, 0 ≤ ℓ < w, and Vy,K = {(z, K, ℓ) ∈ Vy}. Thus
the shortest paths can be computed with a running time which is linear in K. For
instance, a variant of the Ford-Bellman algorithm which processes the edges in
lexicographically increasing order of (k, ℓ) for the start node (z, k, ℓ) (k < K) does
only need one loop for the transitions starting at a vertex (z, k, ℓ) with k < K.
Only the final component Vy,K (which is independent of y) requires a full shortest
path search. �

6. Proof of Theorem 1

We present the details of the proof of Theorem 1 for the case w = 4 and D =
MNR(4) = Pτ̄ (4). All other cases listed in Theorem 1 and Table 1 are proved
analogously, cf. the remarks at the end of this section.

We first consider zℓ. We construct an auxiliary transducer which is similar
to that in the proof of Theorem 2. The difference is that we deal with all values
of ℓ simultaneously. So we are not storing a pointer k to the given D-w-NAF, but
we store the whole language which is still expected. This corresponds to the con-
catenation of T with the automaton accepting the regular language corresponding
to (3).

Let L be the language given by the regular expression 0∗000(µ−τ)(000(−3µ+
τ))∗0000(1 − µτ)000(−1) over the alphabet D. Here, (−3µ + τ) is a literal (as a
digit in D), and not an alternation. The Kleene star (finite repetition) is denoted
by (. . .)∗, as usual. Obviously, the language L has been chosen to correspond with
the D-w-NAF of zℓ given in (3). We set

M := {0∗000(µ− τ)(000(−3µ + τ))∗0000(1− µτ)000(−1),

0∗000(µ− τ)(000(−3µ + τ))∗0000(1− µτ),
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0∗000(µ− τ)(000(−3µ + τ))∗0,

0∗000(µ− τ)(000(−3µ + τ))∗,

0∗}.
The reason for this choice is that output labels of transitions in T are either empty
words, a single 0, or w-digit words with (w − 1) leading zeros.

The auxiliary transducer TL is defined by its set of states VL with

VL := {(z, ℓ, M) : (z, ℓ) ∈ T , M ∈ M},
its set of transitions

EL :=
{
(z, ℓ, M)

d|ηm−1...η0−−−−−−−→ (z′, ℓ′, M ′) : m ≥ 0, M, M ′ ∈ M,

(z, ℓ)
d|ηm−1...η0−−−−−−−→ (z′, ℓ′) ∈ E, M ′ηm−1 . . . η0 ⊆ M

}
,

its unique initial state (0, 0,L) and its unique terminal state (0, 0, 0∗).
The following invariant holds: There is a path from the initial state (0, 0,L)

to a state (z, ℓ, M) with input and output labels d and η, respectively, if and only
if there is path from (0, 0) to (z, ℓ) with the same labels such that Mη ⊆ L.

Thus there is a successful path in TL with input and output labels 0(c)
d and

η if and only if d is a D-expansion of some zℓ which is given by its D-w-NAF η.
We computed the transducer T for µ = −1 and for µ = 1 separately; in both

cases, there are 2003 states reachable from the initial state. From 608 of those, the
terminal state is reachable.

We intend to compute shortest paths in TL. In contrast to Theorem 2, we
cannot use the same cost function, since this would mask out zℓ for ℓ > 0. There-
fore, we define the cost of a transition to be the Hamming weight of its input label
minus the Hamming weight of its output label. Using the Ford-Bellman algorithm
shows that the shortest path from the initial state to the terminal state has cost
0 (for both choices of µ). This means that there is no ℓ ≥ 0 such that zℓ admits a
D-expansion of Hamming weight less than the Hamming weight of its D-w-NAF.
This immediately shows that a D-expansion of some zℓ is an optimal D-expansion
if and only if it has the same Hamming weight as the corresponding D-w-NAF.
This is the case if and only if there is a successful path in TL with input label 0(c)

d

of total cost 0.
Furthermore, the Ford-Bellman algorithm also yields the vertex potentials

π(s), s ∈ VL, defined to be the shortest distance between the initial state and s.

We call a transition s
d|η−−→ s′ optimal if π(s′) = π(s) + weight(d) − weight(η).

A successful path is a shortest path in TL if and only if it only uses optimal
transitions. We now drop all non-optimal transitions of TL. Then, we consider the
sub-transducer spanned by the states from which the terminal state is reachable.
The result is shown in Figure 1, where independent paths have been contracted to
transitions for graphical reasons. In fact, the results for µ = ±1 are very similar
and can be uniformly shown in the same figure. Thus the transducer in Figure 1
transforms all optimal D-expansions of some zℓ to its D-w-NAF. It is now easy to
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0000(1−µτ)000(−1)
0000(1−µτ)000(−1)

00(µ−τ)
ε

000(−3µ+τ)
000(−3µ+τ)

0
000(µ−τ)

000(3−µτ)
000(−3µ+τ)

0
0

Figure 1. Transducer transforming all optimal D-expansions of
zℓ to its D-w-NAF, where w = 4 and D is the set of minimal norm
representatives modulo τw.

000(−3+µτ)0000(−3µ+τ)00(1+µτ)
0000(1−µτ)000(−1)

000(−3+µτ)
000(−3µ+τ)

00000
000(−µ)000(µ−τ)

0
0

Figure 2. Transducer transforming all optimal D-expansions of
z′ℓ to its D-w-NAF, where w = 4 and D is the set of minimal norm
representatives modulo τw.

read off the optimal D-expansions. These are indeed shown in (4).
Now, we turn to z′ℓ. We use the same ideas as for zℓ. The corresponding

regular language is denoted by L′. The corresponding transducer TL′ has 2495
states reachable from the initial state, from 855 of those, the terminal state is
reachable. Using the Ford-Bellman algorithm shows that the shortest path in TL′

from the initial to the terminal state has length −1. Thus there is a nonnegative ℓ
such that z′ℓ admits a D-expansion whose Hamming weight is the Hamming weight
of the corresponding D-w-NAF decreased by 1. Since the D-w-NAF has Hamming
weight ℓ+4, the minimum Hamming weight of a D-expansion of zℓ is at least ℓ+3.

An expansion d of zℓ has Hamming weight ℓ+3 if and only if the correspond-
ing successful path with input label d in TL′ has total cost −1. Thus we apply
the above reduction process again. This yields the transducer in Figure 2. From
this transducer, we immediately see that there is indeed a D-expansion of zℓ of
Hamming weight ℓ + 3 for every nonnegative integer ℓ. Obviously, there is only
one such expansion, and this expansion is shown in (5). This concludes the proof
of the Theorem for w = 4.

As stated in the introductory remarks of this section, the proof of Theorem 1
for the other values of w and D is analogous. The number of states of the var-
ious transducers is given in Table 3. The computation of opt(z′ℓ) in the largest
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w µ D #V (T ) #V (TL) V (T ∗
L ) V (TL′) V (T ∗

L′)
4 −1 MNR = Pτ̄ 575 2003 608 2495 855
4 −1 SNR 575 3465 1076 3465 767
4 1 MNR = SNR = Pτ̄ 575 2003 608 2495 855
5 −1 MNR 2469 7841 1630 7770 1753
5 1 MNR 2469 12275 2031 7770 1753
5 −1 SNR 4609 22990 4555 23177 3783
5 1 SNR 4609 26570 5584 26581 5844
5 −1 Pτ̄ 17051 51647 7616 67470 12596
5 1 Pτ̄ 17051 79914 13142 80075 12162
6 −1 MNR 10191 34964 5531 25145 3657
6 1 MNR 10191 25145 3657 34964 5531
6 −1 SNR 15309 52344 4600 52203 6904
6 1 SNR 21159 214609 19278 235138 23785

Table 3. Number of states in the transducers used in the proof
of Theorem 1

case (w = 6, µ = 1, D = SNR(6)) took 65 days on a Intel R© CoreTM 2 Duo
CPU E6850 at 3.00 GHz running Mathematica R© 5.2 under Linux 2.6.22. In most
cases, the transducers describing optimal expansions were of the same shape as
the transducer in Figure 2. In some cases, however, the transducers were slightly
more complex. As representative examples, we show the transducers for opt(z′ℓ) for
(w, µ,D) = (6, 1, SNR(6)) in Figure 3 and for opt(zℓ) for (w, µ,D) = (5, 1, Pτ̄(5))
in Figure 4. The latter case is the one leading to the regular expression in Table 1.

7. Joint τ -Expansions

In this second part of the paper, we turn our attention to joint τ -expansions of
pairs of integers in Z[τ ].

Definition 7.1. A joint expansion of z ∈ Z[τ ]2 is a left infinite word H = . . .η2η1η0

over the alphabet {0, 1,−1}2 such that

1. only a finite number of the digit vectors ηj is nonzero,

2. value(H) :=
∑

j≥0 ηjτ
j = z, i.e., H is indeed an expansion of z.

The digit vectors ηj , j ≥ 0 will also called the columns of H.

The joint Hamming weight weight(H) of H is the number of nonzero digit
vectors ηj .

A joint expansion H of z is called an optimal joint expansion of z if its
Hamming weight is minimum amongst all joint expansions of z.
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Figure 3. Transducer describing opt(z′ℓ) in the case w = 6, µ = 1,
D = SNR(6).

We again need a “canonical” joint expansion as point of reference for the
transducer automata. We choose the generalisation of Solinas’ [25] Joint Sparse
Form (JSF) to base τ as proposed by Ciet, Lange, Sica and Quisquater [6].

Definition 7.2. An expansion H is called a τ -JSF if it fulfils the following condi-
tions:

1. Among three consecutive columns, at least one is a zero column.
2. For all j ≥ 0 and i ∈ {1, 2}, we have ηi,j+1 · ηi,j 6= µ.
3. If ηi,j+1 · ηi,j 6= 0 for some j ≥ 0 and some i ∈ {1, 2}, then ηi′,j+1 ∈ {±1}

and ηi′,j = 0, where i′ = 3 − i is the other row index.
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Figure 4. Transducer describing opt(zℓ) in the case w = 5, µ = 1,
D = Pτ̄ (5).

Here, the components of the jth column ηj are denoted by
(

η1j

η2j

)
.

As stated in [6], every z ∈ Z[τ ]2 admits exactly one τ -JSF. The proof of this
fact is promised to appear in the journal version of [6], which is not yet available
at the time of this writing. However, it can be proved independently.

There is a transducer automaton translating joint expansions to the τ -JSF
representing the same integer vector. This transducer has 289 states whence it is
not shown here.

Theorem 3. For every nonnegative integer ℓ, we consider the integer vectors zℓ,
z
′
ℓ ∈ Z[τ ]2 given by

zℓ := value

((
0

0

)ω
0

µ

(
0

0

0

µ

0

0

0

0

0

1̄

0

0

)(ℓ)
0

0

0

µ

1

0

0

0

0

1̄

)
,
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z
′
ℓ := value

((
0

0

)ω (
0

0

0

0

0

µ

0

0

0

0

0

1̄

)(ℓ)
0

0

0

0

0

µ

1

0

0

0

0

1̄

)
.

We have

zℓ − z
′
ℓ =

(
0

(6 − µτ)τ6ℓ

)
,

in particular, zℓ ≡ z
′
ℓ (mod τ6ℓ).

The only optimal joint expansions of zℓ and z
′
ℓ are given by

(
0

0

)ω (
0

0

0

0

0

1̄

0

0

0

0

0

µ

)(ℓ)
0

0

0

0

1

1̄

0

µ̄

0

1

and (
0

0

)ω (
0

0

0

0

0

µ

0

0

0

0

0

1̄

)(ℓ)
0

0

0

0

0

µ

1

0

0

0

0

1̄
,

respectively. In particular, the least significant digit vector of the optimal joint
expansions of zℓ and z

′
ℓ differ.

Proof. The proof runs along the same lines as the proof of Theorem 1. The trans-
ducers TL and TL′ have 1048 states in both cases for µ, the reduced transducers
T ∗
L and T ∗

L′ have 225 and 197 states, respectively. The transducers describing the
optimal expansions of z

′ and z
′
ℓ are given in Figures 5 and 6, respectively. �

0
0

0
0

1
1̄

0
µ̄

0
1 | 00 0

µ

1
0

0
0

0
1̄

0
0

0
0

0
1̄

0
0

0
0

0
µ
| 00 0

µ

0
0

0
0

0
1̄

0
0

0
0

0
0 | 00 0

µ

0
0 | 00

Figure 5. Transducer transforming all optimal joint τ -expan-
sions of zℓ to its τ -JSF.

Corollary 7.3. It is impossible to compute an optimal joint expansion of a digit
vector z by a deterministic transducer automaton or an online algorithm from
right to left.

Remark 7.4. This result can immediately be generalised to higher dimensions
d > 2 by filling up the additional rows by zeros.

Remark 7.5. Instead of using the τ -JSF, one could also use a generalisation
of the Simple Joint Sparse Form (SJSF) proposed by Grabner, Heuberger and
Prodinger [8] to the base of τ . The only difficulty is that the τ -SJSF of the two
vectors zℓ and z

′
ℓ given in Theorem 3 have a Hamming weight which exceeds that
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0
0

0
0

0
µ

1
0

0
0

0
1̄ | 00 0

0
0
µ

1
0

0
0

0
1̄

0
0

0
0

0
µ

0
0

0
0

0
1̄ | 00 0

0
0
µ

0
0

0
0

0
1̄

0
0 | 00

0
0 | 00

Figure 6. Transducer transforming all optimal joint τ -expan-
sions of z

′
ℓ to its τ -JSF.

of their optimal expansion by an amount which is linear in ℓ. This complicates the
argument in the proof somewhat and motivated our decision to take the τ -JSF as
“standard-representation” in this case.
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Nombres Bordeaux 14 (2002), 517–528.

10. C. Heuberger and J. Muir, Minimal weight and colexicographically minimal integer
representations, J. Math. Cryptol. 1 (2007), 297–328.

11. C. Heuberger and H. Prodinger, Analysis of alternative digit sets for nonadjacent
representations, Monatsh. Math. 147 (2006), 219–248.
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